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Degree of a polynomial ideal and Bézout inequalities

Daniel Lazard

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract

A complete theory of the degree of a polynomial ideal is presented, with a systematic use
of the rational form of the Hilbert function in place of the (more commonly used) Hilbert
polynomial.

This is used for a simple algebraic proof of classical Bézout theorem, and for proving a
”strong Bézout inequality”, which has as corollaries all previously known Bézout inequal-
ities, and is much sharper than all of them in the case of a non-equidimensional ideal.

Key words: Degree of an algebraic variety, degree of a polynomial ideal, Bézout theorem,
primary decomposition.

1 Introduction

Bézout’s theorem states: if n polynomials in n variables have a finite number of
common zeros, including those at infinity, then the number of these zeros, counted
with their multiplicities, is the product of the degrees of the polynomials. Despite
its apparently simple statement, this theorem needed almost a century for being
completely proved. The main difficulty was to give an accurate definition of mul-
tiplicities, and this requires some machinery of commutative algebra. Most proofs
of this theorem proceed by recurrence on the number of polynomials, and use the
concept of degree of a polynomial ideal. These proofs obtain the theorem as a corol-
lary of: if a homogeneous polynomial f of degree d is not a zero divisor modulo
a homogeneous ideal I of degree D, then the degree of the ideal I + 〈f〉 is dD.
If some hypotheses are relaxed, such as counting multiplicities or working with
homogeneous polynomials, one gets only inequalities, commonly called Bézout in-
equalities. For example, if n polynomials in n variables have a finite number of
common zeros, then the number of these zeros, counted with their multiplicities is
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at most the product of the degrees of the polynomials. Surprisingly, this Bézout in-
equality is not a corollary of Bézout’s theorem, and seems to have not been proved
before 1983 [7].

All these results require the definition of the degree of a polynomial ideal. Several
definitions have been given, either in terms of algebraic geometry or in terms of
commutative algebra [2, 3, 4, 6]. Most deal only with homogeneous ideals. One
of the objectives of this article is to give a general definition in terms of basic
commutative algebra and to prove that all other definitions are special cases. In
fact, we give several definitions that are all equal for equidimensional ideals, but
not in general.

Basically, the degree of an algebraic variety is the number of points of its inter-
section with a generic linear variety of a convenient dimension. This definition is
not algebraic but can easily be translated into an algebraic one. However the re-
sulting definition is not intrinsic, involving auxiliary generic polynomials, which
make proofs unnecessarily complicated. Therefore, we use the definition through
Hilbert series, which provides a simpler presentation of the theory. Many authors
use instead the Hilbert polynomial, and the fact that the coefficients of the Hilbert
series are, for large degrees, the values of a polynomial (the Hilbert polynomial).
The proof of this polynomial property relies generally on Hilbert’s syzygy theo-
rem. Here we prefer using the fact that the Hilbert series is a rational function,
and we define the degree directly from its rational form. In our opinion, this gives
simpler proofs, and, in particular, avoids using the syzygy theorem. This approach
has other advantages. Firstly, the Hilbert series carries more information than the
Hilbert polynomial. In particular, it includes the degree from which the Hilbert
function starts to be polynomial. Also, all known algorithms for computing the de-
gree of an explicitly given ideal use Gröbner bases; the Hilbert series, which can be
computed from the leading monomials of a Gröbner basis, is nowadays the simplest
and the more efficient way for computing the degree. In the case of homogeneous
ideals, our approach is not new, although is seems unknown by many specialists of
algebraic geometry, and we do not know any published presentation of it. We have
learnt it from an early version of [1], by Carlo Traverso alone. In Traverso’s article,
the definition of the degree is also extended to the case of non-homogeneous ideals.

In the case of non-equidimensional ideals, the classical definition of the degree does
not depend on the components of lower dimension and the embedded components.
For taking all isolated components into account, Masser and Wüstholz [7] have
introduced another notion of degree, which is the sum of the degrees of the isolated
components of any dimension. We call this degree the total degree. Masser and
Wüstholz have proved that, for an ideal generated by polynomials of degrees d2 ≥
· · · ≥ dk ≥ d1, the degree of the intersection of the isolated components of height
h is at most d1d2 . . . dh. So, if the height of the ideal is h, the total degree is at most
hd1d2 . . . dh.
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The main new result of this article is the following.

Theorem 1. Let I be a polynomial ideal generated by polynomials of degrees d2 ≥
· · · ≥ dk ≥ d1. Define the divided degree of an isolated primary component of
height h of I as the quotient of its usual degree by d1d2 . . . dh. Then, the sum of the
divided degrees of the isolated components of I is at most one.

This inequality implies immediately Masser-Wüstholz inequality, and all other pre-
vioulsy known Bézout inequalities. It is much stronger for ideals that are not equidi-
mensional. Moreover, although Masser-Wüstholz proof involves analytic geometry,
our proof is purely algebraic.

The article is structured as follows. Section 2 is a short section where the basic
notation that is used through the article is defined. In section 3, the Hilbert series
is defined, and its main properties are given. These properties are used in section 4
for defining the degree of a homogeneous ideal and proving its main properties.
There are several ways to extend this definition to non homogeneous ideals, that
are presented and shown to be equivalent in section 5. In section 6 these definitions
of the degree of an ideal are shown to be a generalization of other earlier definitions,
that require often some further constraints, such as equidimensionality of the ideal
or a ground field that is algebraically closed. In section 7, the classical Bézout’s
theorem is proved proved by using our definition of the degree. Section 9 is devoted
to the statement of the main result of this paper, the ”strong Bézout inequality”,
and its comparison with previous Bézout inequalities. Its proof is the object of
section 10.

2 Notation and terminology

In this article, we work with the polynomial ring Rn = K[X1, . . . , Xn] in n inde-
terminates over a field K. This ring is a graded by the degree, and this gradation
extends to homogeneous ideals and quotients by such ideals. In all these graded
modules, the homogeneous part of degree d is a finite-dimensional K-vector space.
For all modules that are considered, all homogeneous parts of negative degree are
zero.

We call algebra the quotient of Rn by a homogeneous ideal I . If A is such an
algebra, the homogeneous elements of positive degree generate the unique homo-
geneous maximal ideal, which will be denoted A+.

A homogeneous element of an algebra is sufficiently generic or simply generic if
it does not belong to the union of the associated primes (of zero) that are different
from A+. A homogeneous polynomial of Rn is generic if it does not belong to the
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union of the associated primes different from (Rn)+ of the ideals that are under
consideration. Generic elements exist always if the field K is infinite, since, in
this case a vector space cannot be the union of a finite number of proper vector
subspaces. When generic elements are used in this article, this is always for proving
a property that is invariant under extension of the ground field K. So, some of our
proofs are incomplete in the case of finite fields, but can easily be completed by
saying that if K is finite, the result follows by extension/restriction of the ground
field.

3 Gradation and Hilbert series

Definition 1. If
A =

⊕
d≥0

Ad

is a graded object, where Ad is a finite-dimensional K-vector space for every d,
then the Hilbert series of A is the formal power series

HSA(t) =
∞∑
d=0

td dimK(Ad).

The main property of Hilbert series is to be additive under exact sequences,

Proposition 1. If
0 −→ A −→ B −→ C −→ 0

is an exact sequence of homomorphisms of graded modules, then

HSB(t) = HSA(t) + HSC(t)

Proof. Results immediately from the similar formula for the dimension of vector
spaces.

Proposition 2. If A is a graded algebra, and f a homogeneous element of degree
d that is not a zero divisor in A, then

HSA/〈f〉(t) = (1− td)HSA(t).

Proof. Results immediately from the exact sequence.

0 −→ A[d] −→ A −→ A/〈f〉 −→ 0,

where A[d] is A with its gradation shifted by d, (this shift multiplies the Hilbert
series by td).
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Corollary 3. The Hilbert series of Rn = K[x1, . . . , xn] is

HSRn(t) =
1

(1− t)n
.

Proof. Proof by recurrence on n, using the preceding proposition with f = xn. The
recurrence starts with the trivial result HSR0(t) = HSK(t) = 1.

Corollary 4. If f1, . . . , fk is a regular sequence of homogeneous elements inRn, of
respective degrees d1, . . . , dk (this means that each fi is not a zero divisor modulo
the preceding fjs), then

HSRn/〈f1,...,fk〉(t) =

∏k
i=1(1− tdi)
(1− t)k

.

Proof. Results from proposition 2 by recurrence on k, starting from the case k = 0,
which is the preceding corollary.

For proving further basic properties of Hilbert series, we have to deal with the fact
that, in an algebra A, it is possible that all elements of A+ are zero divisors. This
occurs when A+ is an associate prime of the zero ideal. For solving this problem,
we have to consider the annihilator annA(f) of a sufficiently generic element f of
A, and to prove that its Hilbert series is a polynomial. This allows proving theorem
2, below, which is a generalization of proposition 2.

Lemma 5. If f is a generic element in a graded algebra A, then the Hilbert series
of the annihilator annA(f) is a polynomial. This annihilator and its Hilbert series
are zero if and only if the maximal homogeneous ideal A+ is not associated to 0 in
A.

Proof. The zero divisors are the elements of the union of the associated primes of
zero. The above definition of a generic element implies thus the second assertion,
and we may suppose that A+ is associated to 0 in A.

By definition of a primary ideal, the equality f annA(f) = 0, implies that annA(f)
is contained in all primary component of 0, except the one corresponding to A+. If
q is this primary component, one has q annA(f) = 0, as this product in contained
is all primary components of zero. One has Am+ ⊂ q for some integer m. Let k be
an upper bound of the degrees of a generating set of annA(f). For every j ≥ m+k,
the homogeneous part of degree j of annA(f) is thus contained in q annA(f) = 0,
and its dimension as a vector space is 0. Therefore the Hilbert series is a finite sum,
and thus a polynomial.

Theorem 2. Let A be a graded algebra (typically the quotient of Rn by a homoge-
neous ideal I), and f be a homogeneous element inA of degree d that is sufficiently
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generic (see section 2). Then

HSA/〈f〉(t)− (1− td)HSA(t)

is a polynomial with positive integer coefficients.

If A+ is not associated to 0 in A, this polynomial is 0 (this is proposition 2).

Let us consider the exact sequence

0 −→ annA(f)
[d] −→ A[d] f−→ A −→ A/fA −→ 0

where exponents [d] denote a shift of d of the gradation, and f−→ represents the
product by f . From the additive property of the Hilbert series, we get

tdHSannA(f)−tdHSA(t) + HSA(t)− HSA/fA(t) = 0.

This proves the desired property, by lemma 5.

Theorem 3. If I is an ideal of Rn, and A = Rn/I , the Hilbert series of A has the
form

HSA(t) =
N(t)

(1− t)d
,

where d is the Krull dimension of A, and N is a polynomial such that N(1) 6= 0
(thus the fraction is irreducible).

Proof. The proof proceeds by recurrence on d. If the dimension of A is zero, then
A+ is the only homogeneous prime ideal ofA, andAk+ = 0 for some integer k. This
implies that the Hilbert series has at most k nonzero terms, and is a polynomial.

If d > 0, let f be a sufficiently generic element of degree one in A. Theorem 2
shows that

HSA(t) =
HSA/〈f〉(t) + P (t)

1− t
,

where P (t) is a polynomial with positive coefficients.

Krull’s principal ideal theorem implies that the dimension of A/〈f〉 is d − 1, and
thus, by recurrence hypothesis that

HSA/〈f〉(t) =
N(t)

(1− t)d−1
,

and thus

HSA(t) =
N(t) + (1− t)d−1P (t)

(1− t)d
.
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If d = 1, the numerator is the sum of two polynomials with nonnegative coeffi-
cients, and thus has not 1 as a root. If d > 1, the value at 1 of the numerator is
N(1), and this proves the desired result.

4 Degree of homogeneous ideals

Classically, the degree of an affine or projective algebraic variety of dimension d
is the number of its intersection points with a generic linear variety of a dimension
n− d, where n is the dimension of the ambient space.

This can easily be translated in algebraic terms for defining the the degree of an
ideal in Rn. However, the resulting definition of the degree of an ideal has several
practical issues. Firstly, for dealing with non-radical ideals, it must involve the mul-
tiplicity of a local Artinian ring. Also, this definition is not intrinsic, as depending
on the (arbitrary) choice of generic linear polynomials. For this reason, it seems
more convenient to choose the following definition, which is direct and purely al-
gebraic, and then to prove that it is equivalent the classical geometric one.

Definition 2. Let I be a homogeneous polynomial in Rn = K[X1, . . . , Xn], such
the algebra A = Rn/I has the Krull dimension d. The degree of I , denoted deg(I),
is P (1), where P is the numerator of the Hilbert series of A:

HSA(t) =
P (t)

(1− t)d

The dimension of I , denoted dim(I) is d.

Before proving that this definition is equivalent with other classical definitions, we
list some useful properties that are simple consequences of the properties of the
Hilbert series given in the preceding section.

Proposition 6. The degree of a principal ideal equals the degree of its generator.
More precisely, if f ∈ Rn is a homogeneous polynomial, then

deg(〈f〉) = deg(f).

Proof. As there are no zero divisors in Rn, proposition 2 and corollary 3 implies

HSRn/〈f〉(t) = (1− td)HSRn(t) =
1− td

(1− t)n
=

1 + t+ · · ·+ td−1

(1− t)n−1
.

The results follows, since the numerator has d terms with coefficients 1.
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The following proposition is a basic tool for the proof of Bézout’s theorem, and
may be viewed as a generalization of it.

Proposition 7. If the homogeneous polynomial f is not a zero divisor modulo a
homogeneous ideal I , then

deg(I + 〈f〉) = deg(I) · deg(f).

Proof. As Rn/(I + 〈f〉) = (Rn/I)/〈f〉, theorem 2 implies

HSRn/(I+〈f〉(t) = (1− td)HSRn/I(t),

where d is the degree of f . The hypothesis implies that the dimension of I is posi-
tive. So, 1 − t can be factored out from the numerator and the denominator of this
Hilbert series, and the numerator becomes the product by 1 + · · · + td−1 of the
numerator of HSRn/I(t). The result follows by substituting 1 for t in this numera-
tor.

Lemma 8. If I ⊂ J are ideals of Rn, either dim(J) < dim(I), or dim(J) =
dim(I) and deg(I) ≥ deg(J).

Proof. Because of the ideal inclusion, one has δ = dim(I) ≥ dim(J). Each co-
efficient of the power series HSRn/J(t) is nonnegative and not greater than the
corresponding coefficient of HSRn/J(t), since the algebra Rn/J is a quotient of
Rn/J . It follows that for every 0 < α < 1, the Hilbert series are convergent, and
HSRn/J(α) 6 HSRn/I(α). If the dimensions are equal, multiplying by (1 − α)δ,
and taking the limit for α = 1 gives the same equality for the values at 1 of the
numerators.

Proposition 9 (Subadditivity under intersection). Let I and J be two ideals in
Rn = K[X1, . . . , Xn] such that dim(I) ≥ dim(J). Then dim(I ∩ J) = dim(I),
and

• deg(I ∩ J) = deg(I) if dim(I) > dim(J),
• deg(I ∩ J) ≤ deg(I) + deg(J) if dim(I) = dim(J)
• deg(I ∩ J) = deg(I) + deg(J), if dim(I) = dim(J), and I and J have no

common associated primes of dimension dim(I).

Proof. From the exact sequence

0 −→ Rn/(I ∩ J) −→ Rn/I ⊕R/J −→ Rn/(I + J) −→ 0

we get
HSRn/(I∩J)(t) = HSRn/I(t) + HSR/J(t)− HSR/(I+J)(t).
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The right-hand side has thus the form

PI(t)

(1− t)dim(I)
+

PJ(t)

(1− t)dim(J)
− PI+J(t)

(1− t)dim(I+J)
=

PI(t) + (1− t)dim(I)−dim(J)PJ(t)− (1− t)dim(I)−dim(I+J)PI+J(t)

(1− t)dim(I)
.

By hypothesis and lemma 8, one has dim(I) ≥ dim(J) ≥ dim(I + J). So the
numerator of the last fraction is a polynomial. Its value at 1 cannot be zero, since
this would implies dim(I ∩ J) < dim(I), which is excluded by lemma 8. This
proves the assertion on dimensions. The degree of I ∩ J is the value at 1 of the
numerator, which is

• PI(1) = deg(I) if dim(I) > dim(J),
• PI(1) + PJ(1) = deg(I) + deg(J) if dim(I) = dim(J) > dim(I + J), or,

equivalently, if dim(I) = dim(J), and there is no prime ideal of dimension
dim(I) that contain both I and J .
• PI(1) +PJ(1)−PI+J(1) = deg(I) + deg(J)− deg(I + J) < deg(I) + deg(J)

if dim(I) = dim(J) = dim(I + J).

If dim(I) = dim(J) = δ, one has dim(I + J) = δ if and only if I has a minimal
prime of dimension δ. As such a prime contains both I and J , it must be a minimal
prime of both I and J . Conversely, if I and J have a common minimal prime of
dimension δ, this prime contains I + J , and is thus a minimal prime of I + J . This
shows dim(I + J) = δ and completes the proof.

Corollary 10. The degree of an ideal of dimension δ is the sum of the degrees of its
primary components of dimension δ.

5 Non-homogeneous ideals

For extending the definition of the degree to non-homogeneous ideals, there are
two natural ways that give the same value to the degree. Both consist to associate a
homogeneous ideal to the given ideal, and to consider the degree of this homoge-
neous ideal. The degree of a homogeneous polynomial does not depends whether
it is considered as homogeneous or not.

5.1 Homogenization

The homogenization of an ideal is the algebraic counterpart of the projective com-
pletion of an algebraic variety. It consists to add a new indeterminate xn+1 to the
polynomial ring Rn, and to use it for homogenizing all polynomials of the ideal.
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More precisely, if f(x1, . . . , xn) ∈ Rn is a polynomial of degree d, it is homoge-
nized into the homogeneous polynomial

Hf(x1, . . . , xn+1) = xdn+1 f

(
x1
xn+1

, . . . ,
xn
xn+1

)
.

Given an ideal I of Rn, the corresponding homogenized ideal HI is the ideal gen-
erated by all Hf for f ∈ I (it is not sufficient to homogenize only the elements of a
generating set of I).

The following lemma is standard, and its easy proof is left to the reader.

Lemma 11. Every homogeneous polynomial g inRn+1 can be written g = xkn+1
Hf ,

with f ∈ Rn, and this factorization is unique. The polynomial f is obtained by
substituting 1 for xn+1 in g.

Corollary 12. A homogeneous ideal I in Rn+1 can be obtained by homogenization
from an ideal in Rn if and only if xn+1 is not a zero divisor modulo I .

5.2 Homogeneous part of highest degree

Another homogenous ideal can be associated to an ideal I of Rn. This is the ideal
hI generated by the homogeneous parts of highest degree of the elements of I . It
can be obtained by substituting 0 for xn+1 in the elements of HI . So, corollary 12
and proposition 2 imply

HSRn/hI(t) = HSRn+1/(hI+〈xn+1〉)(t) = (1− t)HSRn+1/HI(t)

.

It results that the degree of the ideal I is defined as

deg(I) = deg(HI) = deg(hI).

It is sometimes useful to interpret hI and Rn+1/
hI in term of filtrations and grada-

tions.

A filtration of aK-vector space V is a sequence F0(V ) ⊂ F1(V ) ⊂ · · · ⊂ V . In the
case of aK-algebraA and of a moduleM over a filtered algebra, the filtration must
satisfy Fi(A) · Fj(A) ⊂ Fi+j(A) and Fi(A) · Fj(M) ⊂ Fi+j(M). The polynomial
ring Rn is naturally filtered by the degree, Fd(Rn) being the vector space of the
polynomials of degree at most d. An ideal I ofRn is filtered by the induced filtration
Fd(I) = I∩Fd(Rn), and the quotientRn/I is filtered by the quotients Fd(Rn/I) =
Fd(Rn)/Fd(I).

10



The graded vector space associated to a filtered vector space is the direct sum

G(V ) =
∞⊕
i=0

Gi(V ),

where
Gi(V ) = Fi(V )/Fi−1(V ),

and F−1(V ) = (0).

In our case, G(Rn) is a ring which is isomorphic to Rn. In fact, the equivalence
class modulo Fd−1(Rn) of an element f ∈ Fd(Rn) consists of all polynomials of
degree d that have the same homogeneous part of degree d as f . This class contains
a unique homogeneous polynomial of degree d, and this defines an isomorphism
fromG(Rn) to the vector space of homogeneous polynomials of degree d. the direct
sum of these isomorphisms is thus an isomorphism of graded algebras from G(Rn)
to Rn.

If I is an ideal,G(I) is a homogeneous ideal ofG(Rn), and the quotientG(Rn/I) =
G(Rn)/G(I) is a graded algebra. The image of G(I) under the above isomorphism
is hI .

The exact sequence

0 −→ Fd−1(Rn/I) −→ Fd(Rn/I) −→ Gd(Rn/I) −→ 0

implies, by a simple recurrence, the following lemma.

Lemma 13. If I is an ideal of Rn, one has

dimK(Fd(Rn/I)) =
d∑
i=0

dimK(Gi(Rn/I))

6 Equivalence with other definitions

The other definitions of the degree of a polynomial that have been given in the liter-
ature split into geometric ones and algebraic ones. Except for the total degree that
is studied in section 8, they are equivalent to the definition given in this article, or to
the restriction of this definition to some ideals. For example, the purely geometric
definition of the degree of an (irreducible) algebraic variety, is equivalent to our
definition restricted to prime ideals.

Because all definitions either apply only to homogeneous ideals, or define the same
degree for an ideal and its homogenization (geometrically, an affine algebraic set
and its projective completion), we prove the equivalence between definitions only
in the homogeneous case.
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6.1 Geometric definition

Let us recall that the dimension of a projective algebraic set is one less that the
dimension of the ideal that define it.

The classical geometric definition of the degree of a projective algebraic set of
dimension d − 1 in the projective space of dimension n − 1 is the sum of the
multiplicities of the intersection of the algebraic set with d− 1 generic hyperplane.

We have to prove that this degree is the degree equals the degree of the ideal that
defines the algebraic set. The proof will proceed in several steps.

The first step reduces the proof to the case of an ideal of dimension one (that is,
a projective algebraic set of dimension zero). This is an immediate corollary of
theorem 2, which shows that adding to an ideal a generic linear homogeneous ideal,
one does not change the degree. So, if the ideal has dimension d, by adding to it
d−1 generic linear polynomials, one gets an ideal of dimension one, with the same
degree, which defines an algebraic set of dimension zero.

We can extend the ground field to an algebraically closed extension; this does not
change the Hilbert series of the ideal nor the algebraic set, as the points of an alge-
braic set are supposed to be defined over an algebraically closed field. So, the points
of the algebraic set are in one to one correspondence with the homogeneous prime
ideals of Rn/I that are different from (Rn)+/I . As the algebraic set has dimension
zero, all these ideals are maximal (among those that are different from (Rn)+/I),
and the multiplicity of a point is the length of the local ring at the corresponding
prime.

However, using localization at primes would complicate the proof, and we prefer
another approach. So, let I be our homogeneous ideal of dimension one in Rn. We
first do a linear change of variables in order that xn will be sufficiently generic, that
is, does not belong to any associated prime of I , except possibly (Rn)+. Let

J = {f ∈ Rn | ∃k;xkn ∈ I} = Ixn ∩Rn,

where the index xn means the localization by the multiplicative set of the powers
of xn. So, J is the intersection of the primary components of J , except the one
that has (Rn)+ as an associated prime, if it exists. This implies that I and J define
the same algebraic set (with the same points and the same multiplicities), and, by
corollary 10, deg(J) = deg(I).

By corollary 12, one can write J = HJ1 for some non-homogeneous ideal J1 of
dimension zero in Rn−1. As dim(J1) = 0, the ring Rn−1/J1 is Artinian, It is
thus a finite dimensional vector space, and there is an integer k such that one has
Fk(Rn−1/J1) = Rn−1/J1 for any filtration. Considering the gradation associated
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to the filtration by the degree, one has thus Gi(Rn−1/J1) = (0) for i > k. The
corresponding Hilbert series is thus a polynomial, and, by lemma 13, its value at 1
is dimK(Rn−1/J1); that is deg(J1) = dimK(Rn−1/J1).

On the other hand, being a commutative Artinian ring, Rn−1/J1 is a direct product
of local Artinian rings which correspond each to a point of the corresponding alge-
braic set (as we have extended K for having an algebraically closed ground field).
The multiplicity of such a point is the dimension (as a vector space) of the corre-
sponding local ring [8]. So the sum of the multiplicities of the point of the algebraic
set is dimK(Rn−1/J1) = deg(J1). This finishes the proof that our definition of the
degree is equivalent to the geometric one.

6.2 Hilbert polynomial

Many authors use the Hilbert polynomial for defining the degree. Here we show
that this definition is equivalent with ours.

Let us redefine the binomial coefficient as

(
x+ d− 1

d− 1

)
=


(x+ 1)(x+ 2) . . . (x+ d− 1)

(d− 1)!
if x ≥ 1− d

0 otherwise.

This a polynomial function of x for x ≥ 1 − d. It is standard that, if d > 1 is an
integer, one has

1

(1− t)d
=
∞∑
i=0

(
i+ d− 1

d− 1

)
ti.

This formula extends to the case d = 1, with the convention that the empty product
equals one.

If P (t) =
∑k
i=0 cix

i is a polynomial, the coefficient of tδ in the series expansion of
P (t)

(1−t)d is

k∑
i=0

ci

(
δ − i+ d− 1

d− 1

)
.

This is thus a polynomial function of δ for δ ≥ k + 1 − d, called the Hilbert
polynomial. The degree of this polynomial is d − 1 and its leading coefficient is
P (1)
(d−1)! .

Thus, our degree of an ideal is the same as the degree that is defined by using the
Hilbert polynomial.
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7 Classical Bézout theorem

Original Bézout’s theorem concerns only plane curves intersections. Nevertheless,
its generalization to any dimension is straightforward, and is commonly called
Bézout theorem. We call it classical Bézout theorem for distinguishing it from vari-
ants. It states:

Theorem 4 (Classical Bézout theorem). In the projective space of dimension n, if
the intersection of n hypersurfaces consists only of isolated points, the sum of the
multipliciies of these points equals the product of the degrees of the hypersurfaces.

Before stating and proving it in algebraic terms, let us recall some standard facts
of commutative algebra (see [5], for example). The height h of a prime ideal is the
maximal length of increasing chains of prime ideals contained in it: p0 ( · · · ( ph.
The height of an ideal is the minimal height of the prime ideals that contain it. In
Rn, the sum of the height and the dimension of any ideal is n. Bézout theorem is
strongly related with the so called unmixedness theorem.

Theorem 5 (Unmixedness theorem). Let f1, . . . , fh be homogeneous polynomials
in Rn. The following two conditions are equivalent.

• height(〈f1, . . . , fh〉) = h
• for i = 2, . . . , h, the polynomial fi is not a zero divisor modulo 〈f1, . . . , fi−1〉

Moreover, if these conditions are satisfied, all associated prime of 〈f1, . . . , fh〉 have
the same height h. Thus the ideal is equidimensional and has no embedded primary
component.

An algebraic generalization of Bézout’s theorem is the following.

Theorem 6 (Algebraic Bézout theorem). If the homogeneous polynomials f1, . . . , fh
generate an ideal of height h, the degree of this ideal is the product of the degrees
of the polynomials.

If the polynomials belong to Rn, Bézout’s theorem is the case h = n − 1: in this
case, the dimension is one, and the projective algebraic set defined by the ideal has
the dimension zero. This occurs if and only if this algebraic set has only a finite
number of points. So, the classical Bézout’s theorem results from the geometric
interpretation of the degree (section 6.1).

Proof. Proof by recurrence on h: the case h = 1 is proposition 6, and the induction
step is proposition 7.
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8 Total and weighted degrees

By corollary 10, the degree of an ideal depends only on the primary components
of maximal dimension. When components of lower dimension needs to be taken
in consideration, on needs a degree that involve them. Such a degree appears in
several articles ([7], in particular). It consists in summing the degrees of all isolated
primary components. We call it the total degree of an ideal, for distinguishing it
from the degree that has been considered until now.

Above algebraic Bézout theorem (theorem 6) is an equality. If the ideal is not
equidimensional, it becomes an inequality. The total degree was introduced for
getting a sharper inequality. However, the resulting Bézout inequality remains very
coarse. When writing this article, it appeared that a much sharper inequality can be
obtained by introducing a divided degree and a weighted degrees.

Definition 3. Given a sequence of positive integers d1, . . . , dn, the divided degree
of an ideal I is the sum

divdeg(I) =
∑ deg(q)

d1 . . . dheight(q)
,

where the sum runs over the isolated primary components of I . For every k ≥
height(I), the weighted degree is

wdegk(I) = d1 . . . dk divdeg(I).

The total degree Deg(I) is the special case of the weighted degree, where all di
equal 1.

Proposition 14. If I is an ideal of height h, one has, for every k ≥ h

deg(I) 6 Deg(I) 6 wdegh(I) 6 wdegk(I).

The first inequality is an equality if and only if I is weakly equidimensional (that is
all isolated primary components have the same dimension). The second inequality
is an equality if and only if dm+1 = dm+2 = · · · = dh = 1, where m is the
minimal heigh of an isolated primary component of I . Finally, the last inequality is
an equality if and only if dh+1 = · · · = dk = 1.

Proof. This results immediately from corollary 10.

Proposition 15 (Additivity of weighted degrees). One has

Deg(I ∩ J) 6 Deg(I) + Deg(J),
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with equality if and only if there is no inclusion between a minimal prime of I and
a minimal prime of J . The same is true if Deg is replaced by divdeg or wdeg.

Proof. The union of the sets of primary components of I and J is a primary de-
composition of I ∩ J , which may be redundant. The way of making irredundant
a primary decomposition shows several possibilities. Let q be an isolated primary
component of I with p as associated prime. If p does not contain any minimal prime
of J , then q is an isolated component of I ∩ J , and deg(q) counts in Deg(I ∩ J).
If p contains strictly a minimal prime of J , it is not a minimal prime of I ∩ J , and
deg(q) does not count at all in Deg(I ∩ J). If p is a minimal prime of both I and
J , let q′ be the corresponding primary component of J . So, p is a minimal prime of
I∩J , with q∩q′ as the corresponding primary component. As q+q′ ⊂ p, the proof
of proposition 9 shows that deg(q ∩ q′) < deg(q) + deg(q′). The result follows, as
all possibilities have been considered. The proof is exactly the same for divdeg or
wdeg.

9 Strong Bézout inequality

The strong Bézout inequality bounds the total degree of an ideal in terms of the
degrees of its generators

Theorem 7 (Strong Bézout inequality). Let I = 〈f1, . . . , fk〉 be an ideal that is
generated by nonzero polynomials in Rn, that are of respective degrees d1, . . . , dk,
and are sorted in order that deg(f2) ≥ deg(f3) ≥ · · · ≥ deg(fk) ≥ deg(f1). Then,
for the divided degree associated to d1, . . . , dk, one has

divdeg(I) 6 1.

For comparing with usual formulations of Bézout inequalities, this theorem can be
restated as follows.

Corollary 16. With the same hypotheses as above, if i is any integer such that
height(I) 6 i 6 k, one has

wdegi(I) 6 f1 . . . fi,

for the weighted degree associated to d1, . . . , dk.

As stated, the theorem is true in the homogeneous case as well as in the non-
homogeneous one, but in the non-homogeneous case, one gets a sharper inequality
by homogenizing the input. More precisely, in the formulation of the corollary, one
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can subtract the weighted degree of the components at infinity from the product of
the degrees.

Theorem 7 improves all known Bézout inequalities. For example:

Corollary 17. With notation of theorem 7, height(I) 6 i 6 k, and, in particular if
i = min(k, n), one has

Deg(I) 6 f1 . . . fi.

This results immediately from proposition 14. This theorem seems new, although a
slightly coarser bound has been proved by Masser and Wüstholz (see below).

Corollary 18 (Heintz’s Bézout inequality [? ]). In the preceding corollary, Deg(I)
can be replaced by the number of isolated components of I .

Corollary 19 (Improved Masser-Wüstholz theorem). With above notation, for ev-
ery h 6 n, the sum of the degrees of the isolated components of I whose height is
at most h is not greater than d1 · · · dh.

Proof. The sum is a partial sum of the sum involved in the definition of deg(I).

Masser and Wüstholz [7] have proved the weaker result with ”equal to” instead
of ”at most”. As an important consequence, Masser-Wüstholz theorem is the first
proof of the following affine Bézout inequality, which does not result of common
proofs of classical Bézout theorem, because of the possibility of components of
positive dimension at infinity.

Corollary 20 (Affine Bézout inequality). If n polynomials in n indeterminates have
a finite number of common zeros in an algebraically closed field, the sum of the
multiplicities of these zeros is at most the product of the degrees of the polynomials.

9.1 Example of gaps

Strong Bézout inequality is the same as previous Bézout inequalities in the equidi-
mensional case. In the non-equidimensional case, it is much sharper, but remains far
from an equality. This is clear when considering the simplest non-equidimensional
case.

Let g0, g1, and g2 be three pairwise-coprime polynomials of respective degrees e0,
e1, and e2, such that g0 is not a zero divisor modulo 〈g1, g2〉.

Let f1 = g0g1 of degree d1 = e0 + e1, and f2 = g0g2 of degree d2 = e0 + e2.
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The primary decomposition of I = 〈f1, f2〉 is 〈g0〉 ∩ 〈g1, g2〉. It follows that

deg(I) = e0 < Deg(I) = e0 + e1e2 < wdeg2(I) = e0(e0 + e2) + e1e2
< d1d2 = (e0 + e1)(e0 + e2).

The successive gaps are thus e1e2, e0(e0 + e2 − 1), and e0e1. If e0 = e1 = e2 = d,
the inequalities become

d < d+ d2 < 3d2 < 4d2.

It seems that the gap between the weighted degree and the Bézout bound may be
due, at least partially, to the fact that the latter is symmetric in the degrees of input
polynomials, while the former is not. We do not know any way for taking this
symmetry into account for getting a sharper inequality.

10 Proof of the strong Bézout inequality

10.1 Regularity condition

Proofs of Bézout inequalities require that the input polynomials are as close as
possible to form a regular sequence. This is the regularity condition.

Definition 4 (Regularity condition). A sequence f1, . . . , fk satisfy the regularity
condition if, for i = 2, . . . , k, the following condition is satisfied: If fi belongs to
some associated prime p of the ideal f1, . . . , fi−1, then fj ∈ p. This condition can
also be stated as: if fj 6∈ p for some j > i and some associated prime p, then fi 6∈ p

The regularity condition can classically be obtained by a linear change of polyno-
mials (see [5], for example).

Proposition 21. If the ground field is infinite, and the degrees of f1, . . . , fk satisfy
d2 ≥ · · · ≥ dk ≥ d1, there are polynomials g1, . . . , gk of the same degrees that
satisfy the regularity condition, and verify g1 = f1, and

gi = fi +
∑
j>i

ci,jfj,

for i > 1, where ci,j is either a homogeneous polynomial of degree di − dj (in the
homogeneous case) or a constant (in the non-homogeneous case).

Proof. We proceed by increasing values of i. Let V be the finite-dimensional vector
space of polynomials of degree at most di, and W be the subspace of V formed

18



by the polynomials λfi +
∑
j>i ci,jfj where λ is a scalar, and the ci,j are as in the

statement of the proposition. The elements of W such that λ = 0 form a subspace
W0 ⊂ W . For each associated prime p of 〈g1, . . . , gi−1〉 such that fj 6∈ p for some
j ≥ i, the vector space Wp = p ∩W is a proper subspace of W , since there is a
ci,j such that ci,jfj 6∈ p. Over an infinite field, a vector space cannot be the union
of a finite number of proper subspaces. This implies that, if W0 6= W , there is an
element of W that does not belong to the union of W0 and the Wp; in this case,
the quotient of this element by λ is the desired gi. If W0 = W , there is a relation
fi +

∑
j>i c

′
i,jfj = 0. Adding this relation to an element of W0 that does not belong

to any Wp gives also the desired gi.

Changing the fi to the gi does not change the generated ideal, nor the degrees of
the generators. This implies that over an infinite field, for proving the strong Bézout
inequality, one can suppose that the regularity condition is satisfied.

The case of a finite ground field can be reduced to the case of an infinite ground field
by an extension of the scalars. This does not change the fi. A primary component
either gives a primary component of the same degree and height, or factors into
several conjugate components which have the same height as the initial component
and whose degrees sum is the degree of the initial component. This implies that all
quantities appearing in the strong Bézout inequality remain unchanged by extension
of the scalars.

In summary, in all cases, we have reduced the proof to the case of a sequence of
polynomials that satisfy the regularity condition.

10.2 Technical lemmas

Lemma 22. If I and J are two ideals, and f is a polynomial, then (I ∩ J) + 〈f〉
and (I + 〈f〉) ∩ (J + 〈f〉) have the same minimal primes.

Moreover, if there is no inclusion between the associated primes of I + 〈f〉 and
J + 〈f〉, (that is, if no associated prime of one ideal contains the other ideal), then
(I ∩ J) + 〈f〉 = (I + 〈f〉) ∩ (J + 〈f〉), and a minimal primary decomposition
of (I ∩ J) + 〈f〉 is the union of minimal primary decompositions of I + 〈f〉 and
J + 〈f〉.

Proof. One has

(I + 〈f〉) · (J + 〈f〉) ⊂ (I ∩ J) + 〈f〉 ⊂ (I + 〈f〉) ∩ (J + 〈f〉).

As the intersection and the product of two ideals have the same radical, (I∩J)+〈f〉
and (I+ 〈f〉)∩ (J + 〈f〉) have the same radical and thus the same minimal primes.
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If the two above inclusions are equalities, the second assertion results immediately
from its hypothesis. It remains thus to prove that if two ideals H and K satisfy the
hypothesis of the last assertion, then H ∩K = H ·K. In fact, no associated prime
of either ideal can contain H + K. So, there is an element z ∈ H + K that does
not belong to either associated prime. If x ∈ H ∩ K, then zx ∈ H · K. If S =
{1, z, z2, . . . ), it follows that S−1(H ∩K) = S−1(H ·K). The hypothesis implies
thus that the inverse image in R of a primary decomposition of this localized ideal
is a primary decomposition of both H ∩K and H ·K, which are thus equal.

Lemma 23. Let p be a minimal prime of an ideal I . There is an element t ∈ R \ p
that belongs to all other associated primes of I . If S is the multiplicative set of the
powers of t, then the p-primary component of I is R ∩ S−1I .

Proof. As p is a minimal prime, each other associated prime contains an element
that is not in p. The product of these elements is the desired element t. The last
assertion results of the classical property of stability of primary decompositions
under localization.

Lemma 24. Let I ⊂ J be two ideals that have a common minimal prime p. Let
q and q′ be their respective p-primary components. Then q ⊂ q′, and deg(q) ≥
deg(q′).

Proof. The first assertion results from Lemma 23, since localization and intersection
preserve inclusion.

By definition of Hilbert series, the inclusion q ⊂ q′ implies that each coefficient
of the Hilbert series HSR/q(t) is not smaller than the corresponding coefficient of
HSR/q′(t). Thus HSR/q(t) ≥ HSR/q′(t) for t < 1. Writing these series as a rational
fractions with denominator (1− t)δ, one see that the same inequality applies to the
numerators, to their limits when t→ 1, and thus to the degrees of the ideals.

Lemma 25. Let I be an ideal, and f be a polynomial. If p is a minimal prime of I
such that f ∈ p, then p is a minimal prime of I + 〈f〉. Moreover, if q and q′ are the
p-primary components of I and I + 〈f〉, respectively, then deg(q) ≥ deg(q′).

Proof. By hypothesis, I + 〈f〉 ⊂ p. Any minimal prime m of I + 〈f〉 contains I ,
and thus some minimal prime of I . Therefore, m cannot be strictly included in p;
that is, p is a minimal prime of I + 〈f〉. Then, the inequality on the degrees follows
directly from lemma 24.
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10.3 Recurrence

As shown in section 10.1, for completing the proof, we can work with k polynomi-
als f1, . . . , fk of degrees d1, . . . , dk that satisfy the regularity condition, such that,
for i < k, and every associated prime p of the ideal 〈f1, . . . , fi〉, if fi+1 ∈ p, then
fj ∈ p for all j > i.

As remarked just after corollary 16, we can also suppose that all polynomials and
ideals are homogeneous. However, this hypothesis is not really used, so it will not
appear explicitly in proofs that follow.

Let Ir = 〈f1, . . . , fr〉, for r = 1, . . . , k. The proof proceeds by relating the primary
components of Ir and those of Ir + 〈fr+1〉. For this purpose, we consider several
case.

10.3.1 Components of lower height

We have first to study the minimal primes of Ir. By Krull’s height theorem, the
heights of these minimal primes are at most r.

Lemma 26. If pr if a minimal prime of Ir of height h < r, then pr is a minimal
prime of Ih, and fi ∈ pr for i > h.

Proof. Let us choose recursively, for i = r, r − 1, . . . , 1, a minimal prime pi of Ii
that is contained in pi+1. As the height of pr is less than r, these minimal primes
cannot be all distinct. Thus, let i be the lowest index such pi = pi+1. This implies
that fi+1 ∈ pi, and, by regularity condition, fj ∈ pi for j > i. Therefore pr = pi.
Finally, i = h, since the height of pi is at most i, and it is at least i, as p1, . . . , pi is
a strictly increasing sequence of primes.

Lemma 27. Let p be a minimal prime of Ir whose height is less than r. It is also a
minimal prime of Ir−1. Let qr and qr−1 be the corresponding primary components
of Ir and Ir−1. Then deg(qr) 6 deg(qr−1), and divdeg(qr) 6 divdeg(qr−1).

Proof. The first assertion results immediately from lemma 26. The first inequality
is a special case of lemma 24, and the second inequality follows immediately, since
both primary components have the same height.

Corollary 28. If h := height(Ik) < k, then Deg Ik 6 Deg Ih.
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10.4 Components of maximal height

Now, we have to study, for r > 1 the isolated primary components of Ir whose
height is r (the case r = 1 being trivial). So, let r > 1 such that Ir = 〈f1, . . . , fr〉
has a minimal prime of height r. Let s be a polynomial that does not belong to any
minimal prime of height r of Ir, but belongs to all other associated primes of Ir.
Let Sr = {1, s, s2, . . . , si, . . . } the multiplicative set generated by s.

The ideal Jr = R∩S−1r Ir is the intersection of the isolated primary components of
height r of Ir. We will prove the following lemma by recursion on j.

Lemma 29. For every j < r, the sequence (f1, . . . , fj) is a regular sequence in
S−1r R, and the ideal Jj,r = R∩S−1r Ij is unmixed of height j (that is, all its primary
components have height j).

Moreover, Jj,r is the intersection of some isolated primary components of height j
of Ij whose associated prime does not contain fj+1.

Proof. The cases j = 0 and j = 1 are trivial. So we suppose that the assertions are
true for some j < r, and we prove them for j + 1.

The definition of Jj,r as the inverse image of a localization implies that Jj,r is the
intersection of some primary components of Ij , and that the minimal primes of Jj,r
are also minimal primes of Ij . None of these minimal primes can contain fj+1.
In fact, if such a prime would contains fj+1, it would contain fj+1, . . . , fr by the
regularity condition, and thus it would be a minimal prime of Ir of height < r; this
is impossible since S has been chosen for having a non-empty intersection with
such a prime. As Jj,r is unmixed, we can deduce that fj+1 is not a zero divisor
modulo Jj,r. As, by recurrence hypothesis, f1, . . . , fj , the same is thus true for
f1, . . . , fj+1.

This shows that the primary components of Jj,r are primary components of Ij , that
they have height j and that their associated primes do not contain fj+1.

Lemma 30. Let Jr the intersection of all primary components of height r of Ir, and
J ′r−1 be the intersection of the isolated primary components of height r − 1 of Ir−1
whose associated prime do not contain fr. Then deg(Jr) 6 deg(fr) · deg(J ′r−1),
and divdegi(Jr) 6 divdegi(J

′
r−1).

Proof. Using previous notations, and the last assertion of lemma 29, we have J ′r−1 ⊂
Jr−1,r, and the two ideals have the same height. Thus, by lemma 8,

deg(Jr−1,r) 6 deg(J ′r−1).
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In the preceding lemma, we have proved that fr is not a zero divisor modulo
deg(Jr−1,r). So,

deg(J ′r−1 + 〈fr〉) 6 deg(fr) · deg(Jr−1,r).

It results from the proof of the preceding lemma that J ′r−1 + 〈fr〉 ⊂ Jr, and that
these ideals have the same height. So

deg Jr 6 deg(J ′r−1 + 〈fr〉).

The result follows immediately, by combining these inequalities, and using the fact
that J ′r−1 and Jr are equidimensional of respective heights r − 1 and r.

10.5 End of the proof

Let us recall that we denote

divdeg(I) =
∑
q

divdeg(q) =
∑
q

deg(q)

d1 . . . dheight(q)
,

where the sums runs on the isolated primary components of I , and di is the degree
of fi. We have to prove that divdeg(Ir) 6 1 for every r. It suffices to prove that
divdeg(Ir) 6 divdegk(Ir−1) for r > 1, since it is trivial that divdeg(I1) = 1.

Using notation of lemma 30, we have

divdeg(Ir) = divdeg(Jr) +
∑
q

divdeg(q),

where the sum is restricted to isolated primary components of Ir whose height is
less than r. Lemmas 30 and 27 implies thus that

divdeg(Ir) 6 divdeg(J ′r−1) +
∑
q′

divdeg(q′),

where the sum runs on the isolated primary components of Ir−1 that contain a
power of fr. As the divided degree of J ′r−1) is the sum of the divided degrees of
some isolated primary components of Ir−1 that do not contain any power of Ir−1,
we can deduce that divdeg(Ir) 6 divdegk(Ir−1), which finishes the proof.
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