
HAL Id: hal-02893341
https://hal.sorbonne-universite.fr/hal-02893341v1

Submitted on 8 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Resource Management Architecture For Exposing
Devices as a Service in the Internet of Things

Carlos Eduardo Pantoja, Heder Dorneles Soares, Jose Viterbo, Tielle
Alexandre, Arthur Casals, Amal El Fallah-Seghrouchni

To cite this version:
Carlos Eduardo Pantoja, Heder Dorneles Soares, Jose Viterbo, Tielle Alexandre, Arthur Casals, et al..
A Resource Management Architecture For Exposing Devices as a Service in the Internet of Things. 31st
International Conference on Software Engineering and Knowledge Engineering, Sep 2019, Lisbonne,
Portugal. pp.233-238, �10.18293/SEKE2019-187�. �hal-02893341�

https://hal.sorbonne-universite.fr/hal-02893341v1
https://hal.archives-ouvertes.fr


A Resource Management Architecture For Exposing
Devices as a Service in the Internet of Things

Carlos Eduardo Pantoja
CEFET/RJ

Universidade Federal Fluminense
pantoja@cefet-rj.br

Heder Dorneles Soares and
José Viterbo and Tielle Alexandre

Universidade Federal Fluminense
hdorneles,viterbo@ic.uff.br, tiellesa@id.uff.br

Arthur Casals and
Amal El-Fallah Seghrouchni

Sorbonne Universités UPMC, LIP6
Universidade de São Paulo (USP)

amal.elfallah@lip6.fr, arthur.casals@usp.br

Abstract—This work proposes an architecture for sharing
devices’ resources in the Internet of Things providing real sensor
data for its users. The main idea is based on the fact that users
such as developers and researchers do not always have access
to the necessary hardware and resource sharing should impact
these persons activities. Taking advantage of the Sensors as a
Service model, we propose an architecture where several sensors
and actuators can be coupled to environments and they also are
represented virtually in a web system becoming available to be
consumed by users and platforms. The architecture is composed
of three layers and a model representing devices, the cloud, and
clients, and how they interact with each other. A study case for
testing the whole approach is also presented.

Index Terms—Internet of Things, Embedded Systems, Ubiqui-
tous Computing

I. INTRODUCTION

The number of computing devices used in daily tasks,
the internet coverage as well as how to handle data, are
increasingly being used to improve people’s lives and together
with the Internet of Things (IoT), they are the key to the
development of a wide range of applications [1]. These large
number of components open up relevant issues, such as sharing
data in heterogeneous environments once sensors deployment
often employs high costs. Then, mechanisms for resource
sharing should play a major role in this scenario.

These applications gather data from several sensors and the
number of devices can make the project unfeasible. There
is an emerging cloud computing model named Sensors-as-
a-Service, where users can make public their own sensors’
data to be consumed by other clients [2]. However, it is
difficult to integrate and deploy such systems due to the
heterogeneity of devices and communication technologies [3],
[4]. Considering this, middleware for IoT play an important
role in these systems since they can deal with the heterogeneity
of hardware, data distribution, and communication protocols.

So, the objective of this paper is to propose an architecture
for the management of resources and to expose them as
a service in an IoT network. This Resource Management
Architecture (RMA) is divided into three layers of abstractions
where devices are responsible for keeping the real resources
independently from the core of RMA, which deals with the
virtualization, registering and updating of data from devices.

DOI reference number: 10.18293/SEKE2019-187

Then, clients can consume this data as a service using exposed
web services that access the virtualization layer. The aim of
RMA is to provide an integrated solution to be used in any
domain since its general architecture is not bounded to any
application provided and to work as a repository of devices
where researchers can make their data consumable to other
persons who might be interested in them.

The RMA is built over instances of a robust middleware for
IoT in its layers, which treats the connectivity and scalability
of devices [5]. Besides, we also propose a structure for the
development of devices able to self-configuration in the RMA.
Finally, the RMA can be accessed by web services or other
web solutions. The rest of this paper is structured as follows: in
section II, we present the related works; section III presents our
proposed architecture and their components; in section IV, it
is described the implementation of RMA; section V the RMA
is evaluated based on software engineering methods. Finally,
conclusions are discussed in section VI.

II. RELATED WORKS

During the last years, several approaches try to deal with
shareable resources in different domains. For example, the
research in Ambient Intelligent has been searching for techno-
logical strategies to improve the people life quality and solve
problems caused by population growth in urban areas. A lot of
papers explore technologies for improving citizen services and
how to add value to public administration in Smart Cities [6].
In these cases, there are data coming from people, social
networks, household, organizations (public and privates), and
so on. Devices are often used in such approaches however,
issues as interoperability, communicability, and how to turn
data public and consumable are not in their scope. In this
paper, we present an architecture that can be used to provide a
layer of consumable devices that can be applied in any domain
and deal with those issues.

When considering systems that use sensors as a service,
there is an interoperable system [7] that offers a web service
description language interface designed for users to access
sensors. However, its main focus is on low-power wireless
sensor nodes and energy profile. The SOCRADES middle-
ware [8] is a solution for business integration that offers a
web service-oriented architecture that integrates different types
of intelligent objects. It uses an enterprise business solution



system to provide the ability of users to construct services
based on physical objects using the Web of Things [9] and
using REST applications [10]. These approaches tie the design
of the device to the web system restraining new devices to be
added at runtime. In our proposed approach, devices have their
own mechanism for dealing with the core system at runtime.

III. THE RESOURCE MANAGEMENT ARCHITECTURE

In this section, we present the Research Management Ar-
chitecture (RMA), an architecture responsible for the virtu-
alization of devices that act as IoT objects, exposing their
sensors and actuators to be accessed and consumed by who
might be interested in their functionalities. These resources’
data are maintained at runtime in a model that can be publicly
visualized and subscribed for several purposes. Exposing de-
vices as a service that can be virtually consumed brings some
advantages since users do not need to have their own devices,
reducing eventual costs in creating new ones. In this way,
users can provide a shareable resource component that can
be exploited for several purposes. The proposed architecture
(Figure 1) is composed of three different layers:

1) Device: in this layer, the devices have an embedded
system enhanced with a processing cycle where (i) it
connects and registers in the Cloud layer at the very first
time; (ii) it gathers data from all its sensors to be sent to
the cloud layer and; (iii) it receives from the Cloud layer
actions that must be executed by the device’s actuators.

2) Cloud: it is capable of maintaining updated information
from devices hosted in environments and running over an
IoT middleware. The Resource Management Component
(RMC) manages (i) the registering process of devices; (ii)
the sensors’ data updating process, and; (iii) the actions
that must be executed by devices. Besides, it also capable
of exposing RESTful web services for several purposes.

3) Client: it is responsible for the visualization of devices
and environments. In this paper, it is represented as
a web solution. It implements a publish and subscribe
mechanism for allowing developers and researchers in
obtaining data from real sensors without possessing them
and it offers an infrastructure for those who want to
provide sensors as a service.

In the RMA, a device is an IoT object equipped with a
micro-controller (hardware) where sensors and actuators are
plugged in. The devices host an embedded system capable of
connecting and registering to the Cloud layer for providing
current data to be consumed by users. The embedded system
dynamically registers itself in the RMC by sending all its func-
tionalities (available resources, data and action commands)
and the environment it is situated. Once connected, the device
receives a confirmation and it starts to send data gathered from
its sensors directly to the RMC, which keeps the most recent
value available to be consumed or visualized in a web panel
in the Visualization layer. Besides, the embedded system deals
with the action commands coming from the RMC that need
to be executed by the device’s actuators.

Fig. 1. The Resource Management Architecture’s (RMA) components.

The RMC is the main component in the RMA and it
maintains information about devices and environments to be
consumed as a service by other layers. It has a mechanism
for registering devices in given environments, storing their
information in the Virtualized Components Database (VCDB).
The VCDB keeps updated the data coming from devices by
considering only the new values that have changed since
the last data message was received. In addition, this layer
exposes web services for providing different services such as
visualization layers for mobile applications or allowing new
technologies to interact and access the VCDB. Web services
use a RESTful architecture for system interoperability and it
uses Json files for exchanging information (data, requisitions,
and execution commands) between the Cloud and Client
layers.

The actions that need to be executed by devices are managed
by the RMC. Any user that desire to perform an action in any
available actuator must send an action command by accessing
one of the provided services. The RMC redirects the action
directly to the specific device. The technical information about
hardware and actuators is transparent to the end user, that just
need to know the available commands of the device he or she
wants to interact. While one device is being used, the RMC
blocks the specific actuator or the entire device for avoiding
conflicts in the lower layer. The respective resource is unlocked
after the execution or after a timeout boundary.

The RMC is a server-side solution running an IoT mid-
dleware instance where the devices must connect to. The
middleware provides the connectivity and communicability
necessary for devices to interact with the RMC layer and it



should guarantee the scalability of the system. These issues
are not the focus of this work, however more technical details
about the chosen middleware are provided later in Section IV.

For facilitating the environments managing, this layer pro-
vides a web page where all the environments can be accessed
at real-time and users can create their own public or private
environments. This web system shows all the public environ-
ments allowing users to select and see their available informa-
tion and subscribe to have access to a specific and personalized
group of information. In this work, an environment is defined
by a logical representation of a physical space where several
devices can co-exist sharing information in an IoT network.

IV. IMPLEMENTING THE RMA’S LAYERS

In this section, it is presented the implementation of the
Device, Cloud and Client layers considering technological
components and how these layers communicate with each
other. For both Device and Cloud layers, we employ the
ContextNet middleware [5], which is an IoT middleware for
context reasoning and data sharing in a large scale envi-
ronment. It is a context-providing service for stationary and
mobile networks, which already addresses data communication
issues such as fault tolerance, load balancing, node disconnect
support (handover), and security. It uses the OMG DDS [11]
protocol for handling messages between clients.

The Device layer uses a low coupled serial interface [12]
for communicating with the micro-controllers that hosts the
sensors and actuators. This interface isolates the high-level
programming from the low-level using serial commands for
activating users’ pre-defined functions, which controls actua-
tors or gathers data from sensors. The Client layer employs
a web system capable of managing environments, showing
their available resources, and it has a publish and subscribe
mechanism for users interested in specific resources. All layers
consider a model where these resources are part of devices
situated in pre-existing environments in the architecture. For
instance, the environments have to be manually registered by
the user to facilitate their management and for security issues.
This model is represented as a class diagram (Figure 2) shared
between the three layers. The classes that can be found in our
solution are described as follows:
• Action: the action that is executed at the low-level hardware

in a device. Every command sent by the the Client and
Cloud layers becomes an action in the Device layer.

• Command: it is the representation of commands available
to be executed if the resource is an actuator. Sensors do
not have commands because they are data providers.

• Cycle: it is the functioning cycle of the embedded system
hosted in devices. It is responsible for synchronizing the
device activities of sending data and executing actions.

• Device: it is the device representation used in the Client,
Cloud and Device layers. It keeps the identification, name
and description of a device and it is composed resources.

• Embedded Client: it is the ContextNet client instance
responsible for receiving messages from the Cloud layer
and other clients, and sending the data from sensors to

the Cloud layer. It also maps the components of the
configuration file into its respective components.

• Environment: the virtual representation of environments in
all layers. Each environment is composed of devices.

• Main: the main class that starts a device.
• Resource: it represents both sensors and actuators in all lay-

ers. The resources keep information about the serial port
where the resource is connected, the available commands
to be executed, and the availability of the resource.

• Resource Management: it is the main class of the cloud
layer and it is a server instance of the ContextNet. It
keeps a list of environments mapped and the devices
registered for each one. It is responsible for the process
of registering and updating devices and resources. It also
exposes the web servers and the interfaces to the database.

• Serial Communication: the serial interface between the
micro-controller and the system hosted at devices.

A. The Device Layer

The Device layer comprises devices running an embedded
system with enough processing power interfacing sensors and
actuators. There is a physical and logical architecture for
clients where the first one uses hardware technologies and
it is composed of a tiny mobile board with Bluetooth and
WiFi connections (e.g. Raspberry Pi) connected to one or more
micro-controllers using serial communication for accessing
sensors and actuators. The logical architecture of the Device
layer comprises both micro-controllers’ programming and the
embedded system. They are able of gathering the raw data
from the sensors and then send it to the embedded system.
After that, the embedded system sends the data to the Cloud
layer or receive commands to be executed by actuators.

The micro-controller is programmed in a loop for verifying
if there are messages coming from other layers. So, it accesses
all the sensors and mounts a string to be sent by serial com-
munication to the embedded system. Otherwise, the execution
action is verified and if exists an equivalent programmed, an
action is executed in the respective actuator.

Algorithm 1 Device’s Processing Cycle
1: procedure CYCLE(configurationF ile)
2: mountDevice(configurationF ile)
3: intervalT ime← getIntervalT ime()
4: loop
5: if isRegistered() then
6: getheredData← dataFromSensors()
7: sendToCloud(gatheredData)
8: wait(intervalT ime)
9: actions[]← getReceivedActions()

10: executeNextActions(actions[])
11: else
12: registerDevice()

The embedded system controls the microcontroller and it
uses a ContextNet client able to communicate with the Cloud
layer. For this, there is a cycle (Algorithm 1) for synchronizing



Fig. 2. The class diagram of the overall architecture comprising the Client, Cloud and Device layers.

the reception of data coming from sensors to be sent to the
Cloud layer and the actions that need to be sent and executed
in the micro-controller because both cannot execute at the
same time for avoiding undesired conflicts. So, the actions
received from the Cloud layer are put in a queue of actions to
be executed one step after the data from sensors are collected
through serial ports. It is also capable of performing a self-
configuration and registration at the Cloud layer when it starts
running and there is a cloud server available. For this, the
device keeps an XML file describing all the available re-
sources, commands, and the server configuration information.
Once the file is correctly filled, the system performs everything
automatically. The following information must be provided:

(i) Server: the gateway of the server and the port must be
provided in order to connect to the Cloud layer where the
server instance of the ContextNet is installed. Besides, the
time interval of sending data to the server must be set.

(ii) Environment: for instance, it is necessary to inform in
which environment the device is inserted into. For this,
the identification number of the environment must be
declared in the configuration file. The environment’s iden-
tification is generated when users register an environment
in the web system.

(iii) Resources: all the resources available must be mapped
in the configuration file. All the resources have the serial
port where it is connected, its name, and a non-mandatory
description. If the resource is an actuator, it also has the
available execution commands.

The embedded system architecture is composed by the
Cycle class, which instantiates an instance of ContextNet
client (represented by the EmbeddedClient class) capable of
exchanging message with other clients and the cloud server.
Besides, the EmbeddedClient is responsible for the serial
interface and it deals with a queue of actions received from the
Cloud layer that has to be executed. The SerialCommunication
and Action are the classes responsible for these behaviors.

B. The Cloud Layer

The cloud layer is a server instance of the ContextNet
running a core system responsible for the virtualization of
environments, devices and available resources. The devices
register at the cloud informing their resources and environment
where they are situated. This process starts when the core
receives the file containing all the information of the device.
Then, the system extracts the necessary information from the
file and it registers the device at the system in the informed
environment. Afterward, it sends back a message to the device
authorizing the beginning of sending data from sensors.

Once the devices start sending data, the core system reg-
isters the new values and updates the old ones in VCDB
(Figure 1). For every device, there are resources that can be
sensors or actuators. In the case of sensors, if it is the first
time that a new value of a resource is received, the system
inserts this new value at the VCDB. Otherwise, if the value
has changed since the last data reception, this new value is
updated in VCBD. In the case of actuators, there is no data to
be stored but it is kept the information about the availability
of the resource. For example, the system informs if a certain
actuator is being used or it is free for executing commands.

The core system deals with commands requisitions coming
from the Client layer (a web system or by exposed web
services) to be sent and executed at devices. The Client layer
does not need to know technical details of hardware or even
in which device the command will be executed. The com-
mands are specific for a resource and the core system avoids
duplicated resources and commands. Besides, it also redirects
a received command to the respective device registered at the
system by sending a message using ContextNet.

In the Cloud layer, there is also a locking process for
avoiding conflicts in executing actions when two or more
clients try to execute commands in the same actuator. For this,
every time that a client needs to use a specific actuator, the
core system locks this resource until the client informs that



is no longer using it, the action was performed, or a timeout
boundary is reached. During this process, the locked resource
is unavailable for all clients. It is important to remark that
sensors are not part of the locking process because the nature
of sensors is to provide data to be consumed. If the data is
considered confidential, the environment can be set as private.

As stated before, web services can be exposed for extending
the functionalities of the RMA in the Cloud layer. For creating
RESTful web services it is used as an embedded servlet
container and web server named Jetty. The available web
services are a requisition service for agents applications for
using resources with contextual planning; an execution service
for activating or deactivating the actuators based on available
commands; and a web service for providing data access to
mobile applications.

The Cloud layer’s model is composed of the ResourceM-
anagement class where the ContextNet server is instantiated.
Besides, it hosts a list of Environments with their Devices,
Resources, and Commands classes.

C. The Client Layer

The idea behind the Client layer is to provide a layer capable
of showing environments’ resources in any kind of platform
such as web pages, web services or mobile applications.
Besides, it is responsible for providing some basic mechanisms
that are not available in previous layers such as environments
creation and, publish and subscriber mechanisms for example.
The Client layer is represented as a web page for showing
all the resources of environments and some basic functions
for interacting with the resources. The user is able of creating
environments to virtually host his devices and to expose them
to be consumed by other users. Besides, the actuators have
commands that users can activate by interacting with the Client
layer’s web system. The technologies employed are relational
databases, Java web pages and Ajax.

Besides that, users can choose to follow some of the
resources without the need to access the environments every
time that he needs to get those values. The publish and
subscriber mechanism allows users to access values always
that a change is perceived by the core system in the Cloud
layer. It allows the user to set basic rules such as defining
a desired value to be announced when reached. All existing
modules can co-exist without interfering in each other since
all functions are managed by the Cloud layer. They all have to
connect to the Cloud layer’s database or use an exposed web
service to access information.

V. EVALUATION

In this section, it is presented an initial case study evaluation
in the assisted environment domain using the proposed RMA
using a software engineering based approach. Case studies are
employed because they are suitable for evaluation of software
engineering methods involving development, operation, and its
maintenance and artifacts [13].

The scenario will be held in a hypothetical Smart City
where the government has access to a hospital where the

RMA is implanted. Some rooms in the hospital building have
devices for controlling the temperature and luminosity (as
sensors), and light lamps of the room (as actuators), and other
devices for measuring some of the patients’ information such
as heartbeat frequency. Therefore, every room in the hospital
endowed with devices is considered an environment in the
RMA and its devices’ resources are exposed as a service for
the board of directors, government and everyone interested in
them. It is important to remark that, even in this hypothetical
scenario, there is no real personal contact of patients available.

Based on this, two devices were prepared for a room, named
Room 403. Both devices use a Raspberry Pi Zero connected
to an Arduino board. The first device is connected to a tem-
perature and a luminosity sensor for the basic sensing of the
room. The second one is a device with a light lamp connected
to the Arduino working as an actuator and informing if the
lamps are on or off. Besides, virtual devices were simulated
in order to stress the RMC functioning. For this, the serial
interface between the embedded system and the hardware were
disabled, and several resources were simulated for each virtual
device, which sends random data to the Cloud layer. So, one
device for monitoring the heartbeat frequency of a patient and
devices identical to the real ones above were simulated in
each room. In general, 20 environments were prepared where
the environment Room 403 has two real devices and one
simulated, and the other 19 have three simulated resources.

The case study approach is divided into four steps: case
study design, preparation for data collecting, the data collect-
ing and data analysis. The following Table I shows the details
and aim of the descriptive case study.

TABLE I
THE CASE STUDY DESIGN

Design Description

Objective A descriptive analysis of the behavior of the RMA
functioning.

Case The asynchronous process of transferring informa-
tion from devices to the Cloud layer to be consumed
by clients using web solutions.

Questions Is the device connects correctly to the Cloud layer?
Is the communication process between all layers
works? Is the Client layer showing the correct data?

Method Qualitative data analysis using negative case analysis
and observation method.

Some tests were conducted trying to deny the research
questions above. The preparation for the data collecting con-
sisted in store both dynamic registration at the RMC and
the answer that devices receive before starting sending data
from sensors. Afterward, it is verified if these data arrives
at all layers properly by analyzing the transferring process
between hardware and device, device and cloud, and cloud
and client. A string of data that comes out from the hardware
is collected and compared if the data read arrived correctly at
the embedded system. Between Devices and the Cloud layer,
all devices should keep sending data to be stored at the VCDB
in the RMC. Finally, between Cloud and Clients, these same



data should be read by clients when data update occurs.
The data collecting and analysis were performed in an

arithmetic progression from 1 to 20 devices. Firstly, the server
instance was running properly to verify the effectiveness of
RMA and then it was disabled. Once there is no server instance
available, they should not send data. Then, the data should be
properly stored and read by Cloud and Client layers. Table II
shows the resumed results from tests.

TABLE II
DATA COLLECTION AND ANALYSIS

Test Description Hit (%)

Hardware Data is correctly transferred to
the embedded system.

100

Connection with
Server

Device registered at RMC and
registered message received.

100

Connection without
Server

Device registered at RMC and
registered message received.

0

Data Updated and
Stored

Data correctly stored at
VCDB.

100

Data Read Data correctly read by clients. 100

The communication between hardware and the embedded
system is done using a serial interface, which guarantees no
losses in the data transferring. None errors were observed in
this process. As expected, when the server instance is disabled,
it is observed that devices try to connect to the Cloud layer but
there is no response from the server and no data is sent from
any device. Otherwise, the device is registered and receives a
confirmation to start sending data to the Cloud. All devices
work properly considering an available server instance.

The most recent information available coming from devices
is updated in the VCDB. Considering that the VCDB is
implemented as a relational database, there are no big deals
in this process not even in the visualization of the devices
by the Client layer. This case study focused on observing the
communication and the correctness of data flowing through
the architecture. More experiments focusing on performance
and a proper formalization were left for future efforts.

VI. CONCLUSION

In this work, it was presented a low-coupled three-layer
architecture for exposing devices as a service to be consumed
by clients. The devices are able of connecting to an IoT server,
registering their resources (sensors and actuators) in a core
system, which turns all the public data available that can be
accessed by clients using web services and a web platform. A
case study was proposed and evaluated integrating the Device,
Cloud and Client layers for monitoring an environment.

RMA architecture employs different technologies in its
layers. Devices are autonomous and uncoupled from the
Cloud layer because they are built using hardware platforms
enhanced with wi-fi connections and it uses a serial interface
for communicating with micro-controllers. These technologies
provide the necessary autonomy, heterogeneity of hardware
employed, and communicability to the Cloud layer. The Con-
textNet middleware provides client and server instances and it

is used in the architecture because of the middleware guaran-
tees connectivity, communicability, reliability, and scalability,
in addition to using an industrial market standard protocol.

The Client layer offers web solutions for managing environ-
ments and for the visualization of their respective resources.
Besides, it is possible to subscribe specifically to resources
that one might be interested in. Moreover, the RMA aims to
provide an architecture for exposing devices as a service to be
consumed by persons that do not have access to these kinds
of resources either for the cost or complexity of creating from
scratch an architecture for that purpose.

Nowadays, the designer of the device should program how
data is mounted and captured by the micro-controller and sent
to the embedded system. As future works, it is important
to create an automatized plug-and-play way of configuring
the device in low-level. Besides, as micro-controllers are
connected to the serial port of the tiny computer of the device,
a similar process for the identification of serial ports by the
embedded system is also interesting. The environment has to
be set manually at the device’s configuration file for security
and control reasons, nevertheless, it is possible to identify and
register autonomously the environment based on access points.

REFERENCES

[1] E. Santos, P. H. V. Penna, I. M. Coelho, H. D. Soares, L. S. Ochi, and
L. Simonetti, “Logistics sla optimization service for transportation in
smart cities,” in 2018 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, July 2018.

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a Service Model for Smart Cities Supported by Internet of Things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 3, pp. 294–307, 2014.

[3] M. Weiser, “Some computer science issues in ubiquitous computing,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 3, pp. 12–, July 1999.

[4] C. Pantoja, H. Soares, J. Viterbo, and A. Seghrouchni, “An architec-
ture for the development of ambient intelligence systems managed by
embedded agents,” in The 30th International Conference on Software
Engineering & Knowledge Engineering, (San Franscisco), 2018.

[5] M. Endler and F. S. e Silva, “Past, present and future of the contextnet
iomt middleware,” Open Journal of Internet Of Things (OJIOT), vol. 4,
no. 1, pp. 7–23, 2018.

[6] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano,
“Current trends in smart city initiatives: Some stylised facts,” Cities,
vol. 38, pp. 25–36, 2014.

[7] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web ser-
vices: design and implementation of interoperable and evolvable sensor
networks,” in Proceedings of the 6th ACM conference on Embedded
network sensor systems, pp. 253–266, ACM, 2008.

[8] L. M. S. De Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos,
and D. Savio, “Socrades: A web service based shop floor integration
infrastructure,” in The internet of things, pp. 50–67, Springer, 2008.

[9] D. Guinard and V. Trifa, “Towards the web of things: Web mashups for
embedded devices,” in Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web, in proceedings of International
World Wide Web Conferences, Madrid, Spain, vol. 15, 2009.

[10] B. Ostermaier, F. Schlup, and K. Römer, “Webplug: A framework for the
web of things,” in 2010 8th IEEE International Conference on Pervasive
Computing and Communications Workshops, pp. 690–695, March 2010.

[11] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Distributed Computing Systems Workshops, 2003. Pro-
ceedings. 23rd International Conference on, pp. 200–206, IEEE, 2003.

[12] N. M. Lazarin and C. E. Pantoja, “A robotic-agent platform for em-
bedding software agents using raspberry pi and arduino boards,” 9th
Software Agents, Environments and Applications School, 2015.

[13] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.


