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Abstract

Preference elicitation is an important component in many AI applications, including decision support and recom-
mender systems. Such systems must assess user preferences, based on interactions with their users, and make rec-
ommendations using (possibly incomplete and imprecise) beliefs about those preferences. Mechanisms for explicit
preference elicitation—asking users to answer direct queries about their preferences—can be of great value; but due
to the cognitive and time cost imposed on users, it is important to minimize the number of queries by asking those
that have high (expected) value of information.

An alternative approach is to simply make recommendations and have users provide feedback (e.g., accept a
recommendation or critique it in some way) and use this more indirect feedback to gradually improve the quality of
the recommendations. Due to inherent uncertainty about a user’s true preferences, often a set of recommendations is
presented to the user at each stage. Conceptually, a set of recommendations can also be viewed as choice query, in
which the user indicates which option is most preferred from that set.

Because of the potential tension between making a good set recommendation and asking an informative choice
query, we explore the connection between the two. We consider two different models of preference uncertainty and
optimization: (a) a Bayesian framework in which a posterior over user utility functions is maintained, optimal recom-
mendations are assessed using expected utility, and queries are assessed using expected value of information; and (b)
a minimax-regret framework in which user utility uncertainty is strict (represented by a polytope), recommendations
are made using the minimax-regret robustness criterion, and queries are assessed using worst-case regret reduction.
We show that, somewhat surprisingly, in both cases, there is no tradeoff to be made between good recommendations
and good queries: we prove that the optimal recommendation set of size k is also an optimal choice query of size
k. We also examine the case where user responses to choice queries are error prone (using both constant and mixed
multinomial logit noise models) showing the results are robust to this form of noise.

In both frameworks, our theoretical results have practical consequences for the design of interactive recom-
menders. Our results also allow us to design efficient algorithms to compute optimal query/recommendation sets.
We develop several such algorithms (both exact and approximate) for both settings and provide empirical validation
of their performance.

Keywords: preference elicitation, utility elicitation, preferences, minimax regret, Bayesian inference, utility theory,
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IParts of this article appeared in: Regret-based Optimal Recommendation Sets in Conversational Recommender Systems, Proc. of the ACM
Conference on Recommender Systems (RecSys-09), pp.101–108, New York, 2009 [131]; Optimal Bayesian Recommendation Sets and Myopically
Optimal Choice Query Sets, Advances in Neural Information Processing Systems 23 (NIPS-10), pp.2352–2360, Vancouver, 2010 [132]; and
Recommendation Sets and Choice Queries: There Is No Exploration/Exploitation Tradeoff!, Proc. of the Twenty-fifth AAAI Conference on Artificial
Intelligence (AAAI-11), NECTAR track, pp.1571–1574, San Francisco, 2011 [133].
∗Corresponding author
Email addresses: paolo.viappiani@lip6.fr (Paolo Viappiani), cboutilier@google.com (Craig Boutilier)
URL: http://www-desir.lip6.fr/~viappianip/ (Paolo Viappiani), http://www.cs.toronto.edu/~cebly/ (Craig Boutilier)

1Part of this work was completed while the author was at the Department of Computer Science, University of Toronto, Canada.
2Work conducted while at the Department of Computer Science, University of Toronto, Toronto, Canada.

Preprint submitted to Artificial Intelligence Journal Thursday 4th June, 2020



Paolo Viappiani and Craig Boutilier. Optimal Recommendation Sets.

1. Introduction

Artificial intelligence (AI) technologies have become ubiquitous in the recommendation of products, services,
information and enterainment content, and in a variety of decision support systems. As users come to rely increasingly
on automated recommendations, the development of methods to effectively and accurately assess user preferences is
needed to ensure that AI-based recommenders adequately reflect the interests of the users on whose behalf they act.
This need is especially pressing as decision support systems and recommenders begin to take autonomous actions on
behalf of users rather than simply “recommending” alternatives to them.

The assessment of user preferences can be either passive or active. In passive systems, recommendations are made
directly to meet the recommender’s estimated preferences of the user. The user’s response offers clues to her under-
lying preferences or utility function, and is typically used to improve that estimate. In many content recommenders
(e.g., as used for movies, music, video, news, etc.), the repeated consumption of multiple items by users allows col-
laborative filtering (CF) techniques to be applied [64, 106, 110, 47, 77]. However, their passive nature means that
CF methods rarely take active steps to discern a user’s preferences—rather they emerge as simply a by-product of
interaction with the recommendations. In other domains, such as multi-attribute product recommendation, where a
single item is to be (say) purchased, passive recommenders will often recommend one or several products, and the
user will provide some feedback (e.g., propose a different attribute value or accept a specific recomendation). For
example, conversational and critiquing recommenders often work in this fashion [29, 91, 35, 122].

By contrast, preference elicitation techniques are more active, explicitly asking users queries about their prefer-
ences or utility functions [18, 26, 32, 1, 12, 123, 13]. While the use of explicit preference elicitation has primarily
focused on single-recommendation domains such as multi-attribute product search [69, 1, 25, 27, 59, 17, 13], it has
also received attention in collaborative filtering style recommenders [23, 48, 83]. It also plays a role in other AI appli-
cations (e.g., planning systems [6, 101, 139, 52, 99], search [11], social choice [86, 94, 10] and interface agents [50]).
Active elicitation methods typically continue to ask questions until enough user preference information is extracted to
provide some guarantees on the quality of an “ultimate” recommendation.

Naturally, approaches to recommendation and elicitation can incorporate elements of both passive and active
elicitation. For example, many conversational or critiquing systems recommend a small set of items, but often select
those items not only based on their estimated preference, but also based on characteristics about which the user may
provide direct feedback [134, 143, 34, 45]. In this work, we consider recommenders from this dual active-passive
perspective, in which the set of items presented to the user can serve as both recommendations—or choice sets—and
as choice queries which allow users to express their preference for one item over the others without serving as a final
recommendation.

When viewed from this dual perspective, a fundamental tension seems to exist. On the one hand, a recommender
should propose a an optimal recommendation set, that is, a set of items from which one is likely to have high expected
utility for the user (with respect to the recommender’s estimate of user preferences). In other words, we desire
recommendation sets that are exploitive. On the other hand, the recommender should propose an optimal choice
query with high expected value of information; that is, a set of items such that when the user states which she
prefers, the recommender’s updated estimate of the user’s preference (w.r.t. that response) maximally improves the
recommender’s ability to make a good recommendation. In other words, we desire choice queries that are strongly
exploratory. These two demands on the presented set of items seem to be at odds.

In this work, we examime this prospective tension directly, and demonstrate, somewhat surprisingly that there is
in fact no exploration-exploitation tradeoff in set recommenders under a variety of conditions, as we elaborate.

1.1. Elicitation and Uncertainty Modeling
We first provide a high-level view of two different styles of uncertainty modeling, commonly used on adaptive

preference elicitation [32, 18, 26, 59, 13], under both of which we analyze the exploration-exploitation tradeoff. Ab-
stractly, most techniques for generating queries use some form of belief state to capture the recommender’s knowledge,
and degree of uncertainty. This belief state is updated given user responses to queries or observed choice behavior. If
we treat making a recommendation as a “query,” the typical elicitation scheme proceeds as follows:

1. Initialize the belief state given some initial user preferences or prior.

2. Repeat until the belief state meets some termination condition:

Page 2



Paolo Viappiani and Craig Boutilier. Optimal Recommendation Sets.

(a) Ask user a query q.

(b) Observe the user response r.

(c) Update the belief state given r.

3. Recommend the item optimal according to the current belief state.

The termination condition might be internal to the recommender (e.g., when some notion of “recommendation uncer-
tainty” drops below some threshold) or external (the user is satisfied by, selects, or otherwise “commits” to a proposed
item). The efficiency of the general elicitation method described above depends crucially on the system’s ability to
select good queries. Given the current belief about the user’s utility function, “good” queries are such that the quality
of future recommendations can quickly improve.

There are two main frameworks for representing utility or preference uncertainty (i.e., the belief state).

Regret-based elicitation. In regret-based elicitation, the recommender maintains an explicit representation of a set of
feasible utility functions, usually represented compactly by constraints on parameters; recommendations are generated
using the minimax regret criterion [113, 8, 84, 21]. Minimax regret provides a robust way of making decisions under
utility function uncertainty, minimizing worst-case loss under all possible realizations of a user’s utility function; as
such it is applicable when distributional information over utility functions is not easily available. It can be thought of
as the solution of a game between the recommender system and a hypothetical adversary, with the former choosing
an item and the latter choosing a feasible utility function in order to maximize regret, that is, the utility difference
between the true best item and the recommender’s choice.

Regret can also act as an efficient driver for elicitation: the result of the minimax regret computation can suggest
which query to ask next. For example, the current-solution strategy (CSS) for selecting queries (asking to compare
the regret-optimal item with the alternative maximizing the utility function picked by the adversary) is effective in
practice; however CSS provides no strong theoretical guarantees about the reduction of minimax regret a posteriori
(after incorporating the user response in the belief, and producing a new recommendation in the next interaction
cycle). A method that may produce more informative queries is to directly adopt the worst-case a posteriori regret as
a criterion for query selection: queries are evaluated according to the smallest reduction of regret with respect to all
possible user responses; this approach is in general more computationally expensive than CSS.

Bayesian elicitation. In Bayesian elicitation [32, 18], a probabilistic prior distribution over user utility parameters is
assumed. The distribution is updated using Bayes’ rule whenever new information is acquired from the user (e.g.,
query responses or behavioral observations). Whenever a single recommendation has to be made, the option with
highest expected utility is recommended. The most natural criterion for choosing queries is expected value of infor-
mation (EVOI), which can be optimized myopically [32] or sequentially [18]. However, optimization of EVOI for
online query selection is not feasible except in simple cases. Hence, in practice, heuristics are used that offer no
theoretical guarantees with respect to the quality of the query.

Recommendation Sets and Choice Queries. In this work, we focus on choice queries; such queries are commonly used
in conjoint analysis and product design [85] and require a user to indicate which choice/product is most preferred from
a set of k options. We also focus on recommendation sets—rather than recommending a single item, we suppose the
recommender can suggest a set of k items from which the user can select her most preferred.

1.2. Our Contributions

In this work, we address the question of generating the most informative query given the current belief about the
user’s utility function, within both the regret-based and Bayesian frameworks. We adopt expected value of information
(EVOI) as the criterion for evaluating queries in the Bayesian framework and worst-case regret in the regret-based
framework. Such criteria can often generate better queries than strategies that aim at reducing uncertainty per se, such
as entropy-based methods, or heuristics based on product “diversity” [69, 1, 126, 103, 143, 2].

In both settings we show how (myopically) optimal or near-optimal queries can be generated by exploiting the
connection with the problem of generating an optimal recommendation set. In particular, we show that, under very
general assumptions, optimization of choice queries reduces to the (prima facie) simpler problem of choosing the
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optimal recommendation set, i.e., the set of k items such that, if a user were forced to choose one, maximizes utility
of that choice (under utility uncertainty).

This has a number of implications:

• The most significant consequence of this fact is that any set-based recommender that adopts the dual perspective
of generating sets that are maximally informative (i.e., from an exploratory point of view) and generating sets
that have maximal immediate expected utility for the user (i.e., from an exploitive point of view) need not make
decisions about which viewpoint to adopt at different points in time. The same set of items accomplishes both.
In other words, there is no exploration-exploitation tradeoff.

• In both frameworks, optimizing a recommendation set is a computationally simpler problem than direct op-
timization of optimal choice queries using “straightforward” algorithms. As a consequence, this equivalence
allows us to demonstrate that generating choice queries is computationally easier than explicitly computing
EVOI.

• In the Bayesian framework the optimal recommendation set problem is submodular, admitting a greedy algo-
rithm with strong approximation guarantees. Thus, it can be used to determine approximately optimal choice
queries. We develop this connection under several different (noisy) user response models. We describe query
iteration, a local search technique that, though it has no formal guarantees, finds near-optimal recommendation
sets and queries much faster in practice than either exact or greedy optimization.

• In the regret-based framework, our methods can be used to efficiently optimize queries and produce queries
that guarantee a higher (myopic) reduction of regret (in the worst-case) relative to the current-solution strategy.
The regret-based variant of query iteration can be used to improve query sets incrementally starting from a seed
set. When the current solution is used as a seed, the resulting set is provably no worse than the current-solution
strategy.

Our work has significant practical implications. In many settings, we may wish to present a set of options to
a user with the dual goals of offering a good set of recommendations and eliciting valuable information about the
user’s utility over item space. For instance, product navigation interfaces for e-commerce sites often display a set
of options from which a user can select, but also give the user a chance to critique the proposed options [33, 134].
This provides one motivation for exploring the connection between optimal recommendation sets and optimal choice
query sets. Moreover, we show that our findings are useful even in settings where queries and recommendation are
clearly separated, as the computation of the most informative query to ask can be made more efficient by exploiting
the theoretical connection between the two concepts.

1.3. Outline

The paper is organized as follows. We first present the background in Section 2, we further motivate our work,
discussing the role of item sets in recommendation systems, and introducing the two problems that we tackle in
this paper: the generation of recommendation sets and the generation of choice queries in order to acquire relevant
information (Section 2.1). We provide basic technical background on multiattribute utility theory (Section 2.2), the
representation of utility function uncertainty (Section 2.3), and on the two main elicitation frameworks of interest:
regret-based (Section 2.4) and Bayesian (Section 2.5).

We develop our theoretical contributions by considering each framework in turn, starting with the regret-based
framework in Section 3. We first consider recommendation sets and introduce a new decision criterion, setwise max
regret, that generalizes minimax regret to cover the case of recommendation sets under strict utility uncertainty (Sec-
tion 3.1) and formalize a notion of myopic value of information to assess the quality of a choice query (Section 3.2).
Our main technical result is presented in Section 3.3, showing that the optimal recommendation set is also an optimal
choice query. We provide a detailed example in Section 3.4 and conclude with algorithms (Section 3.5) for generating
sets of items to be used for set recommendation and/or elicitation with choice queries.

In Section 4, we adopt the Bayesian framework and proceed in a similar way. We start by formalizing the notions
of recommendation sets from a Bayesian point-of-view (Section 4.1) and elicitation with choice queries (Section 4.2).
In order to perform Bayesian inference over user utility functions, we need a probabilistic model of user responses, so
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we analyze some commonly used response formats: noiseless responses, a constant noise model, and a logistic noise
model (response models and their impact on recommendation are discussed in Sections 4.3 and 4.4). In Section 4.5,
we develop the theory for the Bayesian framework in two stages. We first deal with noiseless responses, showing the
equivalence of optimal recommendation sets and myopically optimal query sets, then provide similar results for the
noisy response models. We provide detailed examples in Sections 4.6 and develop efficient algorithms for computing
recommendation/query sets, including approximation algorithms with theoretical guarantees in Sections 4.7.

Section 5 provides empirical validation with simulations of both frameworks. After presenting the general method-
ology (Section 5.1), we assess the performance of elicitation in regret-based (Section 5.2) and Bayesian frameworks
(Section 5.3). Finally, we propose some directions for future research, along with connections to additional related
work in Section 6, before concluding in Section 7.

2. Background

In this section we elaborate on the motivation for set-based recommendation and querying in recommender sys-
tems and outline both the regret-based and Bayesian formal frameworks within which we cast our subsequent analysis
and results. We also introduce several new concepts that figure prominently in our analysis.

2.1. Utility-theoretic Preference Elicitation and Item Sets

Preferences are a crucial bottleneck in many AI applications: in order to provide personalized services on the
behalf of a user, an automated system must have a good model of the user’s preferences. However, systems must
often make decisions with limited preference information since a complete assessment of user preferences is usually
impractical. This is due to the fact that acquiring preference information (e.g., by asking the user to rate additional
items, compare items, or ask questions about item attributes) is often expensive, both with respect to time and cognitive
burden.

In this work, we focus on principled recommendation and elicitation approaches based on user utility. We assume
that a user has an underlying “true” utility function over items in the domain that dictates how she makes choices,
whether answering preference queries or accepting or rejecting recommendations. Since the recommender will not
know this underlying utility function, we consider the problem of interactive utility elicitation, where the system must
decide which queries are most informative relative to the goal of making good or optimal recommendations.

The utility-theoretic perspective should be viewed as a methodological convenience. It is widely acknowledged
that users have a hard time assessing their own utilities, especially in quantitatively precise terms [128]. In this work,
we address this by focusing on queries and choices that involve qualitative comparisons and allow for noise in a
user’s responses. Considerable work in behavioral economics [30] also suggests that users often construct (some
of) their preferences as they engage in decision making rather than revealing latent utilities; indeed, facilitating such
preference discovery and construction is an important role for recommenders in AI. While refinements of elicitation
methods that incorporate such considerations are important, this does not obviate the need for techniques like ours that
uncover these preferences (whether constructed or revealed). The utility-theoretic perspective also stands in contrast
with qualitative models based on partial orders such as CP-nets [20], where options or choices can be inherently
incomparable.

A variety of principled approaches have been proposed for utility elicitation. A number of these focus directly
on (myopically or heuristically) reducing uncertainty regarding utility parameters as quickly as possible, including
max-margin [50, 123], volumetric [69], polyhedral [126] and entropy-based [1] methods. However, we do not attempt
to reduce utility uncertainty for its own sake, but rather focus on discovering utility information that improves the
quality of the recommendation—indeed, this is a key ingredient in our theoretical approach.

In this paper we address the use of sets of items both as elicitation queries and as recommendation sets:

• Generating a set of recommendations for the user given the known preference information, and

• Selecting a choice query in order to acquire relevant preference information.

As discussed above, this induces a potential tension in the form of an exploration-exploitation tradeoff, that is, between
making good recommendations for the user and eliciting “useful” information from the user. One might expect the
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Figure 1: CritiqueShop, designed and developed by Reilly et al. [104], is an electronic commerce tool where suggested options are shown with
the dual goal of elicitation and recommendation. The left panel shows the initial preferences. The current recommendation is shown at the top,
while a set of alternative suggested products is shown below (each corresponding to a tradeoff between features that are improved with respect to
the current recommendation, marked by a green rectangle, and features that are downgraded, marked by a red rectangle); whenever the user click
on “I like this” next to a product, this becomes the new current recommendation in the new cycle. The internal preference model is also updated to
incorporate the acquired tradeoff that has an impact in the suggested set displayed next.
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solutions to these two problems to be radically different. Intuitively, in order to make a good recommendation the
system should exploit its current knowledge of the utility function. On the other hand, when asking queries, the
system aims to acquire more information, so better recommendations can be made in the future.

Since utility is uncertain, there is often value in recommending a set of options from which the user can choose her
most preferred. Picking a diverse set of recommended options increases the odds of recommending at least one item
with high utility. Intuitively, such a set of “shortlisted” recommendations should include options that are diverse in
the following sense: recommended options should be highly preferred relative to a wide range of “likely” user utility
functions (relative to the system’s current belief) [23, 100].

In broad terms, the system must identify a set of items that maximizes some form of expected valuation of the
user’s choice from the recommended set. Our set-based optimization approach passes some residual uncertainty (about
the preferences for items in the set) back to the user to resolve [100]. This stands in contrast to some recommender
systems that define diversity relative to product attributes [102, 103, 145, 2, 130, 79] with no direct reference to beliefs
about user utility. It is not hard to see that “top k” systems, those that present the k options with highest expected utility,
do not generally result in good recommendation sets [100].

Resolving this exploration-exploitation tension is also important because many recommenders present options
with dual goal of recommendation and elicitation. This is common, for instance, in conversational recommender
systems such as CritiqueShop [104] (see Figure 1), where several products are displayed, and user selections do not
only update the preference model, but might also lead to purchase decisions. Since a user can end the interaction
unpredictably at any time, it is important that the system show products that are likely to be highly preferred.

Among the many possible types of queries, we focus on choice queries. Such queries are commonly used in
conjoint analysis and product design [85], requiring a user to indicate which choice/product is most preferred from a
set of k options. Since we focus on choice queries, we can view any set of products as either a recommendation set or
query (or choice) set. Given a set, one can ask: what is the value of the set viewed as recommendation set ?; and what
is its value as a query? Choice queries are generalizations of comparison queries, where k = 2 and a user is asked if
they prefer one item over another.

In this work we develop the connection between the value of a set as a recommendation and as a choice query, in
both the Bayesian and the regret-base frameworks. In both cases we show that, somewhat surprisingly, and under very
general assumptions, the optimal recommendation set is also an optimal choice query. These results are intriguing
theoretically and have important practical implications.

We formalize the problem of generating a recommendation set and selecting a choice query in both the regret-based
and Bayesian frameworks. There are some analogies between the theoretical models and some common elements in
the construction of the proofs of our main results. We provide decision and elicitation criteria for both cases that
extend classical decision criteria to sets, as summarized in the following table:

Framework

Value of... Bayesian Regret-based

a single recommendation Expected Utility Minimax Regret
a recommendation set Expected Utility of Selection (EUS) Minimax Setwise Regret
a query Expected posterior Utility (EPU) Worstcase Regret (WR)

Naturally, each treatment of utility uncertainty has its own advantages and drawbacks. The advantage of a
Bayesian approach is its ability to easily exploit prior information, reason about the likelihood of user responses,
support “noisy” responses, and produce recommendations that are optimal in expectation. These advantages do come
at a price—inference can be computationally expensive, while acquisition of priors is often costly and may not even
be available in many circumstances. By contrast, regret-based elicitation can provide robust recommendations even
when (quantitative) priors are not available. Moreover, the regret-based model can provide guarantees on the utility
of a recommendation that are are sometimes stronger than those offered by expected utility. We do not argue for
one approach here, but rather construct a methodology for utility elicitation using optimal recommendation sets, and
develop corresponding algorithmic methods for both frameworks. Finally, we note that do not study the relationship
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between the Bayesian and regret-based approaches in any depth; but we develop both within the same article because
of the strong parallels in the structure of our analyses and algorithms in each case.

2.2. Multiattribute Utility Models

We assume a system is charged with the task of recommending an option to a user in some multiattribute space,
for instance, the space of possible product configurations from some domain (e.g., computers, cars, rental apartments,
etc.). Products are characterized by a finite set of attributes X = {X1, . . . , Xn}, each with finite domain Dom(Xi).
Let X ⊆ Dom(X) denote the set of feasible configurations. For instance, attributes may correspond to the features
of various cars, such as color, engine size, fuel economy, etc., with X defined either by constraints on attribute
combinations (e.g., constraints on computer components that can be put together) or by an explicit database of feasible
configurations (e.g., a rental database).

The user has a utility function u : Dom(X) → R. The precise form of u is not critical to our theoretical results.
We assume that u is parameterized by some parameter (or weight) vector w ∈ W, where W is the space of feasible
parameter vectors. We write u(x; w) to emphasize this dependence. In such a case, we often refer to w as the user’s
“utility function” for simplicity, assuming some fixed form for u across the user population. As we will see later,
efficient implementations of our methods are possible when u(x; w) is linear in the parameters (or weights) w (e.g., as
in generalized additive independent (GAI) models [49, 25]). A simple additive model in the car domain (where x is a
car with features MPG,EngineSize,Color) might be:

u(x; w) = w1x[MPG] + w2x[EngineSize] + w3x[Color].

An optimal item x∗w for a user with utility w is any item in X that maximizes u(x; w).
Alternative, more complex, utility models depart from the assumptions of linear utility. Some models are non-

linear with respect to item attributes, but still are effectively linearly parameterizable. Others are inherently non-linear.
What is important is that the structure (i.e., the parametrization) of the utility function is given. Our framework does
not depend on the type of structure, only that it is given (learning or assessing the structure is not in scope in this
paper). For example, the following non-linear parametrizations can be incorporated in our framework (assume items
are defined on m features; represented as x[1], ..., x[m]):

• Multiplicative utility: u(x; w) =
∏

i x[i]wi .

• Sum-log: u(x; w) =
∑

i wilog(x[i]).

• Ideal point model: u(x; w) =
∑

i(x[i] − wi)2.

• Ordered Weight Average (OWA) [142]: u(x; w) =
∑

i wix[(i)] where (i) is the permutation such that x[(i)] ≤
x[(i + 1)] for all i = 1, ...,m with x[(i)] being the ith lowest feature.

We refer the reader to Torra and Narukawa [125] and Grabisch et al. [57] for a detailed analysis of different utility (or
aggregation) functions.

2.3. Utility Function Uncertainty and Elicitation

In general, a recommender will possess incomplete information about a user’s utility function. Since we assume
that the utility function is uniquely identified by the parameter vector w, information about the utility function can be
directly equated with information about w. For this reason, we abuse terminology and sometimes refer to w itself as
the utiity function. This information, hence the recommender’s uncertainty surrounding w, will be represented (and
possibly compressed, abstracted, summarized or approximated) in some fashion. We refer to this representation as
the recommender’s belief state about the user’s preferences and denote it abstractly by θ. We discuss specific forms
of θ below.

If a recommender is required to make a recommendation when it is uncertain about w, it needs some specific cri-
terion for making decisions in the face of such uncertainty. Without direct access to w, it cannot generally recommend
x∗w; instead it should recommend x∗θ ∈ arg maxx∈X s(x; θ), the best item given its belief θ about w under some suitable
evaluation criterion or “score” s. This criterion will depend on the representation itself—we discuss several criteria
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below. Naturally, the scoring function should have a tight connection to the underlying true utility u(x∗θ; w) the user
derives from the recommended item.

As discussed above, when there is uncertainty about w, recommending a set of k items S = {x1, . . . xk} to a
user so that she can select her most preferred from that set can improve overall recommendation quality relative to
recommending a single item. For example, if we assume that the user will select her most preferred item from the set,
we can cover different “modes” of uncertainty in θ as we elaborate below. We refer to S as a recommendation set.

The recommender can refine its belief state θ by learning more about w. A reduction in uncertainty should lead
to better recommendations (in expectation). While many sources of information can be used to assess the preferences
of a user —including the preferences of related users, as in collaborative filtering [76, 47], or observed user choice
behavior [85, 97]—we focus on explicit utility elicitation, in which a user is asked questions about her preferences.

There are a variety of query types that can be used to refine one’s knowledge of a user’s utility function (we
refer to [74, 21, 25] for further discussion). Comparison queries are especially natural, asking a user if she prefers
one option x to another y. These comparisons can be localized to specific (subsets of) attributes in additive or GAI
models, and such structured models allow responses w.r.t. specific options to “generalize,” providing constraints on
the utility of related options. In this work we consider the extension of comparisons to query sets of more than two
options [131, 132] as is common in conjoint analysis [85, 126]. Any set S of k > 1 items can be interpreted as a
query: the user states which of the k elements xi ∈ S she prefers. We refer to S as a choice query in this context.
We will use choice query and recommendation set interchangeably to describe any set S as warranted by context; and
some cases below, a set S will play both roles simultaneously.

Given a recommendation set S with x ∈ S , we adopt the following notation to represent preferences and user
choice among items in S :

• S B x denotes that x has maximum utility among those items in S , given some fixed utility function w, i.e.,
x ∈ arg maxx∈S u(x; w)

• S  xi denotes the event of the user selecting xi among the items in S .

It is useful to explicitly partition the utility space W based on which item in S has highest utility.

Definition 1 Given utility space W and set S = {x1, . . . , xk}, the S -cover of W is the collection {WSBxi |∀i ∈ {1, . . . , k},
WSBxi , ∅}, where WSBxi = {w ∈ W |u(xi; w) ≥ u(x j; w), ∀x j ∈ S }.

Set WSBx contains all w ∈ W such that x has utility under w that is at least that of any other option in S .
Since a set S = {x1, . . . , xk} may contain dominated alternatives, the S -cover may have cardinality less than k. For

instance, if S = {x1, x2, x3} and the utility of x2 is less than that of either x1 or x3 for all w ∈ W, then the S -cover is
{WSBx1 ,WSBx3 }. Note that an S -cover always exists; and if a single item x1 dominates all others in S , then the partition
is just {WSBx1 } = {W}.

When a user answers a choice query S by stating which xi ∈ S is her most preferred option, the recommender
will update its belief state θ. If we assume that she answers accurately with respect to her underlying true utility w,
then the choice of xi ∈ S refines the set of feasible utility functions W by imposing k − 1 constraints of the form
u(xi; w) ≥ u(x j; w), j , i that should be incorporated into θ. When we discuss Bayesian elicitation, we also allow the
possibility of “noisy” responses in which this answer may not guarantee that such constraints are valid.

2.4. Regret-based Recommendation and Adaptive Elicitation

We first elaborate on a model for recommendation and preference elicitation when beliefs about utility reflect
strict uncertainty; in other words, the utility uncertainty is represented by constraints on the parameters of the utility
function, with no further quantification of how likely specific utility functions are. We adopt minimax regret [114]
as our decision criterion for robust decision making under such utility function uncertainty. Minimax regret has been
introduced as a means for robust optimization in the presence of data uncertainty [78], and has more recently been
advocated for decision making with utility uncertainty [111, 21].

The maximum (or max) regret of option (or choice) x is the maximum loss (in term of utility) that can be incurred
by not choosing the (unknown) true optimal choice. This regret-based approach has several advantages. First, the
recommender’s belief state θ is easy to update: whenever a query is answered, it imposes a new preference constraint
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from which one derives a refined feasible set of utility functions (usually imposing a constraint on the parameters
w). Second, simple “prior” information (e.g., preference information that is available before elicitation begins) can be
encoded with constraints in the space of utility parameters (for instance, in the car domain, requiring that the weight
for “MPG” is higher than the weight for “luggage capacity”). Third, there are efficient heuristics that directly use the
computation of minimax regret to choose queries to ask the user.

Minimax regret has proven to be an effective tool for recommendation and interactive elicitation for a variety of
utility models. In addition to linear utility models, regret-based elicitation has been applied to the elicitation of GAI
models [25] and utility models based on the Choquet integral [12]. Its main limitation is the inability to deal naturally
with noisy responses.

2.4.1. Robust Optimization for Generating Recommendations
Assume that through some interaction with a user, and possibly using some prior knowledge, we determine that

her utility function w lies in some set W. This will serve as the recommender’s belief state (and will evolve as it
engages in elicitation). The form of W will become clearer when we discuss elicitation below. We assume that W is
topologically closed and compact.

Following Boutilier et al. [21], we define minimax regret in three steps. We first define the regret of an item under
a known utility function. We then define pairwise max regret (the worst-case loss associated with choosing an item
instead of another one), the max regret of an item (the worst-case loss associated to not choosing the true best item),
and finally minimax regret and the associated regret-optimal item.

Definition 2 Given utility function w ∈ W, the regret R(x; w) of item (or recommendation) x is the loss in utility
associated with choosing x over the optimal item:

R(x; w) = max
y∈X

u(y; w) − u(x; w) = u(x∗w; w) − u(x; w).

Definition 3 Given a set of utility functions W and x, y ∈ X, the pairwise max regret PMR(x, y; W) of x w.r.t. y is

PMR(x, y; W) = max
w∈W

u(y; w) − u(x; w). (1)

Definition 4 The max regret MR(x; W) of x ∈ X over feasible utility functions W is

MR(x; W) = max
y∈X

PMR(x, y; W) = max
y∈X

max
w∈W

u(y; w) − u(x; w) = max
w∈W

R(x; w). (2)

MR(x; W) is the worst-case loss associated with recommending item x. Intuitively, one can view this as an adver-
sary choosing w from W to maximize the difference in utility between the optimal item (under w) and x.

Definition 5 The minimax regret MMR(W) of W and the minimax regret optimal item x∗W are defined as

MMR(W) = min
x∈X

MR(x; W) (3)

x∗W ∈ arg min
x∈X

MR(x; W). (4)

Minimax regret requires that the recommender propose an item that minimizes worst-case loss (i.e., max regret)
w.r.t. W. The minimax optimal item x∗W minimizes this potential loss, while MR(x; W) bounds the loss associated with
x, and is zero if and only if x is optimal for all w ∈ W. Any choice that is not minimax optimal has strictly greater loss
than x∗W for some w ∈ W.

Minimax regret relies on relatively simple prior information in the form of bounds or constraints on user prefer-
ences (rather than probabilistic priors); and exact computation can be perfomed efficiently using various optimization
techniques. In configuration problems, optimization over product space X is often formulated as a constraint satisfac-
tion problem (CSP) or mixed integer program (MIP). In such domains, minimax regret computation can be formulated
as a MIP, and solved practically for large problems using techniques such as Bender’s decomposition and constraint
generation [21, 22, 25]. When instead the available choices are stored in a database, minimax regret can be computed
implementing a search using alpha-beta cuts [24].
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2.4.2. Regret-based Utility Elicitation
The minimax regret criterion can be used in an incremental elicitation process that progressively asks queries to

the user in order to assess preference parameters with increasing accuracy until MMR drops below a given threshold
(alternatively, other termination criteria can be adopted, for example, when the elicitation cost becomes too high, or
termination might be left in the hands of the user).

Indeed, note that minimax regret MMR cannot increase when adding constraints to W (in particular, when incor-
porating new preference information about the user) and it usually decreases (see [24], pages 194-202). The proof is
straightforward and relies on the fact that when the adversary has less choice in picking the adversarial instantiation of
the weights under which regret is computed, the regret must necessarily be smaller or the same. We list some simple
observations.

Observation 1 Given two sets of utility functions W, W ′ such that W ′ ⊆ W, the following inequalities hold:

• PMR(x, y; W ′) ≤ PMR(x, y; W), ∀x, y ∈ X

• MR(x; W ′) ≤ MR(x; W), ∀x ∈ X

• MMR(x; W ′) ≤ MMR(x; W)

Queries can be of many different types. For instance, bound queries ask if the overall utility (aggregate value) of
an alternative is higher or lower than a given reference value (or some “willingness to pay”). Comparison queries are
relatively cognitively easy to answer as they require the user to compare a pair of alternatives and state which one is
preferred. Even assuming that the type of the query is fixed, there are of course several queries that one can ask at
each step.

Note that some queries will be more informative than others. For instance, asking to compare one alternative with
one another that is Pareto-dominated by the first will provide no value (MMR will not change); instead asking to
compare two potentially good alternatives will possibly constitute a good query. Choosing good queries is therefore
essential to providing good recommendations reasonably quickly.

Assume that, at a given point in the interaction, the user’s preferences induce a space W of possible utility pa-
rameters. Given a query q and its possible responses Rq, let Wr denote the parameter space that results when the
user answers r, for any r ∈ Rq. Note that Wr ⊆ W. A good query will significantly reduce MMR for each possible
response (recall that, by Obs. 1, for any r ∈ Rq, MMR(Wr) can no greater than MMR(W)). A non-probabilistic notion
of myopic value of information can be defined as follows (generalizing the pairwise measure of [21]):

Definition 6 The myopic worst-case a posteriori regret (WR) of a query q is

WR(q; W) = max
r∈Rq

MMR(Wr)

where Wr is the subset of W obtained by adding the constraints encoding r. Given some set of queries Q, a WR-
optimal query is

q∗W ∈arg min
q∈Q

WR(q; W). (5)

Intuitively, WR can be interpreted as the value of information carried in a query q assuming that a user provides
a feasible response that leaves as much regret as possible in the resulting belief state Wr. This is equivalent to
considering the worst-case (over possible responses) regret reduction: minr∈Rq

{
MMR(W)−MMR(Wr)

}
. The WR-

optimal query q∗W offers the maximum worst-case regret reduction.
Given the computational demands of maximizing a score such as WR, it is quite natural to consider heuristics

for query generation. The current solution strategy (CSS), first described in [22, 21] generates a query that involves
utility parameters in either x∗W (the minimax-regret optimal item) or xa (the adversarial item), or both. This is based
on the insight that should a query provide information about no parameter that impacts the utility of either x∗W or xa,
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minimax regret is unlikely to change. When considering comparison queries, CSS proposes a comparison between
x∗W and xa. Note that asking queries according to the CSS cannot lead to inconsistencies, since the adversarial item
xa at any stage must be optimal for some w ∈ W. As a consequence, elicitation with CSS does not allow the space of
feasible utility parameters W to become empty (inconsistent) during the procedure.

In Section 3, we generalize this approach by generating optimal query sets (i.e., choice queries) that provide the
greatest reduction of a posteriori regret. We consider both optimal computation as well as a generalization of the CSS
strategy well-suited to query sets of any size.

2.5. Bayesian Recommendation and Adaptive Elicitation
We now outline the Bayesian framework. In this approach, the recommender’s belief state θ is a probability

distribution P(w) over W, the space of utility parameters. In contrast to the regret-based approach, it has the advantage
of being able to handle noisy responses and different forms of user-choice behavior more readily and can exploit
probabilisitic prior information about user preferences. This comes at the expense of (typically) more complex belief
state update.

2.5.1. Bayesian Recommendations
In the Bayesian approach, the recommender’s uncertainty is captured by a distribution P(w; θ) over W, parameter-

ized by θ [32, 18]. We will refer to both θ and P(·; θ) as the recommender’s belief state depending on context.

Definition 7 Given distribution P(·; θ), the expected utility of an item x is the expectation of u(x; w) w.r.t. w ∼ P(·; θ):

EU(x; θ) = EP(w;θ)[u(x; w)] =

∫
W

u(x; w)P(w; θ)dw. (6)

If required to make a recommendation given belief θ, an optimal item x∗(θ) is one that has greatest expected utility.

Definition 8 Given a distribution P(w; θ) and belief state θ, the expected maximum utility of θ and the optimal item
are, respectively,

EU∗(θ) = max
x∈X

EU(x; θ), (7)

x∗(θ) ∈ argmax
x∈X

EU(x; θ). (8)

This is the standard Bayesian decision criterion given utility function uncertainty.
While optimality is defined with respect to maximizing expected utility, we can equivalently minimize expected

regret, which will sometimes be convenient when comparing it to the regret-based framework. Specifically, given
the definition of regret R(x; w) above, the expected regret of an item is simply EP(w;θ)R(x; w). It is easy to see that
minimizing expected regret gives recommendations that maximize expected utility:

arg min
x∈X

EP(w;θ)R(x; w) = arg min
x∈X

∫
W

R(x; w)P(w; θ)dw = arg max
x∈X

EU(x; θ).

2.5.2. Bayesian Utility Elicitation
In the Bayesian framework, when a user responds to preference query q ∈ Q with a response r ∈ Rq, the recom-

mender’s belief state is updated using Bayes’ rule to condition on that response. We denote the updated belief state
by θ|r. This posterior belief induces a new evaluation of items, EU(·; θ|r) with respect to θ|r, and a (potentially) new
optimal recommendation x∗(θ|r) with expected utility EU∗(θ|r).

We assume a known response model P(r|q,w) which dictates the probability of response r ∈ Rq if a user with
(true) utility w is asked query q. We discuss response models in detail in Sections 4.3 and 4.4. To reduce notational
clutter, we write P(r|w), removing mention of q (e.g., which is valid if we assume, say, that Rq and Rq′ are disjoint for
any distinct queries q and q′).

Conditioning on query responses poses some technical challenges since most common prior distributions are not
conjugate with respect to typical preference-based evidence, in particular, responses to comparison and choice queries.
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Several approximate inference methods can be used. For example, Bayesian updates can be performed using Monte
Carlo methods, or inference schemes based on expectation-propagation [92], such as Trueskill [63]; these methods
can be adapted to preference elicitation [59]. Our main contributions are independent of the method used for exact or
approximate Bayesian inference.

A natural criterion for selecting queries in Bayesian approaches for elicitation is the maximization of (myopic)
expected value of information (EVOI).

Definition 9 Assume utility distribution P(w; θ), belief state θ, and response set Rq for some query q. The expected
posterior utility (EPU) of q is

EPU(q; θ) =
∑
r∈Rq

P(r; θ) EU∗(θ|r). (9)

where P(r; θ) is the probability of each response given belief θ:

P(r; θ) =

∫
W

P(r|w)P(w; θ)dw. (10)

The (myopic) expected value of information of q is

EVOI(q; θ) = EPU(q; θ) − EU∗(θ). (11)

Intuitively, the EVOI of q is the expected improvement in (expected) recommendation quality it offers relative to the
current belief state θ, taking expectation over possible responses r ∈ Rq.

This leads to the obvious definition of a (Bayesian) optimal query.

Definition 10 Assume utility distribution P, belief state θ, and query set Q. The optimal query w.r.t. Q is that with
greatest EVOI:

q∗(θ) = arg max
q∈Q

EVOI(q; θ). (12)

We note that sequential EVOI is, in general, a more effective elicitation criterion if the goal is to quickly improve
recommendation quality, since it allows consideration of the cumulative impact of multiple elicitation queries. The
problem of deciding which questions to ask in this case can be formulated as a partially observable Markov decision
process [18, 66]. However, such a model is impractical to solve for nontrivial problems. Indeed, myopic EVOI is much
more commonly used in decision analysis than sequential EVOI for this reason [67]. However, even the computation
and optimization of myopic EVOI for online query selection is often computationally prohibitive; hence, in practice,
heuristics are often used that offer no theoretical guarantees with respect to query quality [69, 50].

In Section 4, we develop the Bayesian approach to optimization and elicitation for generating optimal recommen-
dation sets with greatest expected utility and optimal choice queries that have the greatest EVOI. In particular, we
show that myopic EVOI can be computed relatively effectively for choice queries.

2.6. Related Approaches

The study of the assessment of the preferences of a decision maker goes back several decades. Particular em-
phasis has been given to the elicitation of utility functions for multi-attribute and multi-criteria settings [74]. Classic
approaches to utility elicitation often focus on high-stakes decision scenarios and aim to assess the decision maker’s
utility very precisely. The decision maker is asked a number of questions to determine the parameters of the utility
function, with the exact questions depending on the adopted protocol.

While classic elicitation protocols are well-founded, their applicability to many practical recommendation settings
is limited, as they suffer from a number of drawbacks. For instance, classic standard gamble queries (and similar
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questions) are difficult for users to answer. The precision attained with classical elicitation methods is often unjustified,
since the cognitive cost imposed on a decision maker might not be worth the increase in decision quality. Some work
[71, 7] addresses elicitation of a utility function when only incomplete information is available. Instead of fully
eliciting an utility function, indirect elicitation methods assess the utility function from assignment examples (for
instance, examples are assigned to classes).

The UTA method [71] is an assessment procedure for a set of utility functions based on linear programming. Lo-
cal utilities are piecewise linear; the interval is divided in subintervals and linear interpolation is used to approximate
the utility contribution of a given feature. Pairwise preferences are expressed with linear inequalities; slack variables
are added to allow inconsistencies in the preference information. Since several utility functions may be feasible, one
typically minimizes the sum of the slack variables, yielding an utility function that fits the available preference infor-
mation as well as possible (giving somewhat robust recommendations). An alternative framework is MACBETH [7],
also based on a system of linear inequalities, that asks the user to provides reference levels for each feature/criterion
and information about the difference in satisfaction between the values of a given feature. Utility elicitation meth-
ods go beyond additive models—several researchers have considered models based on the Choquet integral, e.g., the
TOMASO decision support system [89] and the MYRIAD software tool set [81].

The fact that generally many user utility functions are consistent with partial preference information gives rise
to robustness concerns. Assume that at a given point in the elicitation process that W is the set of possible utility
functions. In robust ordinal regression [58], a choice x is necessarily preferred to y, denoted x �N y, if, for all w ∈ W,
u(y; w) ≥ u(x; w) (with strict necessary preference x �N y if u(y; w) > u(x; w) for all w ∈ W); x is possibly preferred
to y, written �P, if there exists at least one utility function such that u(x; w) ≥ u(y; w) with w ∈ W. The method
UT AGMS provides linear programming formulations in order to compute necessary and possible rankings consistent
with an underlying utility. When additional preference statements are added, the relation �P can only decrease and
�N increase.

Notice that the minimax regret implicitly subsumes the notion of possible and necessary preferences:

• If PMR(y, x; W) ≥ 0 then x is possibly (weakly) preferred to y, i.e., x �P y; moreover, we can distinguish
PMR(y, x; W) > 0, where x is possibly strictly preferred to y, and PMR(y, x; W) = 0, where x and y are possibly
equally preferred, x ∼P y.

• If PMR(x, y; W)<0 then x is necessarily strictly preferred to y (x �N y). If PMR(x, y; W)=0 then x is necessarily
weakly preferred to y (x �N y).

• If PMR(x, y; W) = PMR(y, x; W) = 0 then x is necessarily equally preferred to y: x ∼N y.

The analytical hierarchical process (AHP) [108] is a widely used method for decision support in which the deci-
sion maker provides pairwise information about the intensity of the different criteria, which are mapped to a numerical
scale, determining an evaluation matrix. A weighting vector is then computed from the principal eigenvector of the
matrix. From pairwise preference statements about the items according to a specific criterion, a general ranking is
obtained. Despite its popularity, AHP has been criticized for several reasons, including the number of queries that the
typical decision maker must answer in complex scenarios (for example, if there are 20 different models of, say, cam-
eras and 10 relevant criteria, the user will be asked 520 questions, which would be unacceptable in typical electronic
commerce applications).

3. Setwise Recommendation and Elicitation under Minimax Regret

In this section, we develop setwise recommendation and utility elicitation within the regret-based framework
outlined in Section 2.4. Our contributions are organized as follows. In Section 3.1, we extend the minimax regret
criterion to recommendation sets of arbitrary size. In Section 3.2, we formalize the notion of worst-case a posteriori
regret (WR) for queries to the case of choice queries, i.e., when treating a set S of arbitrary size as a query set as
opposed to a recommendation set. (Note that the case of sets of size two is the standard comparison query addressed
previously in the literature.) In Section 3.3, we establish the theoretical connection between optimal recommendation
sets and (myopically) optimal query sets, showing that they coincide. After an illustration of these notions with a
detailed example in Section 3.4, we devise several exact and heuristic algorithms for computing of sets of items that
serve the dual purpose of recommendation and elicitation in Section 3.5.
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3.1. Recommendation Sets

As discussed in Section 2, when the recommender is uncertain about a user’s true utility function, there can be
value in recommending a set of options to the user assuming she will select her most preferred from that set. We now
generalize minimax regret to cover the case of such recommendation sets under strict uncertainty.

Let W denote the set of feasible utility parameters, reflecting any prior preference information elicited from the
user, such that the user’s utility function is some w ∈ W. We do not consider noisy or erroneous information in
this section. Our aim is to recommend an item set S ⊆ X, assuming the user selects her most preferred from S ,
that is robust to the uncertainty/imprecise knowledge inherent in W. For concreteness, we assume that the maximum
cardinality of S is fixed to be k < |X|.3

We now quantify the potential loss of restricting the user’s decision to items in some slate S (which we assume to
be of size k). Intuitively, the user may select any of the k options as being the most preferred. An adversary wanting to
maximize regret (or user loss) should do so assuming that any such choice is possible—unlike single-item max regret,
we allow the user to select any item from S . Informally, we choose the set of k items first, but “postpone” the user’s
choice from S until after the adversary has chosen w. The regret of S is the difference between the utility of the best
configuration under w and the utility of the best option w.r.t. w in S .

Definition 11 Assume feasible utility space W. The setwise max regret of a recommendation set S and the corre-
sponding setwise adversarial choice are:

SMR(S ; W) = max
y∈X

max
w∈W

{
u(y; w) −max

x∈S
u(x; w)

}
, (13)

SMR-AC(S ; W) ∈ argmax
y∈X

max
w∈W

{
u(y; w) −max

x∈S
u(x; w)

}
. (14)

The setwise max regret (SMR) of set S reflects the intuitions above, and SMR-AC(S ,W) is the adversarial alternative
that maximizes regret (i.e., an item in X that under the adversarially selected utility function w would have given the
user greatest utility).

Given w, the option S that determines SMR is that with highest utility with respect to w. Intuitively, SMR
represents the worst-case loss of requiring the user adopt some item x ∈ S when the user’s optimal item instead lies
in X \ S .

Under this performance criterion, the recommender should offer a recommendation set with minimum SMR.

Definition 12 Assume feasible utility space W. The setwise minimax regret and the minimax optimal set w.r.t. W are:

SMMR(W) = min
S⊆X; |S |=k

SMR(S ; W) = min
S⊆X; |S |=k

max
y∈X

max
w∈W

{
u(y; w) −max

x∈S
u(x; w)

}
, (15)

S ∗W ∈ arg min
S⊆X; |S |=k

SMR(S ; W)= arg min
S⊆X; |S |=k

max
y∈X

max
w∈W

{
u(y; w) −max

x∈S
u(x; w)

}
. (16)

Setwise minimax regret (SMMR) is the SMR of the minimax optimal set S ∗W , that is, the set that minimizes SMR(S ,W).
We sometimes refer to S ∗W simply as an optimal recommendation set when it is clear from context that we are referring
to the SMMR criterion.

We outline a few important properties of SMR and SMMR (proofs are omitted in cases that are easily verified).
First, SMR is monotonic—adding items to a recommendation set cannot increase SMR (and removing items cannot
decrease SMR):

3We can interpret k as an upper bound on the size of the recommendation set. We will see that, under the hypothesis that the user is able to
correctly identify his most preferred item, there is never a reason to recommend fewer than k, unless there is some cost associated with larger slate
(e.g., attentional cost). When dealing with the Bayesian framework, we consider noisy response models where the quality of a recommendation set
is not monotone.
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Observation 2 SMR(A ∪ B; W) ≤ SMR(A; W) for all A, B ⊆ X.

Monotonicity justifies our focus on recommendation sets that contain exactly k items, as any subset containing fewer
than k items cannot have lower SMR than the best of size k.

It is easy to show that incorporating options that are known to be dominated given W does not change SMR. When
considering a set of items, the following notion of dominance is pertinent. An item a is setwise dominated in S if, for
every utility function w ∈ W, there is an item b ∈ S such that b has higher utility than a.

Observation 3 Assume feasible utility space W, a recommendation set S and an item b. If for all w ∈ W there is
some a ∈ S such that u(a; w) ≥ u(b; w), then SMR(S ∪ {b}; W) = SMR(S ; W).

There are several alternative ways of rewriting SMR, for example:

Observation 4 Setwise max regret can be formulated as:

SMR(S ; W) = max
y∈X

max
w∈W

min
x∈S

u(y; w) − u(x; w), (17)

SMR-AC(S ; W) ∈arg max
y∈X

max
w∈W

min
x∈S

u(y; w) − u(x; w). (18)

This observation captures the intuition that, given a utility function w, SMR is computed by considering, for each w,
the option (among those in S ) with minimum loss against the adversarial choice y; the adversary will then choose w
and y to maximize this loss.

It is useful to reason with the S -cover of W (see Definition 1). An important observation that we use later is that
SMR(S ,W) can be determined using the maximum of the item-wise max-regret values over the S -cover:

Proposition 5 Let S = {x1, . . . , xk} and let {WSDxi }i∈I , with I ⊆ {1, . . . , k} be an S -cover of W. Then

SMR(S ; W) = max
{

MR(xi; WSDxi ) : i ∈ I
}
.

Proof.

SMR(S ; W) = max
y∈X

max
w∈W

{
u(y; w) −max

x∈S
u(x; w)

}
= max

y∈X
max
x∈S

max
w∈WSBx

{
u(y; w) −max

x∈S
u(x; w)

}
= max

x∈S
max

w∈WSBx
max
y∈X

{
u(y; w) − u(x; w)

}
= max

x∈S
max

w∈WSBx
R(x; w) = max

{
MR(xi; WSBxi ) : 1 ≤ i ≤ k

}
.

�

This observation is quite useful in practice: it implies that SMR can be calculated using k standard (item-wise) max
regret computations.

3.2. Elicitation with Choice Queries
Sets of items are used not just to make a recommendations, but also to give the user the opportunity to critique

the proposed options and continue exploration of the item space. Our setwise minimax regret criterion can be used
directly to generate sets that serve as such choice queries, and in fact implements a form of preference-based diversity.
This stands in contrast to “product diversity” typically considered in critiquing systems. Furthermore, unlike work in
polyhedral conjoint analysis [126], which emphasizes volume reduction of the utility polytope W, our regret-based
criterion is sensitive to the range of feasible items and does not reduce utility uncertainty for its own sake.

Any set S can be interpreted as a query by simply allowing the user to state which of the k elements xi ∈ S
she prefers. We refer to S interchangeably as a choice query or a choice set when used in this fashion. The user’s
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identification of some xi ∈ S as her most preferred (with ties broken in an arbitrary way) refines the set of feasible
utility functions W by imposing the following k − 1 constraints on W:

u(xi; w) ≥ u(x j; w), j , i.

When treating S as a choice query, we are not interested in its max regret (as we would if it were a recommendation
set), but rather in how much a response to that query might reduce minimax regret.

Intuitively, each possible response xi to the choice query S gives rise to updated beliefs about the user’s utility
function. If all answers are possible—that is, if, for all xi ∈ S , there is some w ∈ W under which xi has maximum
utility among items in S —the set of responses associated with a query S yields a vector of minimax regret values

(MMR(WSBx1 ), . . . ,MMR(WSBxk ))

in each of the updated feasible spaces WSBx1 , ...,WSBxk . More generally, assume {WSDxi }i≤k is the S -cover of the set S .
Then the vector of minimax regret values, considering only the responses xi that are consistent with W, is given by
(MMR(WSBxi ))i≤k.

Myopic worst-case regret WR (Definition 6) is a measure of the value of information of a query in the regret-based,
distribution-free setting. For choice queries S , WR simply requires that we consider the greatest minimax regret value
over the updated spaces, with the most valuable choice query being that which minimizes WR.

Definition 13 Let W denote the feasible utility space and assume {WSDxi }i≤k is the S -cover of the set S . The (myopic)
worst-case a posteriori regret (WR) of choice query S = {x1, . . . , xk} is

WR(S ; W) = max
{

MMR(WSBxi )
}
i≤k
. (19)

An optimal query set is any set S ∗W that has minimum worst-case regret WR∗(W):

WR∗(W) = min
S⊆X; |S |=k

WR(S ; W) (20)

S ∗W ∈arg min
S⊆X; |S |=k

WR(S ; W). (21)

We use the worst-case response to measure the quality of the query (i.e., the response that leads to the updated
W with greatest remaining minimax regret); the optimal query is that which minimizes this value. The worst-case
improvement of minimax regret associated with S is MMR(W) −WR(S ; W). When considering the query that gives
the greatest worst-case improvement in minimax regret (in the worst-case), it is sufficient to minimize WR, as the
current minimax regret value MMR is the same for all candidate queries.

3.3. The Connection between SMR and WR
We analyze the connection between the value of a recommendation set in terms of regret (measured by setwise

max regret SMR) and its value as a query set (measured by worst-case regret WR).
First of all, it is not hard to show that the worst-case regret of choice set S is never greater than its setwise max

regret:

Proposition 6 WR(S ; W) ≤ SMR(S ; W).

Proof. This follows directly by considering Proposition 5, Definition 13 and the fact that MMR(WSBxi ) ≤ MR(xi,WSBxi )
for any i ∈ I (by definition, minimax regret cannot greater than max regret of some item in the same utility subspace),
where I is the set items whose choice is consistent:

WR(S ; W)=max
{

MMR(WSBxi )
}

i∈I
≤ max

{
MR(xi,WSBxi )

}
i∈I

= SMR(S ; W).

�
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In the sequel we make use of a transformation T that modifies a given recommendation set S in such a way that
SMR cannot increase, and usually decreases. This transformation will be used in two ways: to prove the optimality of
SMR for choice set generation; and directly as a computationally viable heuristic strategy for choice set generation.
The operator T refines a recommendation set S as follows:

(a) first construct an S -cover of W;

(b) then compute a single recommendation (Definition 5) that has minimax regret in each element in the partition
(i.e., each induced region of utility space); and

(c) let T (S ) be the new recommendation set consisting of these new recommendations.

As there might be more than one option that achieves minimax regret in each element of the partition, we assume that
T (S ) is obtained by breaking ties in some (potentially) non-deterministic way. We use τ(S ) to refer to the set of all
possible sets T (S ) that could be constructed in this way. We define T and τ more formally as follows:

Definition 14 Let S = {x1, . . . , xk} and its S -cover be {WSBxi }i≤k. Define the T operator as:

T (S ) = {x∗WSBxi
}i≤k.

Define τ(S ) as the collection of sets {xi}i≤k where each xi has minimax regret in the corresponding element of the
S -cover WSBxi :

τ(S ) = {{xi}i≤k |xi ∈ arg min MR(x; WSBxi )}.

Note that T (S ) may have a smaller cardinality than S . Whenever S ∈ τ(S ), we say that S is a fixed point of T .
The optimality of minimax-optimal setwise recommendations, when used as choice queries, is based on the fol-

lowing lemma, asserting that the set resulting from the application of T has setwise regret less than the worst-case
regret of the original set. In other words, for any set S , T (S ) is at least as good as S —both as recommendation set and
as a choice query—and, more precisely, the value of T (S ) as a recommendation set is at least that of set S as query.

Lemma 7 (Regret-based Query Iteration) SMR(T (S ); W) ≤WR(S ; W).

Proof. Let S = {x1, . . . , xk} and T (S ) = {x′1, . . . , x
′
k}, where x′i = x∗WSBxi

. Assume {S B xi}i≤k is the S -cover and
{T (S ) B x j} j≤k is the T (S )-cover. For each xi ∈ S , x′j ∈ T (S ), consider WSBxi ∩ WT (S )Bx′j , the subset of W where
xi is preferred in choice set S and x′j is preferred in choice set T (S ). These subsets form the “meet” cover obtained
by intersecting each element of the S -cover and of the T (S )-cover: the set of intersections {WSBxi ∩ WT (S )Bx′j }i, j≤k

has at least one non-empty element and covers W; we ignore empty intersections. We now formulate WR(S ; W) and
SMR(T (S ); W) as follows:

WR(S ; W) = max
i∈I

{
MR

(
x′i ; WSBxi

)}
= max

i, j≤k:WSBxi∩WT (S )Bx′j
,∅

{
MR

(
x′i ; WSBxi ∩WT (S )Bx′j

)}
, (22)

SMR(T (S ); W) = max
j≤k

{
MR

(
x′j; WT (S )Bx′j

)}
= max

i, j≤k:WSBxi∩WT (S )Bx′j
,∅

{
MR

(
x′j; WSBxi ∩WT (S )Bx′j

)}
. (23)

Equation 22 uses first Definition 13 and the fact x′i is minimax regret optimal in WSBxi , and then further divides utility
space with respect to T (S )-cover. Similarly, Equation 23 uses Proposition 5 and then further divides utility space
according to the S -cover. We now compare the components of Equation 22 and Equation 23 with respect to utility
space WSBxi ∩WT (S )Bx′j , for each i ≤ k and j ≤ k such that the intersection is not empty:

• if i = j then the two MR components are the same;

• if i , j, consider any w ∈ WSBxi ∩WT (S )Bx′j . Since w ∈ WT (S )Bx′j , we must have u(x′j; w) ≥ u(x′i ; w). Therefore
MR(x′j,WSBxi ∩WT (S )Bx′j ) ≤ MR(x′i ,WSBxi ∩WT (S )Bx′j ).
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In the expression of SMR(T (S ); W) (see Eq. 23), each component is no greater than its correspondent in the WR(S )
expression (see Eq. 22). Thus SMR(T (S ); W) ≤WR(S ; W). �

From Lemma 7 and Proposition 6, it follows that T cannot increase setwise max regret:

SMR(T (S ); W) ≤ SMR(S ; W)

We will exploit this observation algorithmically in the local search strategy we describe in Section 3.5.
These observations lead to our main result connecting choice queries and recommendations sets in the regret-based

framework:

Theorem 8 Let S ∗W be an optimal recommendation set of size k, S ∗W = arg minS⊆X; |S |=k SMR(S ,W). Then:

• S ∗W is an optimal choice query: S ∗W ∈ arg min WR(S ; W)

• the value of the optimal set as a recommendation coincides with its value as query: SMR(S ∗W ; W) = WR(S ∗W ; W),
or, equivalently SMMR(W) = WR∗(W).

Proof. Suppose S ∗W is not an optimal choice set, i.e., there is some S ′ such that WR(S ′; W) < WR(S ∗W ; W). If we
apply transformation T to S ′ we obtain a set T (S ′), and by Lemma 7 we have: SMR(T (S ′); W) ≤ WR(S ′; W) <
WR(S ∗W ; W) ≤ SMR(S ∗W ; W). This contradicts the (setwise) minimax regret optimality of S ∗W .
To prove the second part, note that since S ∗W is an optimal recommendation set, SMR(S ∗W ; W) ≤ SMR(T (S ∗W ); W)
holds. By Lemma 7, SMR(T (S ∗W ); W) ≤WR(S ∗W ; W), and therefore SMR(S ∗W ; W) ≤WR(S ∗W ; W). But since we have
WR(S ∗W ; W) ≤ SMR(S ∗W ; W) by Proposition 6, we conclude that SMR(S ∗W ; W) = WR(S ∗W ; W). �

The implications of this result are significant—in the regret-based framework where recommender uncertainty
about a user’s utility function is modeled in a strict (unquantified) fashion, the recommender need not tradeoff explo-
ration and exploitation. The optimal recommendation set from which a user can select her “final” recommendation
is also an optimal choice query set, in which the user can simply express her preference and the recommender can
proceed directly to another round of elicitation. As a by-product, we also have that the optimal values of setwise max
regret and worst-case a posteriori regret coincide.

3.4. Illustration
Example 1 We illustrate the notions of setwise regret, optimal recommendation sets, and optimal choice queries with
a very simple example, involving a domain with five items x1, . . . , x5 defined over two features xi[1] and xi[2] as
follows:

xi[1] xi[2]

x1 0.35 0.68
x2 0.9 0.2
x3 0 0.75
x4 1 0
x5 0.5 0.3

We use square brackets to denote a feature of an item, e.g., x1[2] denotes the second feature of item x1. We assume
linear user utility u(x; w1) = w1 ·x[1]+(1−w1)·x[2], with a single (unknown) parameter w1, 0 ≤ w1 ≤ 1 and the weight
of the second feature w2 = 1−w1. For example, if w1 = 0.5 then utility of x1 is u(x1; w1) = 0.35 ·0.5+0.68 ·0.5 = 0.51.

This simple example is convenient because utility is one-dimensional and it is easy to visualize item utilities as a
function of w1: the utility of each xi as a function of w1 is shown in Figure 2. We notice that, for some values of w1,
each of the options x1, x2, x3 and x4 is optimal, but not so for x5. However, x5 is minimax optimal: its max regret
of 0.5 (attained with adversarial choice x4 at w1 = 1) is less than that of all other options. This can be seen using a
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Figure 2: The utility of x1, x2, x3, x4, x5 as a function of weight w1 (see
Example 1).
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Figure 3: Max regret of x1 is attained at w1 = 1; it corresponds to the
maximum difference between its utility and the black upper piecewise-
linear function.
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Figure 4: Setwise max regret of {x1, x4} is attained with w1 = 0; this
pair achieves setwise minimax regret, and is the optimal recommenda-
tion set of size k = 2.
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Figure 5: Setwise max regret of {x3, x4} is attained with w1 = 0.4286
(the value that makes x3 and x4 equally preferred).

geometric interpretation of max regret: x5’s utility is linear in w1 and its max regret is its maximum distance from the
piecewise linear, convex function of w1 determined by the upper surface maxi u(xi; w1) (shown in black in Figure 3).
This distance is less than that of any other item (e.g., the max regret of x1 is 0.65, occurring at w1 = 1, as shown in
Figure 3, while the max regret x2 is 0.55, occurring at w1 = 0).

When considering a particular value of w1, the true regret is the difference between the utility of the best option
given w1 and the utility of our recommendation. For instance, if w1 = 0.9, the best item is x4 with utility 0.9, while x1
has utility 0.38; hence, R(x1; w1) = 0.52. Max regret accounts for the uncertainty over w1 and is the maximum of the
possible actual regret values (for x1 it is 0.65 when w1 = 1).

When the options are few as in this case, we can compute the max regret of each choice by explicitly enumerating
its pairwise max regret w.r.t. any possible adversarial item choice. The table below illustrates this, where each row is
a possible recommendation, each column is an adversarial choice, and PMR (allowing the adversary to choose w1) is
displayed in the cells. The max regret of each recommendation—its maximum PMR—is shown in the last column.
With no preference information (e.g., prior to utility elicitation), w1 can take any value between 0 and 1, and we have:
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Adversary

Set SMR y w1 WR

k = 2

{x1, x2} 0.1 x4 1 0.07
{x1, x3} 0.65 x4 1 0.308
{x1, x4} 0.07 x3 0 0.07
{x1, x5} 0.5 x4 1 0.273
{x2, x3} 0.1 x4 1 0.1
{x2, x4} 0.55 x3 0 0.206
{x2, x5} 0.45 x3 0 0.274
{x3, x4} 0.11 x1 0.4286 0.1
{x3, x5} 0.5 x4 1 0.07
{x4, x5} 0.45 x3 0 0.1

Adversary

Set SMR y w1 WR

k = 3

{x1, x2, x3} 0.100 x4 1 0.06
{x1, x2, x4} 0.070 x3 0 0.07
{x1, x2, x5} 0.100 x4 1 0.07
{x1, x3, x4} 0.047 x2 0.5113 0.047
{x1, x3, x5} 0.500 x4 1 0.273
{x1, x4, x5} 0.070 x3 0 0.07
{x2, x3, x4} 0.089 x1 0.3793 0.089
{x2, x3, x5} 0.100 x4 1 0.1
{x2, x4, x5} 0.450 x3 0 0.206
{x3, x4, x5} 0.110 x1 0.4286 0.1

k = 4

{x1, x2, x3, x4} 0 x1 0.1667 0
{x1, x2, x3, x5} 0.1 x4 1 0.06
{x1, x2, x4, x5} 0.07 x3 0 0.07
{x1, x3, x4, x5} 0.047 x2 0.5113 0.047
{x2, x3, x4, x5} 0.089 x1 0.3793 0.089

Table 1: Setwise max regret values for k = 2, 3, 4 (see Example 1).

PMR(xi, x j) x j

xi x1 x2 x3 x4 x5 MR(xi)

x1 0 0.55 0.07 0.65 0.15 0.65
x2 0.48 0 0.55 0.1 0.1 0.55
x3 0.35 0.9 0 1.00 0.5 1
x4 0.68 0.2 0.75 0 0.3 0.75
x5 0.38 0.4 0.45 0.5 0 0.5

Minimax regret is 0.5, and the minimax optimal recommendation is option x5; its max regret occurs at adversarial
choice of utility w1 = 1, and the adversarial choice is x4. It can be easily shown that regret is maximized at one of the
vertices of the feasible region W when it is a bounded, convex polytope (such as the polytope induced by responses to
choice queries).

Recommendation sets have a similar graphical interpretation: instead of considering a single hyperplane, we
consider the upper surface dictated by the recommendation set (i.e., the piecewise-linear, convex maximum function)
and its distance from the full upper surface. For instance, consider the recommendation of k = 2 items, {x1, x4}. By
Proposition 5 we partition utility space at the point where the two items have identical utility, w1 = 0.5113, and use x1
for w1 < 0.5113 and x4 for w1 ≥ 0.5113. The setwise max regret is the maximum difference between the maximum
of these two item utilities (as a function of w1) and the upper surface: SMR({x1, x4}) is 0.07 and occurs at w1 = 0 (see
Figure 4).

Table 1 shows how recommendation sets of cardinality 2, 3, 4 are ranked w.r.t. SMR and WR. The pair {x1, x4} is in
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Set S {x1, x2, x3} {x1, x2, x4} {x1, x2, x5} {x1, x3, x4} {x1, x3, x5}

T (S ) {x1, x3, x4} {x1, x2, x4} {x1, x4} {x1, x3, x4} {x1, x3, x4}

Set S {x1, x4, x5} {x2, x3, x4} {x2, x3, x5} {x2, x4, x5} {x3, x4, x5}

T (S ) {x1, x4} {x1, x2, x4} {x1, x4} {x1, x3, x4} {x1, x4}

Table 2: Application of the T operator to sets of size three (Example 1).

fact setwise minimax optimal among all 2-sets, though other pairs, e.g., {x1, x2} have relatively low SMR. Notice that
any pair containing x5, the best singleton recommendation, is in fact a poor set recommendation and has relatively
high SMR. Moreover, we see that an optimal set recommendation can often have dramatically lower max regret
than the minimax optimal single recommendation (in this case, x5). Indeed, the optimal recommendation set may
consist of options (in this case, x1 and x4) that, when considered alone, have high max regret. As can be seen in
the table, the adversary’s utility does not necessarily correspond to a vertex of the feasible region W, as in the single
recommendation case; it may also lie in any intersection of the hyperplanes associated with the options. For instance
the setwise regret of {x3, x4} is maximized at w1 = 0.4286, the utility function that makes x3 and x4 equally preferred
(see Figure 5).

If we consider recommendation sets with k = 3, SMMR is an even lower 0.047, with optimal set {x1, x3, x4}

(adversarial choice x2; w1 = 0.5113, at which x1 and x4 yield the same utility). The optimal four-item set {x1, x2, x3, x4}

has SMR 0: the slate includes all the options that the user could consider optimal. (By Proposition 5, SMR must be 0
since for any WSBxi that partitions W, xi is optimal in WSBxi ).

Table 1 also displays the values of WR (the minimax regret “a posteriori”) for the sets, measuring the value of
using the set as a choice query. A small value of WR means that the choice query is very informative; these values
can be compared to the current minimax regret value (0.5) to measure how much MMR is reduced in the worst case
(considering all possible answers). By comparing the values of SMR and WR for each set, we can verify Proposition
6 for this instance, which ensures that, for any set, WR is at most its SMR value. As guaranteed by Theorem 8, for
a given k, the optimal recommendation set is also an optimal query, and indeed the optimal SMR value coincides
with the optimal WR value. For k = 2, the optimal recommendation set {x1, x4} is also an optimal query set. Notice,
however, that {x1, x2} is also an optimal query set without being an optimal recommendation set.

We now turn our attention to the operator T (Definition 14); applying T to any pair returns the optimal 2-set
{x1, x4}, which is the only fixed point for k = 2. We list the results of applying T to any triplet in Table 2.

As we can see, in a few cases T returns a set of lower cardinality. For instance, with {x3, x4, x5}: for any value of
w1, either x3 or x4 has higher utility than x5, so the space W{x3,x4,x5}Bx5 is empty. Note that, when starting with a set of
size three, there are three different fixed points for T: {x1, x2, x4}, the optimal set {x1, x3, x4}, and the pair {x1, x4}.

3.5. Algorithms

We now derive several algorithms to generate good sets of items to be used as set recommendations, choice queries,
or both. In Section 3.5.1 we describe how to compute the optimal set with respect to SMR, and in Section 3.5.2 we
develop faster heuristic methods.

3.5.1. Computation of the Optimal Set
We describe how to compute regret-based recommendations, distinguishing configuration problems—in which

items are specified as instantiations of variables to be configured subject to various feasibility constraints, generally
as part of a combinatorial optimization process—from database problems—in which items are specified explicitly in
a “tabular” fashion.

Configuration Problems. In configuration problems, options are defined by a set of variables and configuration con-
straints (i.e., as solutions to a constraint satisfaction problem). In such domains, minimax regret computation for a
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single recommendation can be formulated as a mixed-integer program (MIP), and solved practically for large prob-
lems using techniques such as Bender’s decomposition and constraint generation. We refer to [21, 25, 19] for more
details. Our MIP formulations for setwise minimax regret below draw heavily on these techniques, but require impor-
tant modifications.

We present here the MIP formulation of setwise minimax regret for configuration problems in the case of linear
utility functions u(x; w) = w · x. We assume that the feasibility constraints (encoding which configurations are valid)
are linear and write Xfeasible to denote the set of feasible configurations.

min M (24)

s.t. M ≥
∑

1≤ j≤k

R j
w ∀w ∈ W (25)

R j
w≥w(x∗w−X j) + (I j

w−1)a ∀ j ∈ {1, . . . , k},w ∈ W (26)∑
1≤ j≤k

I j
w = 1 ∀w ∈ W (27)

M ≥ 0 (28)

I j
w ∈ {0, 1} ∀ j ∈ {1, . . . , k},w ∈ W (29)

R j
w ≥ 0 ∀ j ∈ {1, . . . , k},w ∈ W (30)

X j ∈ Xfeasible ∀ j ∈ {1, . . . , k} (31)

Decision variables are represented by uppercase letters (M, X, R, I). Intuitively, this MIP chooses k items x j, j ≤ k,
designated by variables X j (where each X j is a variable vector over the n item attributes). Each X j must be feasible,
hence belong to Xfeasible. The objective minimizes M subject to constraint (25), ensuring M is no less than the setwise
regret of the selected options w.r.t. any w ∈ W (i.e., no less than setwise max regret). At the optimum, the value of M
is the setwise minimax regret.

Here R j
w is the true regret of jth option X j w.r.t. w when the indicator variable I j

w is active (indicating that the jth
option is the item in the set with maximal utility under w). For any w, exactly one I j

w is set to 1. Hence minimization
of M ensures I j

w = 1 for the x j with least regret. Constraint (26) ensures R j
w has its intended meaning; here a is any

upper bound on max regret. We also exploit the fact that regret at any w is maximized by the adversary selecting the
optimal item x∗w (x∗w is precomputed for each w).

Constraint (25) need not be expressed for each (of the continuously many) w ∈ W, but just for the vertices of the
feasible space of the MIP’s decision variables. Notice, however, that in contrast to single-item regret optimization,
where optimality occurs at some vertex Vert(W) of the utility space W, the vertices of the feasible space of the MIP
are a superset of Vert(W). More precisely, setwise max regret of a set S can occur not only at points in Vert(W), but
at any w that gives the same utility values to several items of the set S , as depicted in Figure 5. Hence, setwise regret
of S is maximized at some vertex VS := Vert(WSBx1 ) ∪ . . . ∪ Vert(WSBxk ), assuming an S -cover of W. It therefore
suffices to post constraints only for these vertices. However, this MIP still requires (potentially) exponentially many
constraints, one for each element ofV :=

⋃
S⊂X:|S |=kVS .

We can make computation much more effective by applying constraint generation, observing that very few of
these constraints will be active. Our procedure works as follows: we solve a relaxed version of the MIP above—the
master problem—using only the constraints corresponding to a small subset Gen ⊂ V of the constraints in the MIP
above, and store its optimal value, i.e., the value of objective M. We then test whether any unexpressed constraints are
violated at the current solution. This involves computing the true SMR of the recommendation set generated by the
master problem. If the SMR of the set is greater than M, we know that a constraint has been violated. Computation of
SMR produces the element w ∈ V and optimal item x∗w that corresponds to the maximally violated constraint in the
current master solution. We add this maximally violated constraint to Gen, tightening the MIP relaxation, and repeat;
if no violated constraint exists, we are assured that the current solution minimizes SMR. Note that the adding a new
constraint requires the introduction of new variables to the master problem. Every time we add a new w to Gen, k new
binary variables I and R are necessary.

To solve the setwise max regret subproblem, we can encode the problem as a MIP, adapting the MIP for max
regret proposed by Boutilier et al. [21]; given a set S , it computes SMR(S ,W) as well as SMR-AC(S ,W). However,
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due to Proposition 5, the computation of SMR(S ,W) (and the adversarial choice SMR-AC(S ,W) maximizing setwise
regret) can be accomplished by solving k (standard) max regret optimization, and selecting the maximum value.
Given a set S , it computes SMR(S ,W) as well as SMR-AC(S ,W). Note that this procedure is also used to construct
recommendation/choice sets in the SCAS heuristic below.

Database Problems. Database problems, where options are enumerated in a product database, do not lend themselves
to a direct constraint optimization when forming (regret-based) set recommendations since no explicit variable con-
straints are provided for a MIP, CSP or related formulation. Instead, we adopt a computational model that repeatedly
determines the pairwise regret between a candidate recommendation set and an adversarial option in order to identify
the option with minimax regret. This can be seen as a game between the recommender and an adversary. The com-
putation of single recommendations is greatly facilitated in practice by formulating the optimization as a minimax
search and using standard pruning techniques. However, computing optimal recommendation sets has complexity
O(nk) (for a DB of size n), thus becoming increasingly impractical as the size of the desired set increases. The local
search method query iteration, SCAS, and CSS (as described below) are best suited to this case.

3.5.2. Heuristics
We now describe other set recommendation and query strategies that exploit minimax regret. Unlike the methods

above, these strategies are heuristic and not guaranteed to produce optimal sets. However, they are computationally
less demanding than algorithms that guarantee computation of the SMR-optimal option. We use the following notion:
define an adversarial choice for W and x to be a witness item that maximizes the regret of x:

Adv(x,W) ∈ arg max
x′∈X

MR(x, x′,W).

One simple strategy is the current solution strategy (CSS) for pairwise comparisons [21, 22]. CSS asks a user to
compare two items: the minimax optimal item x∗W and its adversarial counterpart Adv(x∗W ,W). A pairwise comparison
can be viewed as a choice set of size two (thus CSS is restricted to generating sets of size two). User selection of one
of these items directly constrains the utility parameters that impact minimax regret.

We now generalize CSS to sets of any size. The setwise chain of adversaries strategy (SCAS) selects k options by
repeatedly maximizing setwise max regret given the current set. It can be viewed as a greedy, incremental approxi-
mation of the (setwise) minimax optimal set. As with setwise max regret, it explicitly maximizes diversity from the
perspective of utility space. Formally, SCAS determines a set {x1, . . . , xk} where: x1 = x∗W

xi = SMR-AC({x1, .., xi−1},W) 2 ≤ i ≤ k

Recall that SMR-AC(S ,W) is an adversarial option w.r.t. setwise max regret. SCAS can be seen as a generalization
of the current solution strategy CSS to sets of any size. Computing SMR-AC(S ,W), which determines a single item at
a time, is typically much faster than the joint optimization required by full computation of setwise minimax regret.

Finally, we define the query iteration (QI) strategy, an alternative heuristic strategy. The MMR-transformation T
introduced above gives rise to a natural heuristic search strategy for construction of good recommendation sets. Given
an initial set S = S 0, we repeatedly apply T until a fixed point (w.r.t. setwise max regret) is found:

• Repeat S := T (S )

• Until SMR(T (S ),W) = SMR(S ,W)

In our experiments (see Section 5.2) we initialize query iteration with the set S given by SCAS, as empirically
this seems to produce the most promising sets. In the case where no query can guarantee regret reduction for each
response, i.e., WR(S ∗W ) = MMR(W), T degenerates to a singleton with only the minimax regret option. In such
cases we allow query iteration to return S 0 as determined by SCAS. Note that the query iteration algorithm can be
terminated early to allow for anytime query set generation.

Example 1 (continuing from p. 19) We now consider the applications of the different strategies for generating rec-
ommendation sets in the running example. The optimal recommendation set of size two is {x1, x4}; SCAS/CSS retrieves
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{x4, x5} since SMR-AC({x5}; W) = Adv(x5; W) = x4 (x4 is the adversarial choice of the minimax optimal item x5);
query iteration converges to {x1, x4} (since this set is returned by the operator T applied to any pair of distinct items) .

With k = 3, the optimal set is {x1, x3, x4}. SCAS considers first the minimax regret optimal item x5, it then adds
SMR-AC(x5; W) = x4 and finally SMR-AC({x4, x5}; W) = x3, thus retrieving the set {x3, x4, x5}. Query iteration returns
either {x1, x2, x4}, {x1, x3, x4} or the pair {x1, x4} depending on the starting set. With k = 4, the optimal recommendation
set is {x1, x2, x3, x4}; SCAS retrieves the set {x1, x3, x4, x5} since SMR-AC({x3, x4, x5}; W) = x1.

4. Bayesian Recommendation Sets and Elicitation using Choice Queries

We consider the connection between optimal recommendation sets and optimal choice queries in the context of
Bayesian recommendation and utility elicitation, analogous to our approach in the regret-based setting. This section
is organized as follows. We begin in Section 4.1 with a discussion of computing optimal recommendation sets from
the Bayesian point of view. We then formalize the problem of determining the myopically optimal choice query with
respect to EVOI in Section 4.2. We outline various noisy response models in Section 4.3, a phenomenon more readily
handled in the Bayesian than in the regret-based approach. In Section 4.4, we derive important properties that we use
to prove our main theoretical results in Section 4.5. We illustrate key concepts with detailed examples in Section 4.6
and finally present optimization algorithms motivated and supported by our theoretical results in Section 4.7.

4.1. Bayesian Recommendation Sets

We consider first the problem of computing optimal recommendation sets given the system’s uncertainty about
the user’s true utility function w. Given belief state θ, if a single recommendation is to be made, then we should
recommend the option x∗(θ) that maximizes expected utility EU(x, θ) (in case of ties, we recommend one of the
options with maximum EU). However, there is often value in suggesting a “shortlist” or set containing multiple items
and allowing the user to select her most preferred option. Intuitively, such a set should offer options that are diverse in
the following sense: recommended options should be highly preferred relative to a wide range of “likely” user utility
functions [100, 23, 131]. This stands in contrast to some recommender systems that define diversity relative to product
attributes [103, 2, 79], with no direct reference to the system’s beliefs about user utility. It is easy to see that “top k”
systems, those that present the k options with highest expected utility, do not generally result in good recommendation
sets [23, 100].

In broad terms, we assume that the utility of a recommendation set S is the utility of its most preferred item.
However, it is unrealistic to assume that users will select their most preferred item with complete accuracy [88, 85].
So we assume a response model R dictating the probability of specific choices given the user’s true (but unknown)
utility function w. For any choice set S with xi ∈ S , let S  xi denote the event of the user selecting xi. The response
model R dictates, for any S , the probability PR(S  xi|w) of any selection given utility function w. When belief about
a user’s utility is uncertain, we define the probability of selecting xi from set S ,

PR(S  xi; θ) =

∫
W

PR(S  xi|w)P(w; θ)dw, (32)

by marginalizing PR(S  xi|w). Specific response models will be thoroughly discussed in Section 4.3. Given a
specific selection S  x, the response model allows us to update the belief state using Bayes’ rule:

Definition 15 The posterior belief state θ|S  x w.r.t. prior θ and observed choice S  x is given by

P(w; θ|S  x) =
PR(S  x|w)P(w; θ)∫

w∈W PR(S  x|w)P(w; θ)dw
. (33)

We can now define the expected utility of recommendation sets with respect to a response model R:
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Definition 16 The expected utility of selection (EUS) of recommendation set S given θ and R is:

EUSR(S ; θ) =
∑
x∈S

PR(S  x; θ) EU(x; θ|S  x). (34)

where PR(S  x; θ) =
∫

w PR(S  x|w)P(w; θ)dw is the probability of the user selecting item x given belief state θ (cf.
Equation 10).

We can restate the definition of EUSR(S ; θ) in a way that will be convenient in the sequel:

Proposition 9

EUSR(S ; θ) =

∫
W

[∑
x∈S

PR(S  x|w) u(x; w)
]

P(w; θ)dw. (35)

Proof.

EUSR(S ; θ) =
∑
x∈S

PR(S  x; θ)
∫

W
u(x; w) P(w; θ|S  x)dw

=
∑
x∈S

PR(S  x; θ)
∫

W
u(x; w)

PR(S  x|w; θ)
PR(S  x; θ)

P(w; θ)dw

=
∑
x∈S

∫
W

u(x; w) PR(S  x|w)P(w; θ)dw

=

∫
W

∑
x∈S

[
PR(S  x|w) u(x; w)

]
P(w; θ)dw,

where we first expand the expression of expected utility in the conditioned space, then apply Bayes’ rule, then substi-
tute the response model, and finally move the summation inside the integration. Note that P(w; θ|S  x) = P(w|S  
x; θ), i.e., the probability of w in the updated belief is the same as probability of w conditioned on choice S  x in the
original belief, and that PR(S  x|w; θ) = PR(S  x|w) in the response model gives the likelihood of a user selection
given her utility (the user’s choice behaviour is completely determined by w). �

As further motivation for our EUS formulation, note that user selection can be seen as a random realization
of a categorical distribution, where utilities attached to the individual items are distributed according to P(w; θ).
Equation 35 can then be seen as expressing the expected utility of the selected choice with respect to uncertainty over
both w and the item selected by the user: Ew∼P(w;θ)Ex∼PR(S x;w)u(x; w).

Our goal is to identify the set of size at most k that maximizes expected utility of selection (EUS). We define an
optimal recommendation set (w.r.t. R) to be any set S ∗R(θ) of size k maximizing EUS given the current belief θ:

EUS∗R(θ) = max
S⊆X; |S |≤k

EUSR(S ; θ), (36)

S ∗R(θ) ∈ arg max
S⊆X; |S |≤k

EUSR(S ; θ). (37)

We now derive at some basic properties of EUS. For any response model R, the EUS of a singleton {x} coincides with
the expected utility EUS(x; θ) of its only element:

Observation 10 EUSR({x}; θ) = EU(x; θ) for any belief θ and x ∈ X.

Proof. Immediate from Proposition 9, since PR({x}  x|w) = 1 for any w (the only one available choice has to be
selected). �
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Observation 11 The expected utility of selection of a set S is bounded by the sum of the expected utility of the items
in S

EUSR(S ; θ) ≤
∑
x∈S

EU(x; θ).

Proof. Consider Proposition 9 and the fact that, for any w,
∑

x∈S PR(S  x|w) u(x; w) ≤
∑

x∈S u(x; w) since PR(S  
x|w) ≤ 1. �

Equality EUSR(S ; θ) =
∑

x∈S EU(x; θ) is attained in Observation 11 when the response model is noiseless (see below)
and utilities are “orthogonal” in the sense that, for any w with P(w; θ) > 0, there is only one x ∈ S such that u(x; w) > 0.

4.2. Bayesian Elicitation with Choice Queries

The user’s response to a choice query tells us something about her preferences; but this depends on the user
response model. In a noiseless model, the user correctly identifies her most preferred item in the set: the choice of
xi ∈ S refines the set of feasible utility functions W by imposing k−1 linear constraints of the form (as in regret-based
elicitation, see Section 2.4.2):

u(xi; w) ≥ u(x j; w), j , i. (38)

The new belief state is obtained by restricting θ to have non-zero density only on WSBxi and renormalizing.
More generally, a noisy response model accounts for the fact that a user may select an option that does not

maximize her utility. When treating S as a query set (as opposed to a recommendation set) we are not interested in its
expected utility, but rather in its expected value of information (EVOI), or the (expected) degree to which a response
will increase the quality of the system’s subsequent recommendation.

We first define the expected posterior utility of a query set (refining Definition 9 specifically for choice queries):

Definition 17 Given belief state θ, the expected posterior utility of query set S under R is

EPUR(S ; θ) =
∑
x∈S

PR(S  x; θ) EU∗(θ|S  x). (39)

The expected value of information EVOIR(S ; θ) of a query set S , under response model R, given belief θ is then
the difference between EPUR and the optimal value EU∗, measuring the expected improvement in decision quality
given S .

Definition 18 Given belief state θ, the expected value of information of query set S under R is

EVOIR(S ; θ) = EPUR(S ; θ) − EU∗(θ).

An optimal query (of fixed size k) is any S ⊂ X with maximal EVOI. If we are looking for the most informative
query (with highest EVOI), EU∗(θ) can be viewed as a constant; a query set S with maximal expected value of
information EVOI(S ; θ) thus must maximize expected posterior utility EPU(S ; θ):

Observation 12 The most informative query set of size at most k is that with highest posterior utility:

arg max
S⊆X; |S |≤k

EVOIR(S ; θ) = arg max
S⊆X; |S |=k

EPUR(S ; θ). (40)
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4.3. Probabilistic Response Models

The model of user behavior is largely dictated by the response model R. In the ideal setting, a user would always
select the item with greatest utility w.r.t. her true utility function w. This noiseless model is assumed in [100] for
example. However, this is unrealistic in general. Noisy response models admit user “mistakes,” or choice randomness
due to exogenous factors, and the choice of optimal sets should reflect this possibility (just as belief update does, see
Definition 17). Reasonable requirements on response models include:

1. Preference bias: a more preferred item in the slate given w is selected with higher probability than that of a less
preferred outcome; and

2. Luce’s choice axiom [88]: this is a form of independence of irrelevant alternatives (IIA) that requires that the
relative probability (if not 0 or 1) of selecting any two items x and y from S is not affected by the addition or
deletion of other items from the set.4

We consider four different response models, each dictating a different form of distribution P(S  x|w).
In the noiseless response model, RNL, we have that S  x implies that x has maximum utility among the items

in S . We assume that ties are broken in some consistent, arbitrary (possibly probabilistic) way. Formally, if x <
arg maxx∈S u(x; w) then PNL(S  x|w) = 0.

Observation 13 Under the noiseless response model EUS can be written as

EUSNL(S ; θ) =

∫
W

max
x∈S

u(x; w) P(w; θ)dw. (41)

Proof. Using Proposition 9, this follows from the fact that, for noiseless responses, PNL(S  x|w) = 0 for x <
arg maxx∈S u(x; w) �

EUSNL is identical to the expected max (EMAX) criterion considered by Price and Messinger [100].
The constant noise model RC assumes a multinomial distribution over choices or responses where each option x,

apart from a most preferred option x∗w relative to w, is selected with (small) constant probability

PC(S  x|w) = β (42)

with β independent of w. We assume β < 1
k , so a most preferred option is selected with probability

PC(S  x∗w|w) = α = 1 − (k − 1)β > β. (43)

Ties are broken randomly: in case of q > 1 most preferred options, each is selected with probability 1−(k−q)β
q .

This generalizes the model used by Gajos and Weld [50], Boutilier [18] for comparison queries to query sets of
any size. If x∗w(S ) is the optimal element in S given w, and u∗w(S ) is its utility, then EUS under this model can be
expressed in a convenient form.

Observation 14 Under the constant noise model, EUS can be written as

EUSC(S ; θ) =

∫
W

[
αu∗w(S ) +

∑
y∈S−{x∗w(S )}

βu(x; w)
]

P(w; θ)dw. (44)

4IIA is one of the more controversial axioms in the theory of choice [127, 85], but a deeper discussion of its pros and cons is beyond the scope
of this article.

Page 28



Paolo Viappiani and Craig Boutilier. Optimal Recommendation Sets.

The logistic response model RL is commonly used in choice modelling, and is variously known as the Luce-
Sheppard [87], Bradley-Terry, mixed multinomial logit or conditional logit model [90, 127]; this model is often used
in simulations [59, 123, 124]. Selection probabilities are given by

PL(S  x|w) =
eγu(x;w)∑

y∈S eγu(y;w) , (45)

where γ is a temperature parameter. For comparison queries (i.e., |S | = 2), PL(S  ·|w) is the logistic function of the
difference in utility between the two options (hence the name we give to this model):

PL({x, y} x|w) =
eγ[u(x;w)−u(y;w)]

1 + eγ[u(x;w)−u(y;w)] =
1

1 + e−γ[u(x;w)−u(y;w)] . (46)

Under this model, a comparison between two items whose difference in utility is 1
γ

corresponds to a probability of a
“mistake” of just over 0.26, while a difference 5

γ
corresponds to a mistake probability of less than 0.01. When γ → ∞,

the logistic model becomes a noiseless response model with ties broken in a (uniform) random way.
Finally we consider, for expository purposes, a degenerate model where responses are given by a uniform discrete

distribution, thus selection probabilities do not depend on the underlying utility function. The EUS under this uniform
response model RU is simply the average expected utility of the elements of the set. The expected utility of selection
given this response model is:

Observation 15
EUSU(S ; θ) =

1
k

∑
x∈S

EU(x; θ)

where k =|S |.

Of course, such a response model is patently unrealistic; but we use it to support the following observation: it can
be shown that the optimal set under EUSU is the set composed of the k items with highest expected utility. In other
words top-k retrieval (sorting options according to their expected utility), often employed in the information retrieval
literature, will in general give sub-optimal recommendation sets, as it implicitly assumes a uniform selection process.

4.4. Properties of EUS under Different Response Models

We now consider properties of EUS under these various response models. All three models, RNL, RC and RL,
satisfy preference bias, but only RNL and RL satisfy Luce’s choice axiom.

Intuitively, the noiseless response model induces greater EUS than any other noise model:

Proposition 16 EUSNL(S ; θ) ≥ EUSR(S ; θ), for any R ∈ {NL,C, L,U}.

Proof. Using Observation 13, we obtain

EUSNL(S ; θ) =

∫
W

max
x∈S

u(x; w) P(w; θ)dw ≥
∫

W

[∑
x∈S

PR(S  x|w) u(x; w)
]

PR(w; θ)dw = EUSR(S ; θ), (47)

This holds since, for each w ∈ W, we have maxx∈S u(x; w) ≥
∑

x∈S PR(S  x|w) u(x; w), which follows from the fact
that the maximum utility over all items in S is at least that of than any convex combination of the utility values of the
items in S . �

EUS is also monotone under RNL: the addition of options to a recommendation set S cannot decrease its expected
utility EUSNL(S ; θ):

Proposition 17 EUSNL(S ; θ) ≤ EUSNL(Q; θ) with S ⊆ Q.
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Proof. Using Observation 13, and the fact maxx∈S u(x; w) ≤ maxx∈Q u(x; w), for every w ∈ W, we obtain:

EUSNL(S ; θ) =

∫
W

max
x∈S

u(x; w) P(w; θ)dw ≤
∫

W
max
x∈Q

u(x; w) P(w; θ)dw = EUSNL(Q; θ). (48)

�

We say that option x j is setwise dominated in S relative to belief θ if for all w ∈ W such that P(w; θ) ≥ 0 there is
xi ∈ S such that u(xi; w) > u(x j; w).

It is easy to see that adding a setwise dominated option x to S does not change S ’s expected utility under RNL:

Observation 18 EUSNL(S ∪ {x}; θ) = EUSNL(S ; θ) for any x setwise dominated by S .

This stands in contrast to noisy response models, where adding dominated options might actually decrease expected
utility.

Importantly, EUS is submodular for both the noiseless and the constant response models RC . We recall the
definition of submodularity: a set function f is submodular iff

f (A∪B) + f (A∩B) ≤ f (A) + f (B).

An important property is the following: f is submodular iff the “gain” ρx(S ) = f (S ∪ {x})− f (S ) of adding an element
x to the any S is monotone non-increasing in S for any x:

ρx(S ) ≥ ρx(Q) iff S ⊆ Q. (49)

Theorem 19 For R ∈ {NL,C}, EUSR is a submodular function of the set S . That is, given two recommendation sets
S ⊆ Q, item x < S , S ′ = S ∪ {x}, and Q′ = Q ∪ {x}, we have:

EUSR(S ′; θ) − EUSR(S ; θ) ≥ EUSR(Q′; θ) − EUSR(Q; θ). (50)

Proof. We consider the gain in EUS that sets S and Q incur with the addition of some item {a}. Let ρ(S ; θ) =

EUS({a} ∪ S ; θ)− EUS(S ; θ). We write ρ(S ; θ) =
∫

w p(w) ρ(S ; w)dw in order to make explicit the contribution ρ(S ; w)
of each w in the gain ρ(S ; θ) (cf. Proposition 9):

ρ(S ; w) = PR(S ′  a|w)u(a; w) +
∑
x∈S

[
PR(S ′  x|w) − PR(S  x|w)

]
u(x; w), (51)

where S ′ = S ∪ {a} and Q′ = Q ∪ {a}. We will show that, for each w, ρ(S ; w) ≥ ρ(Q; w). From this, it follows
ρ(S ; θ) ≥ ρ(Q; θ) (characteristics of diminishing returns), whatever the belief θ, as the summation or integration of
submodular functions is also submodular.

Noiseless response model (NL): Recall that x∗w(S ) denotes the (true) optimal item in set S given utility weights
w. We consider different cases with respect to the optimality of item {a} in the set S ′ = S ∪ {a} and Q′ = Q ∪ {a}.

First, if w is such that a is optimal in S ′ and optimal in Q′, ρ(S ′,w) = u(a; w) − u∗w(S ) ≥ u(a; w) − u∗w(Q) =

ρ(Q′,w), since u∗w(Q) ≥ u∗w(S ). Second, suppose w is such that a is optimal in S ′, but not optimal in Q′; then,
ρ(S ′,w) = u(a; w) − u∗w(S ) ≥ 0 = ρ(Q′,w). Third, suppose w is such that a is neither optimal in S ′, nor in Q′:
ρ(Q′,w) = ρ(S ′,w) = 0 (the gain is zero for both sets). Finally, the following case is impossible: w such that a
optimal in Q′, but not optimal in S ′ (impossible because S ′ ⊆ Q′). Thus EUS with noiseless responses is submodular.

Constant noise response model (C): We substitute PR(S  x|w) in the expression of the gain according to the
constant response model. Most terms in the summation in Equation 51 evaluate to β and cancel out. Note that the
likelihood α of a correct answer is a function of the set size (when there are more items, it is easier for the user to
make a mistake). Let αS = α(|S |) = 1− (|S | −1)β (similarly for S ′, Q and Q′), it holds αS ′ = αS −β and αQ′ = αQ −β.

Again, we consider different cases with respect to the optimality of item {a} in the set S ′ = S ∪{a} and Q′ = Q∪{a},
and write the expression of the gain in each case.
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1. Suppose w is such that a is optimal in S ′ and optimal in Q′:

ρ(S ′,w) = αS ′ [u(a; w) − u∗w(S )] ≥ 0 (52)
ρ(Q′,w) = αQ′ [u(a; w) − u∗w(Q)] ≥ 0 (53)

2. Suppose w such that a is optimal in S ′, but not optimal in Q′. S has a gain, while Q a loss.

ρ(S ′,w) = αS ′ [u(a; w) − u∗w(S )] ≥ 0 (54)
ρ(Q′,w) = β[u(a; w) − u∗w(Q)] ≤ 0 (55)

3. Suppose w such that a is neither optimal in S ′, nor in Q′. The gain will be negative for both sets (thus a loss).

ρ(S ′,w) = β[u(a; w) − u∗w(S )] ≤ 0 (56)
ρ(Q′,w) = β[u(a; w) − u∗w(Q)] ≤ 0 (57)

4. The following case is impossible: w such that a optimal in Q′, but not optimal in S ′ (impossible because
S ′ ⊆ Q′).

In all cases ρ(S ; w) ≥ ρ(Q; w), i.e., the gain is greater for S than for the larger set Q (in the third case, S suffers a
smaller loss): by componentwise comparison, and the fact that u∗w(Q) ≥ u∗w(S ) and αS ′ > αQ′ and that, for the model
to be meaningful we have α > β. �

The proof shows that EUS has the required property of diminishing returns. Submodularity serves as the basis for
a greedy optimization algorithm (see Section 4.7). EUS under the commonly used logistic response model RL is not
submodular, but can be related to EUS under the noiseless model—as we discuss in Section 4.5.3 —allowing us to
exploit submodularity of the noiseless model when optimizing w.r.t. RL.

4.5. Theoretical results: the Connection between EUS and EPU
We develop the connection between optimal recommendation sets (with respect to EUS) and optimal choice

queries (with respect to EPU/EVOI). As discussed above, we are often interested in sets that can serve as both good
recommendations and good queries; and since computing or optimizing EPU/EVOI can be computationally difficult,
good methods for EUS-optimization can serve to generate good queries as well if we have a tight relationship between
the two.

We first provide a characterization of the optimal query set under noiseless responses in Section 4.5.1. We then
analyze the impact of several noisy response models in Sections 4.5.2 and 4.5.3. Our results can be summarized as
follows:

• For the noiseless response model, the optimal recommendation set of size k is also an optimal query set of size
k.

• For the constant noise model, the optimal recommendation set of size at most k is also the optimal query set of
size at most k.

• For the logistic model, logistic noise has a bounded effect on the value of a set, hence, optimal recommendation
sets are near-optimal queries—we derive a closed-form expression for such a bound.

First of all, we remark that, for a given response model R and belief θ, EUS is a lower bound for EPU; in other
words, the value of a set as a query is always at least its value as a recommendation set; this follows directly from the
definition of EUS (Eq.34) and EPU (Eq. 17):

Proposition 20 EPUR(S ; θ) ≥ EUSR(S ; θ).
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Proof. Since EU(x; θ|S  x) ≤ EU∗(θ|S  x),

EUSR(S ; θ) =
∑
x∈S

PR(S  x; θ) EU(x; θ|S  x) ≤
∑
x∈S

PR(S  x; θ) EU∗(θ|S  x) = EPUR(S ; θ).

�

In the following, we make use of a transformation Tθ,R that modifies a set S in such a way that EUS usually
increases (and in the case of RNL and RC cannot decrease). This transformation is used in two ways: (i) to prove the
optimality (near-optimality in the case of RL) of EUS-optimal recommendation sets when used as query sets; and (ii)
directly as a computationally viable heuristic strategy for generating query sets.

Definition 19 Let S = {x1, · · · , xk} be a set of options. Define:

Tθ,R(S ) = {x∗(θ|S  R x1), · · · , x∗(θ|S  R xk)}

where x∗(θ|S  R xi) is an optimal option (in expectation) when θ is conditioned on S  xi w.r.t. R: x∗(θ|S  R xi) ∈
arg maxx∈X EU(x; θ|S  R x).

Intuitively, T (we drop the subscript when θ,R are clear from context) refines a recommendation set S of size k by
producing k updated beliefs for each possible user choice, and replacing each option in S with the optimal option
(with respect to expected utility) under the corresponding update. Note that T (S ) may be of lesser cardinality than S ,
since different beliefs may induce the same optimal option. In general, there might be more than one optimal option
in an updated belief; for ease of notation, we assume T (S ) breaks ties in some (potentially) non-deterministic way.
We use τ(S ) whenever we want to explicitly refer to the set of all possible sets T (S ) that could be constructed in this
way.

Below, we make use of the idea of a “fixed point” of T , defined as any set S such that S ∈ τθ(S ). If S is a fixed
point of T , then

EUS(S ; θ) = EUS(Tθ,R(S ); θ). (58)

It is important to notice (even if technically straightforward to prove) the following:

Proposition 21 Consider a set S as a query set and assume that S is a fixed point for T , i.e., S ∈ τθ(S ). If a user
selects x from S , then x is an optimal (single) recommendation w.r.t. the posterior belief θ|S  x, i.e.,

x ∈ arg max
y∈X

EU(y; θ|S  x).

The proof is immediate from the definition of the T operator and from the fact that S is a fixed point.
Note that T generally produces different sets under different response models. Indeed, one could use T to construct

a set using one response model, and measure EUS or EPU of the resulting set under a different response model. Some
of our theoretical results use this type of “cross-evaluation.”

We now use T to provide a formulation of EPU in an integral form (similar to Proposition 9 for EUS).

Proposition 22 Let S = {x1, · · · , xk} be a set of options, and let x′i ∈ arg maxx∈X EU(x; θ|S  xi); that is the items
resulting from the application of the operator Tθ,R. EPUR of set S can be written as:

EPUR(S ; θ) =

∫
W

k∑
i=1

[PR(S  xi|w)u(x′i ; w)]P(w; θ)dw (59)

Note that, we could have x′i = x′j for i , j if the same item is optimal in two different posteriors (i.e. if the cardinality
of T (S ) is less than k) and the utility of the same item would be counted twice in the inner summation of Equation 59.
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Proof. We know that x′i ∈ arg maxx∈X EU(x; θ|S  xi).

EPUR(S ; θ) =

k∑
i=1

PR(S  xi; θ) EU∗(θ|S  xi) =

k∑
i=1

PR(S  xi; θ) EU(x′i |S  xi) (60)

=

k∑
i=1

PR(S  xi; θ)
∫

W
u(x′i ; w) P(w; θ|S  xi)P(w; θ)dw (61)

=

k∑
i=1

PR(S  xi; θ)
∫

W
u(x′i ; w)

PR(S  xi|w; θ)
PR(S  xi; θ)

P(w; θ)dw (62)

=

k∑
i=1

∫
W

u(x′i ; w) PR(S  xi|w; θ)P(w; θ)dw (63)

=

∫
W

k∑
i=1

[u(x′i ; w) PR(S  xi|w; θ)] P(w; θ)dw. (64)

�

We now turn to our main results in the Bayesian setting. We address noiseless responses next, and defer discussion
of noisy responses to Section 4.5.2 (for the constant noise model) and Section 4.5.3 (for the logistic noise model).

4.5.1. The Connection between EUS and EPU under Noiseless Responses
We now show that optimal recommendation sets are optimal (i.e., EPU/EVOI-maximizing) query sets under noise-

less responses. We make use of the T operator in the following proposition, which we dub the Bayesian Query Itera-
tion lemma (compare the analogous Lemma 7 in the regret-based framework), as it plays a central role in proving our
main results.

Lemma 23 (Bayesian Query Iteration under Noiseless Responses) EUSNL(Tθ,NL(S ); θ) ≥ EPUNL(S ; θ).

Proof. Let S = {x1, · · · , xk} be a set of options, and let x′i ∈ arg maxx∈X EU(x; θ|S  xi) for i ≤ k. Let Tθ,NL(S ) =

{x′1, · · · , x
′
k} be the set resulting from the application of the T operator with respect to the noiseless response model

(we drop θ and NL in the subscript of T below for clarity). We formulate EUS and EPU (under noiseless responses)
according to Observation 13 and Proposition 22, respectively, and derive

EUSNL(T (S ); θ) =

∫
W

max
i=1,...,k

u(x′i ; w) P(w; θ)dw ≥
∫

W

k∑
i=1

[PNL(S  xi|w)u(x′i ; w)]P(w; θ)dw = EPUNL(S ; θ). (65)

Equation 65 holds because, for each w, maxi=1,...,k u(x′i ; w) ≥
∑k

i=1[PNL(S  xi|w)u(x′i ; w)] since the maximum among
u(x′1; w), . . . , u(x′k; w) is at least the value of any convex combination of utility values u(x′1; w), . . . , u(x′k; w).

Note that, even if Tθ,NL(S ) has fewer than k items, EUSNL(T (S ); θ) is equivalent to
∫

W maxi=1,...,k u(x′i ; w) P(w; θ)dw.
�

From Lemma 23 and Proposition 20 we have the following corollary:

Corollary 24 Under the noiseless response model RNL we have:

• EUSNL(Tθ,NL(S ); θ) ≥ EUSNL(S ; θ); and

• EPUNL(Tθ,NL(S ); θ) ≥ EPUNL(S ; θ).
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(a) Points represents sets in the EUS/EPU space (b) An optimal recommendation set is also an optimal query

Figure 6: The intuition behind the proof: using the Query Iteration Lemma, we show that the non-existence of a set that is both optimal as a
recommendation and as a query leads to contradiction. There are no sets in the shaded area as EUS is a lower bound for EPU

This means that, given the current belief θ, the result of applying T to a given set S is a new set that is at least as
good as S as a recommendation set (with respect to EUS), and at least as good as S when considered as a query set
(with respect to EPU). The Query Iteration Lemma 23 states something even stronger: the value of the set obtained
by applying T as a set of recommendations (w.r.t. EUS) is at least the value of the original set S as query (w.r.t. EPU).
This lies at the heart of the reasoning behind the main theorem for noiseless responses, asserting that a set S ∗ that is
optimal with respect to EUS is also an EPU-optimal query set.

Theorem 25 Assume the noiseless response model NL and let S ∗ be an optimal recommendation set of size k. Then

• S ∗ is an optimal query set of size k: EPUNL(S ∗; θ) ≥ EPUNL(S ; θ), ∀S ∈ 2X , |S | = k; and

• The value of the optimal set as recommendation coincides with its value as a query: EUSNL(S ∗; θ) = EPUNL(S ∗; θ)
and therefore EUS∗NL(θ) = EPU∗NL(θ).

Proof. Note that all EUS/EPU computations in this proof are with respect to NL, so we drop the subscript. Suppose
S ∗ is not an optimal query set, i.e., there is some S s.t. EPU(S ; θ) > EPU(S ∗; θ). Applying T to S gives a new query
set T (S ), which by Lemma 23 shows: EUS(T (S ); θ) ≥ EPU(S ; θ) > EPU(S ∗; θ) ≥ EUS(S ∗; θ). This contradicts the
EUS-optimality of S ∗.

To prove the second part, note that as S ∗ is an optimal recommendation set, EUS(S ∗; θ) ≥ EUS(T (S ∗); θ). By
Lemma 23, EUS(T (S ∗); θ) ≥ EPU(S ∗; θ), and therefore EUS(S ∗; θ) ≥ EPU(S ∗; θ). But since it holds EPU(S ∗; θ) ≥
EUS(S ∗; θ) by Proposition 20, we conclude that EUS∗(θ) = EUS(S ∗; θ) = EPU(S ∗; θ) = EPU∗(θ). �

Consider the optimal recommendation set. While one might suppose that a weaker recommendation set could
yield better value as a query, our results show that this is not possible: the operator T provides an operational mecha-
nism for producing a set that is optimal as both a recommendation set and as a choice query. Somewhat surprisingly,
the decision-theoretic “diversity” of the optimal recommendation set is (myopically) maximally informative for elici-
tation.

The intuition behind the proof is illustrated graphically in Figure 6. In Figure 6(a) each candidate set is represented
by a point in the EUS/EPU space. The T operator is such that the output set T (S ) is better with respect to both criteria
(EUS and EPU) than the original set (in Figure 6(a) this is the green area). Assume there is an optimal query set that
it is not an optimal recommendation set. By applying the operator T , the resulting set must be optimal with respect to
both EUS and EPU (see Figure 6(b)).
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Another consequence of Lemma 23 is that posing a query S involving an infeasible option is pointless: there
is always a set with only elements in X whose EPU/EVOI at least as great. This is proven by observing the Query
Iteration Lemma still holds if T is redefined to allow sets containing infeasible options. This is an observation of
important practical interest since asking about preferences concerning hypothetical items is often criticized by behav-
ioral decision scientists and practitioners. The fact that the best query (with respect to our myopic criterion) is free to
use only real items is therefore notable.

Corollary 26 EUSNL(S ; θ) = EUSNL(T (S ); θ) is a necessary condition for the optimality of set S under belief θ with
respect to both EUS and EPU.

The fact that applying the operator T cannot decrease the quality of a set (Lemma 23), and the fact that a fixed
point is required for optimality (Corollary 26) justify it as an operational way to improve a set. This will be exploited
by the query iteration strategies described below in Section 4.7, where we develop algorithms for set optimization (to
be used either as recommendations or as queries).

The condition S ∈ τθ(S ) is also a necessary condition for the optimality of set S . The fact that S ∈ τθ(S ) is
not a sufficient condition can be seen by considering the singleton set S d = {x∗θ} containing the item with highest
expected utility x∗θ = arg maxx∈X EU(x; θ). We have T (S d) = S d, but obviously S d will be in general suboptimal as a
recommendation/query set.

Another consequence of our main result, Theorem 25, is the following. Consider the situation where the system has
an opportunity to ask exactly one query and, after observing the user’s response, must produce a final recommendation.
This situation can be represented by an influence diagram: the root is a decision node for choosing a query; the query
response is modelled by a chance node; and a final decision node (one for each of the possible responses) models the
provision of a recommendation from X. The solution of this influence diagram is a policy that can be represented by
a decision tree of width 1. At the root node, the optimal decision is to ask the query with maximal EUS (and therefore
maximal EPU). According to Corollary 26, the optimal query set with respect to the initial belief is a fixed point of T .
Proposition 21 guarantees that, at any fixed point, the best recommendation at the posterior belief is exactly the item
selected by the user (as the response to the only query the system could pose). This situation is studied in Appendix
A and used to represent the solution of the famous Monty Hall problem in what we believe to be an novel formulation
of this problem.

4.5.2. The Connection between EUS and EPU under the Constant Noise Model
We now explore the connection between optimal query sets and optimal recommendation sets given a response

model with constant noise. Under RC , we obtain that the optimal recommendation set is an optimal query set, as in
the noiseless case.

Critically, we derive a version of the Query Iteration Lemma (cf. Lemma 23) for the constant noise model:

Lemma 27 (Bayesian Query Iteration under Constant Noise) EUSC(Tθ,NL(S ); θ) ≥ EPUC(S ; θ).

Proof. As usual, let S = {x1, . . . , xk} and T (S ) = {x′1, . . . , x
′
k}. Let x∗w(S ) = arg maxx∈S u(x; w) and u∗w(S ) =

maxx∈S u(x; w). Using Proposition 14 and Proposition 22, we have:

EUSC(T (S ); θ) =

∫
W

[
αu∗w(T (S )) + β

∑
x′j∈T (S ),x′j,x∗w(T (S ))

u(x′j)
]

P(w; θ)dw. (66)

EPUC(S ; θ) =

∫
W

k∑
i=1

[P(S  xi|w)u(x′i ; w)]P(w; θ)dw =

∫
W

[
αu(x′f (S ;w)) + β

∑
j, f (S ,w)

u(x′j)
]
P(w; θ)dw. (67)

Here f (S ; w) = arg maxi∈{1,...,k} u(xi; w) is the index of item with highest utility in S . We now show that, for all w ∈ W,
αu∗w(T (S )) + β

∑
x′j∈T (S ),x′j,x∗w(T (S )) u(x′j) ≥ αu(x′f (S ;w)) + β

∑
u(x′j).

• If w is such that S B xi and T (S ) B x′i , then the left hand side and the right hand side have the same value.
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• If w is such that S B xi and T (S ) B x′j, with i , j, then we have αu∗w(T (S )) + βu(x′f (S ,w); w) ≥ αu(x′f (S ,w); w) +

βu∗w(T (S )), since u∗w(T (S )) > u(x′f (S ,w); w) and α > β.

Since for each w ∈ W the contribution to EPU(S ; θ) is no greater than that of EUS(T (S ); θ), the lemma follows. �

As in the noiseless response model, we have the following property (cf. Corollary 24).

Corollary 28 Under the constant noise model RC , we have:

• EUSC(Tθ,C(S ); θ) ≥ EUSC(S ; θ), and

• EPUC(Tθ,C(S ); θ) ≥ EPUC(S ; θ).

This corollary allows us to use T as a fast method for locally improving a set (in the same way as in the noiseless
response model), an insight we exploit algorithmically in Section 4.7.

We now establish the connection between optimal recommendations sets and optimal query sets. Under the
constant noise model, the optimal recommendation set of size at most k is also the optimal query set of size at most
k. This weaker form of the theorem is due to the fact that T might produce a set of smaller cardinality (this is not a
concern in the noiseless model, as EUS is monotone).

Theorem 29 Assume a constant noise response model and let S ∗ be an optimal recommendation set of size at most
k, i.e., S ∗ ∈ arg maxS⊆X; |S |≤k EUSC(θ) . Then:

• S ∗ is optimal query set of size at most k: EPUC(S ∗; θ) ≥ EPUC(S ; θ), ∀S ⊂ X; |S | ≤ k.

• The value of S ∗ as recommendation coincides with its value as a query: EUSC(S ∗; θ) = EPUC(S ∗; θ) and
therefore EUS∗C(θ) = EPU∗C(θ).

The proof is essentially the same as the proof of Theorem 25 but making use of Lemma 27 (rather than Lemma 23).

4.5.3. The Connection between EUS and EPU under the Logistic Noise Model
We now explore the connection between selecting an optimal query set and an optimal recommendation set given a

response model with logistic noise. Under RL, we first derive a bound on the effect of logistic noise on the quality of set
recommendations, and we then exploit this bound to prove that EUS-optimal recommendation sets are near-optimal
choice queries.

The value of a recommendation set measured by the EUS criterion decreases when choices are “noisy” as the
selected item is not necessarily that with greatest utility among those in the set. For example, under the logistic noise
model we have EUSL(S ; θ) ≤ EUSNL(S ; θ), and generally this inequality is strict. We are interested in the degree to
which noisy responses under RL impact the value of a recommendation set relative to noiseless responses under RNL;
i.e., what is the loss in expected utility of selection for a given a recommendation set due to logistic noise:

Definition 20 The loss in expected utility of recommendation set S given belief θ induced by logistic response noise
is:

∆(S ; θ) = EUSNL(S ; θ) − EUSL(S ; θ). (68)

Notice that two sources of uncertainty arise in ∆(S ; θ): the uncertainty in the user’s response dictated by RL; and the
uncertainty due to the system’s limited belief θ about the user’s utility. This loss can be express as:

∆(S ; θ) = Ew∼P(w;θ)

[
u∗w(S ) − Ex∼PL(S ·;w)u(x; w)

]
, (69)

where u∗w(S ) = maxx∈S u(x; w) is the utility of the most preferred item in S if the “true” user utility is w. It is useful
to study the effect of the two sources of uncertainties separately. We first show that the uncertainty due to the user’s
response assuming a known utility function has a relatively limited effect on this loss. We then assess the impact of
utility uncertainty and show that this also bounds ∆(S ; θ). With such reasoning, we can bound the difference between
EUSNL and EUSL in a way that depends only on the set cardinality k and the (logistic) temperature parameter γ.
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Figure 7: Expected loss δ as a function of the utility difference z, for pairs of items (k = 2), with γ = 1. The loss is maximum for ẑ = 1.279, with
∆̂2 = 0.279 and associated with a probability of around 0.22 of making an incorrect answer.
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Figure 8: Countour and surface plots of the expected loss for the case k = 3 as a function of z1 and z2 (the utility difference between the two worst
items and the best one).

Expected loss due to user choice. Let x∗w(S ) = arg maxx∈S u(x) be the utility-maximizing item in S assuming user
utility w. The expected loss due to logistic noise (for a fixed w) is the probability of the user selecting a suboptimal
item times the utility difference between the selected item and x∗w(S ):

δ(S ) = u∗w(S ) −
∑
x∈S

PL(S  x; w)u(x; w) =
∑
x∈S

PL(S  x; w)
[
u∗w(S ) − u(x; w)

]
(70)

Note that loss due to user choice can be seen as computing ∆(S ; θ) (see Equation 68) in the degenerate case where the
belief state θ has its mass concentrated on a single w.

We now analyze Equation 70. We first consider the case k = 2 with two items x1, x2 for ease of exposition. Let
v1 = u(x1; w) > v2 = u(x2; w) be the utility of the items and z = v1 − v2 their difference. When z > 0, loss δ({x1x2})
due to user choice is z times the probability of choosing the less preferred item x2 under RL:

(v1 − v2)PL(S  x2; w) = (v1 − v2)
eγv2

eγv1 + eγv2
=

z
1 + eγz (71)

We write the expected loss, for the case k = 2, as δ(z) to make explicit that the expected loss depends only on z.
Inspecting Equation 71, we observe that the expected loss under RL can be bounded. As z increases, the probability
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Figure 9: Plot of the worst-case bound ∆̂k for the logistic noise model for different values of γ and different item-set sizes k.

of selecting the less preferred item decreases, but the impact (i.e., the utility difference z) of this “incorrect” choice
increases. The loss can thus be bounded by maxz∈R+ δ(z) at corresponding value ẑ. Figure 7 plots (in red) the expected
loss as function of z for γ = 1—the maximum loss ∆̂2 ≈ 0.279 (for k = 2) is attained at ẑ ≈ 1.279. In the same figure,
we also plot (in blue) the curve 1

1+eγz , representing the probability of selecting the less preferred item when γ = 1;
such an incorrect response has probability ≈ 0.22 for the loss-maximizing value ẑ. We express the bound in analytical
form, for any γ, making use of the Lambert W function [40], also known as product-log:5

ẑ =
1
γ
·
[
1 +L

(1
e

)]
≈ 1.279

1
γ
, (72)

∆̂2 =δ(ẑ) =
1
γ
· L

(1
e

)
≈ 0.279

1
γ
. (73)

Here L denotes the Lambert W function.
Similar reasoning applies when the choice set size is k > 2. The loss δ can be formulated as a function of the

utility differences between the options in the set. Indeed, the contribution of each item in S to the expected loss is the
utility loss w.r.t. x∗w(S ) times its selection probability. Assuming, without loss of generality, that the kth item is that
with greatest utility (vk ≥ vi for all i ∈ {1, . . . , k}), the expected loss due to user choice is:

δ(v1, . . . , vk) =

k∑
i=1

(vk − vi)
evi∑k

j=1 ev j
=

k−1∑
i=1

(vk − vi)
1

1 +
∑

j,i ev j−vi
. (74)

The expected loss δ can be expressed as a function of the terms v j − vi. We set zi = vk − vi, which must be at least
0 (given the assumption that vk is the highest value); in this way, we are left with a problem with k − 1 free variables,
representing the utility loss of each item with respect to the kth item. We write δ(z1, . . . , zk−1) to make it explicit that
the expected loss depends only on zi:

δ(z1, . . . , zk−1) =
∑
i∈K−

zi
1

1 + ezi +
∑

j,i ezi−z j
(75)

where K− = {1, . . . , k − 1}. Figure 8 shows the plot of this function for the case k = 3 with γ = 1; the maximum in
this case is ≈ 0.463 attained when z1 = z2 ≈ 1.463. In general, the maximum loss is always attained with a set S in

5Lambert W is defined as the principal value of the inverse of xex, where ex is the exponential function. It allows one to write the solution of
an equation xex = y as x = L(y). While the Lambert W function is generally multi-valued, here we consider a real-valued positive domain and a
real-valued codomain, in which case it is single-valued.
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which all items except the optimal item x∗w(S ) have the same utility. In other words, the utility difference between the
x∗w(S ) and all other items is the same: the loss-maximizing (ẑ1, . . . , ẑk−1) is such that ẑ1 = . . . = ẑk−1, which allows us
to derive a bound ∆̂k on this loss, as shown in the following Theorem:

Theorem 30 Assume a set selection problem with known user utility, in which the user with utility w—inducing item
utilities v1, . . . , vk—selects an item from slate S (of size k). The expected loss induced by user choice under response
model RL is at most:

∆̂k =
1
γ
· L(

k − 1
e

), (76)

where L is the Lambert W function [40]. Moreover, the maximum loss is attained by utilities v1, . . . , vk:

v1 = . . . = vk−1 = ζ (77)

vk = ζ +
1
γ
·
[
1 +L

(k − 1
e

)]
(78)

with ζ ∈ R, or any permutation of these values (since the loss does not depend on the ordering of the values v1, . . . , vk).

Proof. See Appendix B. �

Figure 9 shows the value of ∆̂k for different values of γ and different numbers of options.

Example 2 Consider the following three situations each involving a binary choice with a known utility function under
the logistic response model.

1. The choice between a good item (utility 1) and a bad item (utility 0).

2. The choice is between two good items (utilities 1 and 0.99, resp.).

3. The choice between an above-average item (utility 0.66) and a below-average item (utility 0.33).

We consider temperatures γ = 3 (high noise) and γ = 5 (mild noise). Key to user choice (and induced loss ∆) under
RL are the utility differences (respectively, 1, 0.01 and 0.33 in the three choice situations), rather than the magnitude
of the individual values.

In the first choice setting, the loss due to user choice of the suboptimal item is high (loss of 1), but the difference
in utility is such that this event is unlikely: with γ = 3 the probability of selecting the best item is 0.95, so expected
loss due to user choice is only ∆ = 0.0474; with γ = 5, the probability of selecting the most-preferred item increases
to 0.99 and expected loss drops to ∆ = 0.0067.

In the second case, user choice is more “difficult,” as both choices are good. The probability of picking the
suboptimal item is high (approximately 0.49), but the loss in this case is only 0.01, so expected loss is ∆ = 0.0049;
with γ = 5, the probability of correct response increases only marginally and ∆ remains close to 0.0049.

Finally, in the third case, the probability of the optimal choice with γ = 3 (resp., γ = 5) is 0.73 (resp., 0.84) and
∆ = 0.0894 (resp., ∆ = 0.0532). This choice setting has the highest expected loss among the three.

We compare these loss values with the bound of Theorem 30: we have ∆̂2 = 0.0928 (for γ = 3) and ∆̂2 = 0.0557
(γ = 5); these values are attained for utility differences between the two items of ẑ = 0.4262 and ẑ = 0.2557,
respectively. Notice that the third choice example with a utility difference of 0.33 induces losses due to user choice
that are quite close to these bounds.

Expected loss due to utility uncertainty. We now show how the bound ∆̂k derived in Theorem 30 can be used to
bound the expected loss in the more general case where the system’s belief state θ about the user’s utility function w is
uncertain. This requires integration over possible utility functions, or equivalently, over possible z values (i.e., utility
differences). Since probabilities must sum to one, this loss is maximized when all probability mass is concentrated on
utility functions corresponding to ẑ computed above. This allows one to derive a problem-independent upper bound
∆̂k on the expected loss ∆(S ; θ)—for any S , θ—that depends only on k.
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Note that the belief distribution P(w; θ) induces a distribution P(z1, . . . , zk−1; θ) over the utility differences for all
items in the set. This gives us the following relationship between the expected loss ∆ and the loss δ due to user choice:

∆(S ; θ) =

∫
z1

. . .

∫
zk−1

δ(z1, . . . , zk−1) P(z1, . . . , zk−1; θ) dz1 . . . dzk−1. (79)

From this, we derive the following bound:

Theorem 31 EUSL(S ; θ) ≥ EUSNL(S ; θ) − ∆̂k, where

∆̂k =
1
γ
· L(

k − 1
e

),

where L(·) is the Lambert W function.

Proof. Consider k = 2. We show that the expected loss of any set can be at most the expected loss associated with
two hypothetical items x1 and x2 having the same utility difference u(x1,w) − u(x2,w) = ẑ for any w ∈ W.

∆(S ; θ) = EUSNL(S ; θ) − EUSL(S ; θ) =

∫ z=+∞

z=−∞
δ(z)P(z; θ)dz =

∫ +∞

−∞

|z| ·
1

1 + eγ|z|
P(z; θ)dz ≤ ẑ

1
1 + eγẑ = ∆̂2

The reasoning is analogous for k > 2. �

Note that the loss-maximizing set S max typically contains infeasible outcomes; so in practice, the actual realizable loss
may be much lower. The particular form of the bound allows us to bound the difference between EUSNL and EUSL at
some value ∆̂k that depends only on the set cardinality k and the temperature parameter γ.

By plugging Equation 76 into the formula for logistic noise with binary choices (Equation 46), we can be quantify
the loss on a scale that is independent of the temperature parameter γ.

Theorem 32 The bound ∆̂k corresponds to a utility difference such that in a hypothetical choice situation between a
pair of alternatives, under RL with temperature γ, the user reports her preference incorrectly with probability

1

1 + eL( k−1
e )
.

Note that this value does not depend on γ.

Proof. Assume an hypothetical choice between two pairs with utility difference z = ∆̂k = 1
γ
· L( k−1

e ). The probability
of making an incorrect choice under RL is 1

1+eγz = 1
1+eL( k−1

e )
. �

This last theorem can be appreciated by considering the following thought experiment: imagine a recommender
faced with a choice situation where the difference in utility between the two items (x+ and x−, with x+ more preferred
to x−) is exactly ∆̂k and the user is answering according to the logistic noise model (with the same γ as in the original
decision context). One might expect the bound to correspond to a utility value large enough to discriminate x+ from
x−. However, Theorem 32 states that, when k = 2, the value ∆̂ corresponds to a utility difference so slight that the user
identifies the best item only with probability 0.57. In other words, the maximum loss is so small that the user is unable
able to identify the preferred item 43% of the time when asked to compare the two items x+, x− (whose difference in
utility, by construction, is exactly the bound). For larger values of k, the probability of incorrect selection decreases,
but it remains surprisingly low: k = 10 induces incorrect selection with probability of roughly 0.25; and to drive the
odds of incorrect selection under 10% requires k = 55.

Now that we have established a bound on the impact of logistic noise, we can establish a connection between
EUS and EPU, i.e., between the value of a set viewed as recommendation set and as a query set. We proceed in a
similar fashion as in the other noise models, using the operator T that improves the quality of a set S by considering
the EU-optimal items in the posterior belief associated with S (viewed as a query), and establishing a query iteration
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lemma. In RL however, our results employ the bound ∆̂ to show that optimal recommendation sets are near-optimal
choice queries.

Under RL, our transformation TL does not, in general, improve the value EUSL(S ) of a recommendation set S .
However the set TL(S ) is such that its value EUSNL, assuming selection under the noiseless model, is greater than the
expected posterior utility EPUL(S ) under RL:

Lemma 33 (Bayesian Query Iteration under Logistic Noise) EUSNL(TL(S ); θ) ≥ EPUL(S ; θ).

Proof. The proof is very similar to that of Lemma 23. Let x′i = x∗(θ|S  xi) under RL; that is, x′i ∈ arg maxx∈X EU(x; θ|S  
xi). TL(S ) is the set composed of x′1, . . . , x

′
k with duplicates removed. Note that even if the cardinality of TL(S ) is less

than k, we have EUS NL(TL(S ); θ) =
∫

W maxi=1,...,k u(x′i ; w) P(w; θ)dw. We derive

EUSNL(TL(S ); θ) =

∫
W

max
i=1,...,k

u(x′i ; w) P(w; θ)dw ≥
∫

W

k∑
i=1

[PL(S  xi|w)u(x′i ; w)]P(w; θ)dw = EPUL(S ; θ). (80)

Equation 80 holds because, for each w, maxi=1,...,k u(x′i ; w) ≥
∑k

i=1[PL(S  xi|w)u(x′i ; w)]; that is, u∗w(TL) is at least a
great as any convex combination of the utilities u(x′j; w).

�

We use this fact below to prove that the optimal recommendation set under RL is a near-optimal query set under RL

(see Theorem 36). However, we require two additional lemmas. First, from Theorem 31 and Lemma 33, we derive:

Lemma 34 EUSL(TL(S ); θ) ≥ EPUL(S ; θ) − ∆̂k.

Second, we can relate EPU∗NL(θ) to EPU∗L(θ) as follows. In general, EPUL(S ; θ) may be greater than EPUNL(S ; θ):
there are sets for which a noisy response might be “more informative” than a noiseless one. However, this is not the
case for optimal query sets. One consequence of Lemma 33 is that the EPU of the optimal query under RNL is at least
as great as that of the optimal query under RL:

Lemma 35 EPU∗NL(θ) ≥ EPU∗L(θ).

Proof. Let q∗L be the optimal query set w.r.t. belief θ under logistic response: q∗L = arg maxq EPUL(q; θ) and EPU∗L(θ) =

EPUL(q∗L; θ). Dropping θ from our notation for clarity, we have:

EPU∗NL = EUS∗NL ≥ EUSNL(TL(q∗L)) ≥ EPUL(q∗L) = EPU∗L . (81)

�

We now derive our main result for the logistic response model: the EUS of the optimal recommendation set of size
at most k is at most ∆̂k less than the EPU of the optimal query set (dropping k and γ from the ∆-notation for clarity).
This implies that the optimal recommendation set S ∗ can be used as query set whose value EPUL(S ∗) is within ∆̂ of
the optimal query value EPU∗L.

Theorem 36 EUS∗L(θ) ≥ EPU∗L(θ) − ∆̂k.

Proof. Consider the optimal query S ∗L and the set S ′ = TL(S ∗L) obtained by applying TL. From Lemma 33, we have:

EUSNL(S ′; θ) ≥ EPUL(S ∗L, θ) = EPU∗L(θ).

From Theorem 31, we obtain:
EUSL(S ′; θ) ≥ EUSNL(S ′; θ) − ∆̂k;

and from Theorem 25, EUS∗NL(θ) = EPU∗NL(θ). Thus

EUS∗L(θ) ≥ EUSL(S ′; θ) ≥ EUSNL(S ′; θ) − ∆̂k ≥ EPU∗L(θ) − ∆̂k.

�

We summarize the theoretical results for the three response models in Table 3.
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Response EUS is EUS is EUS lower optimal set is optimal query TR improves both
model monotone submodular bound for EPU EUS∗ = EPU∗ EUS and EPU

NL yes yes yes yes yes

C no yes yes yes yes

L no no yes no, but optimal EUS set is a no, but decrease
near-optimal query (loss at most ∆̂) is at most ∆̂

Table 3: Summary of theoretical results relating optimal recommendation sets and optimal query sets under the noiseless (NL), constant noise (C)
and logistic noise (L) response models.
.

4.6. Illustrations

We now provide several examples to illustrate the results above.

Example 3 We consider an elicitation problem developed by Price and Messinger [100], where different laptop
configurations are evaluated according to two features, battery life and processor speed. Four items x1,x2,x3, and x4
have the following feature values:

x1 = (0.05, 1), x2 = (0.5, 0.6), x3 = (0.6, 0.5), x4 = (1, 0.05).

Note that x2 and x3 are more “moderate” options while x1 and x4 are “extreme.” Utility is assumed to be linear, so
u(x; w) = w[1]x[1] + w[2]x[2] for utility function w = (w[1],w[2]).

We consider an extreme situation where only two user types/profiles are possible: video editors, who want maximum
raw power and do not care about battery life, and have utility weights w1 = (0, 1); and executive travellers, who care
only about battery life, with weights w2 = (1, 0). The prior over the two user types is uniform. Under this prior, we
have the following expected utilities:

Alternative x1 x2 x3 x4

EU 0.525 0.55 0.55 0.525

The best alternatives are x2 and x3, both achieving EU∗ = 0.55.
Under noiseless response, EUS for all two-item recommendation sets is as follows:

Recommendation/Query Sets

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}

EUSNL 0.75 0.8 1.0 0.6 0.8 0.75

The set {x1, x4} is the best according to the EUS criterion—indeed, since there are only two realizable utility profiles,
the best 2-set must include the optimal item for each user type. Notice that neither x2 nor x3, the items achieving EU∗

for single-item recommendations, belong to the EUS-maximizing 2-set. This illustrates that recommending the top k
items w.r.t. (individual) expected utility is generally suboptimal as a recommendation set (a point made in [100]). In
this example the set {x2, x3} has very low EUS = 0.6.

Greedy optimization of the 2-set using EUS—see Section 4.7 below for details—will select x2 or x3 as first
element, and then select x4 (resp., x1) as second element as these provide the maximal increase EUS conditional on
x2 (resp., x3) being the first item, therefore obtaining EUS = 0.8—a greater value than the top-k approach.

When treating 2-sets as queries, since there are only two feasible utility functions, any set of two elements has
EPU = 1 (hence, EVOI = 0.45), as any such query will rule out one of the two utility functions and allow immediate
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Recommendation/Query Sets

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}

EUSNL 0.683 0.717 0.841 0.584 0.716 0.684
EPUNL 0.841 0.841 0.841 0.841 0.828 0.828
EVOINL 0.29 0.29 0.29 0.29 0.277 0.277

Table 4: EUS and EPU values of all the possible pairs of items under noiseless responses (Example 3)

identification of the item with highest utility. It is also easy to see that applying TNL to any pair of distinct items will
converge to the optimal set {x1, x4} in one step.

Suppose we introduce a third user type, balanced users with utility weights w3 = (0.52, 0.48), and assume that all
three types have the same prior probability. Notice that under w3 we have x3 � x2 � x4 � x1. With this change in
prior distribution, item x3 is optimal with EU∗ = 0.551. Under noiseless responses, EUS and EPU for all two-item
recommendation/query sets are shown in Table 4; the optimal 2-set as both recommendation and query set is {x1, x4}

with EVOI = 0.29; several other 2-sets achieve maximal EVOI without being an optimal recommendation set. Notice
that EVOI does not improve expected posterior utility to 1—unlike the two-profile case, the answer to a query of size
two cannot fully discriminate between w1,w2 and w3. We note also that the application of TNL to any pair returns the
optimal set {x1, x4}.

Considering recommendation and query sets of size three, optimal 3-set is clearly {x1, x3, x4}—the set consisting
of the three items that are optimal with respect to w1, w2 and w3. It has EUS and EPU of 0.851 (and EVOI = 0.30).
The application of operator T to any triplet, other than {x1, x2, x3}, immediately yields the optimal set {x1, x3, x4}.
Interestingly, TNL({x1, x2, x3}) = {x1, x4} gives a resulting set of lesser cardinality since x2 is strictly less preferred
than x1 and x3 for each of w1,w2,w3 (cf. Definition 19).

Usually we are not given an explicit enumeration of a finite set of valid utility functions (as in the example above).
More often utility parameters belong to a (bounded) continuous space, as in the next example.

Example 4 We reconsider the Example 1, used in Section 3.4 to illustrate minimax regret, in the Bayesian context.
Item feature values are recalled in the table below, along with expected utilities. We assume utility function u(x; w) =

w · (x[1] − x[2]) + x[2], with w ∈ [0, 1], and a uniform utility prior w ∼ U[0, 1].

xi[1] xi[2] EU

x1 0.35 0.68 0.515
x2 0.9 0.2 0.550
x3 0 0.75 0.375
x4 1 0 0.500
x5 0.5 0.3 0.400

The best recommendation under this prior (with no elicited preferences) is x2 and EU∗ = 0.55.

Table 5 shows EUS, EPU and (myopic) EVOI under noiseless responses for all 2-item sets. The optimal recom-
mendation set is {x1, x4}, which is also the optimal query set, with myopic EVOI = 0.124. Note that EUSNL({x1, x4}) =

EPU({x1, x4}) as guaranteed by Theorem 25.
The result of applying the operator T (assuming noiseless responses) to any of the pairs above is as follows:

Set S {x1, x2} {x1, x3} {x1, x4} {x1, x5} {x2, x3} {x2, x4} {x2, x5} {x3, x4} {x3, x5} {x4, x5}

TNL(S ) {x1, x4} {x2, x3} {x1, x4} {x1, x4} {x1, x4} {x1, x4} {x2, x3} {x1, x4} {x1, x4} {x1, x4}
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Recommendation/Query Sets

{x1, x2} {x1, x3} {x1, x4} {x1, x5} {x2, x3} {x2, x4} {x2, x5} {x3, x4} {x3, x5} {x4, x5}

EUSNL 0.662 0.521 0.674 0.536 0.654 0.567 0.560 0.661 0.507 0.556
EPUNL 0.672 0.622 0.674 0.646 0.662 0.658 0.631 0.669 0.673 0.662
EVOINL 0.123 0.072 0.124 0.096 0.112 0.108 0.081 0.119 0.123 0.112

Table 5: EUS and EPU values of all the possible pairs of items under noiseless responses (Example 4)

Recommendation/Query Sets

{x1, x2} {x1, x3} {x1, x4} {x1, x5} {x2, x3} {x2, x4} {x2, x5} {x3, x4} {x3, x5} {x4, x5}

RC with “medium” noise (β = 0.1)
EUSC 0.636 0.506 0.641 0.520 0.616 0.558 0.543 0.616 0.483 0.535
EPUC 0.639 0.599 0.641 0.618 0.633 0.628 0.607 0.637 0.640 0.633
EVOIC 0.089 0.049 0.091 0.068 0.083 0.078 0.057 0.087 0.090 0.083

RL with “medium” noise (γ = 10)
EUSL 0.647 0.502 0.662 0.517 0.643 0.546 0.542 0.651 0.490 0.539
EPUL 0.653 0.597 0.662 0.606 0.652 0.584 0.604 0.662 0.650 0.635
EVOIL 0.103 0.047 0.112 0.056 0.102 0.034 0.054 0.112 0.100 0.085

RL with “very high” noise (γ = 1)
EUSL 0.555 0.454 0.544 0.467 0.512 0.527 0.486 0.502 0.406 0.466
EPUL 0.555 0.550 0.560 0.550 0.564 0.550 0.550 0.570 0.553 0.550
EVOIL 0.005 0 0.010 0 0.014 0 0 0.020 0.003 0

Table 6: EUS and EPU values of all the possible pairs of items under noisy responses (Example 4).

The set {x1, x4} is the only fixed point in this example. Query iteration converges to the best set {x1, x4} in at most 2
steps. For instance, starting from {x1, x3}, the application of T leads to the set {x2, x3}, and from the latter, another
application of T gives {x1, x4}.

We now consider noisy responses and show EUS and EPU for all 2-sets in Table 6. For the constant noise model
RC , we assume β = 0.1, and consider two cases, γ = 10 (“mildly noisy”) and γ = 1 (“very noisy”), in the logistic
noise model RL.

With constant noise, {x1, x4} is the optimal recommendation set and is optimal as a set query (with respect to
EPUC) as guaranteed by Theorem 29. Notice, as expected, its values are lower than with the noiseless response
model.

Set {x1, x4} is again optimal in the logistic model with “mild” noise γ = 10, both as a recommendation set and a
query set. The loss due to noise is EUSNL({x1, x4})−EUSL({x1, x4}) = 0.012 < ∆̂k ≈ 0.027, according to Theorem 31.
Set {x2, x4} has the greatest loss (∆(S ; θ) = 0.021) with respect to noiseless responses.

In the logistic model with “high” noise γ = 1, set {x1, x2} is optimal with respect to EUSL while the set {x3, x4} is
the optimal query with respect to EPUL. If we consider the pair {x1, x2}, its loss EUSNL({x1, x2}) − EUSL({x1, x2}) =

0.107 is, of course, less than the worst-case bound ∆ ≈ 0.279 offered by Theorem 31. We also verify Theorem 36:
EPU∗L −EUS∗L = EPUL({x3, x4}) − EUSL({x1, x2}) = 0.015 < 0.279. Finally note that the best set under noiseless
responses RNL is also a good set in this setting: {x1, x4} as a recommendation set is second-best, worse than the
optimal set {x1, x2} by only 0.011. Interestingly, it is better than the latter as a query—in fact it is within 0.010 of the
optimal query set. We note that EVOIL in the high-noise logistic model is quite small, with some query pairs having
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zero value of information, due to the rather significant impact of such extreme noise.

4.7. Algorithms

We now provide algorithms for computing recommendations sets with the Bayesian uncertainty model. We first
consider the computational complexity of exact optimization of recommendation sets. Price and Messinger [100]
analyze the complexity of EMAX—a setwise decision criterion that is formally equivalent to EUSNL—with respect
to set size k and show that the optimization of a recommendation set is NP-complete from this point of view. Since
optimization of EUS with a noisy response model is a more general problem, the optimization remains intractable
with respect to k.

By contrast, in this work, we are interested in computation time with respect to the number of available choices,
and treat k as a small constant (e.g., single digits).6 We believe this is a more practically relevant perspective, since
most recommender systems have constraints on the number of items that can be “comfortably” be displayed, presented
or recommended to a user in single slate— hence k will be typically be small. However, the number of items available
from which to choose when making such a recommendation will often be in the dozens, hundreds, or many thousands.
As such, tractability relative to the size of the candidate set is of more practical importance.

We develop several algorithmic strategies for the optimization of query/recommendation sets in this section, and
analyze their theoretical and computational properties. In what follows, |X| = n is the number of candidate options, k
the size of the query/recommendation set, and l is the “cost” of Bayesian inference (e.g., the number of particles in a
Monte Carlo sampling procedure).

Exact Methods. The naı̈ve maximization of EPU is more computationally intensive than EUS-optimization, and is
generally impractical. Given a set S of k elements, computing EPU(S , θ) requires Bayesian update of θ for each pos-
sible response, and expected utility optimization for each such posterior, with complexity O(nkl). Query optimization
requires that we compute this for

(
n
k

)
possible query sets of size k. Consequently, naı̈ve EPU maximization has a

worst-case running time of O(nk+1kl).
Exact EUS optimization by iterating over all possible subsets of size k, while still quite demanding, is “only”

O(nkkl) as it does not require EU-maximization in updated distributions. Theorem 25 allows us to compute optimal
query sets using EUS-maximization under RC and RNL, reducing complexity by a factor of n. Under RL, Theorem 36
allows us to use EUS-optimization to approximate the optimal query, with a quality guarantee of EPU∗ −∆̂.

Greedy Optimization. A simple greedy algorithm can be used to generate a recommendation set of size k by iteratively
adding the option x′ offering the greatest improvement in value:

x′ ∈ arg max
x∈X

EUSR(S ∪ {x}; θ).

Since EUS is submodular (Theorem 19) the greedy algorithm determines a near-optimal set with worst-case guar-
antees in the case of noiseless responses.

Theorem 37 Under RNL the greedy algorithm determines a set with both EUS and EPU that are within η = 1− ( k−1
k )k

of the optimal value EUS ∗ = EPU∗.

Proof. This follows directly from the fact that EUS is monotone and submodular (Theorem 19) and from the seminal
results of Nemhauser, Wolsey and Fisher [96]. Theorem. 25 again allows us to use greedy maximization of EUS to
determine a query set with similar guarantees. �

6When larger sets are displayed, they are often organized into categories, topics, “shelves,” or the like, which we view as very different than
an unstructured set recommendation. Similarly, while scrolling interfaces one can be interpreted as presenting a recommendation set of dynamic,
and potentially large, size to a user, we also view this as having more structure than a simple recommendation set, since the act of scrolling over
(skipping) recommendations early in a dynamic set provides information that can be used to dynamically reset the choice of subsequent items that
appear later.
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This bound is 75% for comparison queries (k = 2) and at worst 63% as k → ∞.
For RC , EUSC is submodular but not monotone. One can apply a randomized greedy optimization algorithm (with

the same running time as greedy) [28], with a worst-case bound of 1
e that holds in expectation with respect to the

internal randomness of the algorithm.

Theorem 38 Under RC the randomized greedy algorithm determines a set with both EUS and EPU that are within 1
e

of the optimal value EUS ∗ = EPU∗.

The proof follows by a direct application of the result of Buchbinder et al. [28].
Under RL, EUSL is no longer submodular. However, noiseless optimization is effective even when evaluated in

a noisy setting. We derive a bound on the EUS of the greedy set when evaluated in a setting with logistic response
noise. Similarly, we derive a worst-case bound for EPU with respect to greedy EUS-optimization.

Theorem 39 Greedy maximization of EUSNL gives near-optimal recommendation/elicitation sets under logistic re-
sponse noise. Specifically, Let S g be the set determined by greedy optimization of EUSNL. Then

EUSL(S g)
EUS∗L

≥ η −
∆̂k

EUS∗NL
and

EPUL(S g)
EPU∗L

≥ η −
∆̂k

EUS∗NL
,

where η = 1 − ( k−1
k )k.

Proof. Lemma 33 and Theorem 31 allow us to use EUSNL, which is submodular, as a proxy. By Theorem 37,
η · EUS∗NL ≤ EUSNL(S g) ≤ EUS∗NL; we also have EUS∗L ≤ EUS∗NL. Applying Theorem 31 to S g gives: EUSL(S g) ≥
EUSNL(S g) − ∆̂k. Thus, we derive

EUSL(S g)
EUS∗L

≥
η · EUS∗NL −∆̂k

EUS∗L
≥
η · EUS∗NL −∆̂k

EUS∗NL
≥ η −

∆̂k

EUS∗NL
. (82)

Similarly, for EPU, we use the fact that EUS is a lower bound for EPU, Observation 20, Theorem. 31 and Lemma 35
and Theorem. 25:

EPUL(S g)
EPU∗L

≥
EUSL(S g)

EPU∗L
≥
η · EUS∗NL −∆̂k

EPU∗NL
=
η · EUS∗NL −∆̂k

EUS∗NL
≥ η −

∆̂

EUS∗NL
. (83)

�

Greedy maximization of S w.r.t. EUS is extremely fast, O(k2ln). Most critically, it is linear in the number of options
n, requiring just O(kn) evaluations of EUS, each with cost kl.

Lazy greedy EUS optimization. In addition of providing strong worst-case guarantees on the quality of the approxi-
mation, submodularity allows us to use a speedup known as lazy evaluation [93]). Given the current belief θ, we want
to produce a set of recommendations with greatest EUS. The greedy algorithm is such that, at each round, it picks the
element that maximizes EUS(S ∪ x; θ) or, equivalently, the greatest marginal benefit:

ρS (x) = EUS(S ∪ x; θ) − EUS(S ; θ). (84)

The greedy algorithm can be made more efficient using lazy evaluation. At round i+1 of the greedy maximization
of EUS, assume we have a set S i = {x1, .., xi}, and must add an i + 1st item xi+1 that maximizes EUS, xi+1 =

arg maxx EUS(S ∪ {x}). The submodularity of EUS implies that marginal benefits do not increase [82]. Specifically,
let S i and S j be the sets of size i and j, respectively, be generated by greedy optimization at steps i and j—if i ≤ j
then ρS i (x) ≥ ρS j (x). Therefore the values ρ can be stored and used as upper bounds on the marginal benefit of adding
items to the set.

The greedy algorithm using lazy evaluation (see, e.g., Minoux [93]) proceeds as follows:
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• The elements x ∈ X are maintained in a list sorted by their marginal gain ρ(x) relative to the current partial set.
Initially, this marginal benefit ρ∅(x) is simply its expected utility EU(x).

• At each round i with current set S i, we compute new marginal gain values ρS i w.r.t. S i starting with elements
x < S i−1 with highest ρS i−1 (x) and track the best value so far and its associated item y (note that each gain
computation requires computation of EUS). If at some point the prior stored gain ρS i−1 (x) of the current item is
less than the current best gain ρS i (y), then we do not evaluate the updated gain ρS i (x), as it is necessarily less
than than its prior value, and therefore less than the gain of y, i.e., ρS i (x) ≤ ρS i−1 (x) < ρS i (y). This holds for
all items ranked lower than x w.r.t. prior gain ρS i−1 , so we stop the search and add item y to the set S as its ith
element. Item y is removed from the list, which is resorted for the next iteration.

• We repeat until we obtain a set of size k.

In practice, often very few evaluations of EUS will be required at each iteration of greedy set construction (apart from
the first round at which expected utilities for all candidate items is computed).

Query Iteration. The T transformation (Definition 19) gives rise to a natural heuristic method for computing good
query/recommendation sets. This method, query iteration (QI), starts with an initial set S , and locally optimizes S by
repeatedly applying operator T (S ) until EUS(T (S ); θ)=EUS(S ; θ). QI is sensitive to the initial set S —different initial
sets can lead to different fixed points. We consider several initialization strategies:

• Random: randomly choose k options.

• Sampling: first add x∗(θ), the item with highest expected utility, to S . Then add the remaining k−1 items xi, 2 ≤
i ≤ k as follows : sample utility/weight vector wi ∼ P(w; θ), and add the optimal item xi = arg maxy∈X u(y; wi)
to S , enforcing, via rejection and resampling, that xi is strictly better than all x1, . . . , xi−1 under wi.7

• Greedy: initialize with the set S g obtained by simple greedy optimization of S (see above).

We can bound the performance of QI relative to optimal query/recommendation sets under both RNL and RC . If
QI is initialized with S g, performance is no worse than greedy optimization. If initialized with an arbitrary set, by
submodularity we have:

EU∗(θ) ≤ EUS∗(θ) ≤ k EU∗(θ).

The condition S ∈ τ(S ) implies EUS(S ; θ) = EPU(S ; θ). Also note that, for any set Q, EPU(Q; θ) ≥ EU∗(θ). Thus,
EUS(S ; θ) ≥ 1

k EUS∗(θ). This means for comparison queries (|S | = 2), QI achieves at least 50% of the optimal
recommendation set value. This bound is tight and corresponds to the singleton degenerate set S d = {x∗(θ)}. This
solution is problematic since T (S d) = S d and has EVOI of zero. Note that S d is the only singleton that is a fixed point:

Observation 40 S d is the only set with cardinality one that is a fixed point S d ∈τ(S d).

Proof. Applying T to any singleton is essentially a standard maximization of expected utility given the current belief,
yielding S d. �

By contrast, under RNL, QI with sampling initialization avoids this fixed point provably by construction, always
leading to a query set with positive EVOI. In fact, to avoid S d, the initialization set S 0 is required to be such that
EUS(S 0; θ) > EU∗(θ). Note that EUS(S d; θ) = EU∗(θ) so query iteration (Lemma 23 and Corollary 24) guarantees
that

EUS(T (S 0); θ) ≥ EUS(S 0; θ) > EU∗(θ) = EUS(S d; θ).

Thus, this optimization can never be trapped in the degenerate solution. Sampling initialization, in particular, meets
this condition: the sampling procedure is such that each item contributes positively to EUS under noiseless response.

7Note that this may impossible if fewer than k items are optimal over all w ∈ W. Moreover, the procedure may be slow if, when adding the ith
item, a prior item x1, . . . , xk−1 is optimal for almost all w ∈ W. In practice, one can set a maximum number of attempts, and return a set of lower
cardinality if all attempts fail.
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Asymptotic running times

General utility model Linear utility model

EPU optimization O(nk+1kl) O(nk+1k)
EUS optimization O(nkkl) O(nkk)
Greedy EUS optimization O(nk2l) O(nk2)
Query iteration O(nkl) O(nk)

Table 7: Summary of running times of various set optimization methods.

Observation 41 Query iteration with sampling initialization converges to a non-degenerate set.

The worst-case running time of an iteration of QI is O(nkl). Specifically, it is linear in the number of options,
similar to greedy optimization. However, in practice, it is much faster than greedy since typically k � l. While we
have no theoretical results that limit the number of iterations required by QI to converge, in practice, a fixed point is
reached in very quickly, as we demonstrate in our experimental results below.

Efficient computation in linear utility models. In a linear utility model, expected utility can be determined by comput-
ing the expectation of the utility parameters and treating these expectations as if they represent the true utility function.
When u(x; w) = w · x, where w is a vector of weights and x is a vector of numerical features, we have:

EU(x; θ) =

∫
w

u(x; w)P(w; θ) dw =

∫
W

w·x P(w; θ) dw = x·
∫

W
wP(w; θ) dw = Eθ[w]·x. (85)

This simplifies a number of computations. Denoting w̄ = Eθ[w] =
∫

w wp(w; θ)dw, the expected utility of an option
x can be computed with a dot product, EU(x; θ) = w̄ · x. Similarly, for computing EUS of a set S , we can substitute
EU(x; θ|S  x) with Eθ|S x[w] · x (where Eθ|S x[w] is the expectation of the weight parameters with respect to
posterior θ|S  x), giving:

EUSR(S ; θ) =
∑
x∈S

PR(S  x; θ) EU(x; θ|S  x) =
∑
x∈S

PR(S  x; θ)Eθ|S x[w]·x. (86)

This has implications for the running times of our proposed algorithms for generating sets. With a linear model,
evaluation of EPU for a set S becomes O(nk + lk) = O(nk), since we are interest in the running time with respect to
n (viewing k and l as constant), and naı̈ve optimization of EPU becomes O(nk+1k). Greedy maximization for a linear
model with respect to EUS becomes even faster, O(nk2), still linear with respect to n but with a smaller constant.
Query iteration with a linear model has running time O(nk). Table 7 summarizes the running times of our proposed
algorithms.

5. Empirical Evaluation

In this section, we evaluate the various methods developed in Sections 3.5 and 4.7 for computing recommendation
and query sets, within both the regret-based and Bayesian frameworks. We begin in Section 5.1 by describing our
datasets and methodology. We present experiments with optimization and elicitation using our minimax-regret-based
algorithms in Section 5.2, while Section 5.3 describes our results using our Bayesian optimization and elicitation
techniques.

5.1. Datasets and Methodology
We test our algorithms by simulating the responses and choices of users with randomly-generated utility functions

over a variety of domains. We use four different datasets, three of which are small databases containing from 81 to
506 multi-attribute items, and the fourth of which is a family of randomly generated constraint-based configuration
problems.
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Synthetic A small synthetic dataset of 81 items, consisting of the full Cartesian product of four categorical features,
each with domain size three. This small dataset is useful because it allows the fast computation of optimal
recommendation sets using exact algorithms (something not feasible with larger datasets). This serves as a
valuable benchmark for assessing the quality of the recommendation/query sets generated by our approximation
algorithms.

Rental A database of 187 rental accommodation options, drawn from a real university student rental database. Each
option is characterized by ten features, such as price, size, distance to university, etc. Some feature domains are
numeric, both real-valued and integer (e.g., price, number of rooms); others are categorical with domains of size
2–6 (e.g., neighborhood). We assume an additive utility model in which utility over numeric attributes is linear.
Specifically, numeric features have a single (unknown) utility weight, while local utility over the categorical
domains are specified by a vector of weights on [0, 1], one per domain value. The least preferred domain value
has local value 0, and we assume that the local preference ordering of the domain values is known (e.g., that
“shared apartment” is less preferred than “studio apartment”), although it can differ among users.

Boston The Boston housing dataset8 contains 506 items with one binary and 13 real-valued features. Real-valued
features are pre-processed to lie within a common scale. We assume that user utilities are linear. We make no
assumption about whether high or low values are preferred, thus we allow weights to fall in the interval [−1, 1].

Configuration We generate random configuration problems as follows. We assume 15 binary attributes and assume
domain value 1 is preferred to 0 for each. For a specific problem instances, we generate 30 random feasibility
constraints, each obtained by sampling 2 to 6 attributes and imposing the feasibility constraint that at least one of
the attributes must take value 0. On average, random configuration problems generated this way have more than
5000 feasible solutions (i.e., possible items that can be recommended to or chosen by a user). We generate ten
random configuration problems, and test our optimization/elicitation methods on each configuration problem
using ten random users (utility functions), thus averaging results over 100 problem-user instances. We only test
regret-based elicitation on these configuration problems.

We test our algorithms by simulating the interaction with random users, that is, users with random utility functions
(i.e., weight vectors) suitable for the dataset/domain in question, drawn from some distribution. Users make choices
from a recommendation set or query set based on this underlying utility function, which is initially unknown, but
gradually estimated by the algorithm. In the Bayesian setting, user choice or query response may be subject to noise
using one of the noise models analyzed above. Results are averaged over 20–50 random users/utility functions.

Since our algorithms generate sets S that can be used as both recommendations and as set queries, we test our
set-construction techniques in a way that evaluates them simultaneously as recommendation and elicitation strategies.
Specifically, at each round t of interaction with a simulated user, a set is presented to the user, the user responds with
a choice, and the system updates its belief state given that response and moves on to round t + 1. We measure (using
actual utility, expected utility, or max regret) the quality of the best recommended item at each round. This provides
an “anytime” evaluation of the algorithm in question that can be interpreted in two ways. (1) We can view this as a
process that terminates after T rounds, with our results showing final decision quality for various values of T . (2) We
can view this as an anytime method in which the system, or the user, decides to terminate when they find the quality
of the selected item to be satisfactory (perhaps relative to the cost of further interaction).

We compare different algorithms on specific subsets of the domains above and compare them using recommen-
dation/query sets of multiple sizes k. We also examine the computation time of various algorithms in the more
computationally intensive Bayesian setting.

We consider several of our regret-based algorithms in the experiments below, including (see Section 3.5.2): setwise
chain of adversaries (SCAS), which is equivalent to the current-solution strategy (CSS) for sets of size k = 2; and
query iteration (QI) using SCAS as a seed (dubbed QI-SCAS). We also use the set with true setwise minimax regret
(SMMR) for small sets (k = 2). Finally, we consider the top-k strategy (dubbed regret-top-k), which selects the k
items with least max regret, and a random strategy which recommends or queries with k random items.

8http://lib.stat.cmu.edu/datasets/boston
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Figure 10: Setwise max-regret as a function of size k (synthetic dataset,
20 runs).
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Figure 11: Setwise max-regret as a function of size k (rental dataset,
20 runs).

In the Bayesian experiments, we consider the following algorithms (see Section 4.7): greedy optimization of
EUS with lazy evaluation (GreedyEUS), query iteration with sampling (dubbed QIsampling), and query iteration with
random initialization (dubbed QIrandom). In some experiments, we also consider the top-k strategy (dubbed EUtop-
k), which selects the k items with highest expected utility. In small problems, we also consider naı̈ve maximization
of EUS (shown as EUSopt in the figures), which computes the true optimal recommendation set. We also include the
random strategy as baseline.

5.2. Regret-based Recommendation and Elicitation

In this subsection, we assess the performance of our minimax-regret-based methods.

Setwise max regret and set size. Prior to exploring anytime elicitation performance, we first compare the ability of
different algorithms to generate good recommendation sets when they are given the same preferences as input. The
experimental set up is similar to that considered by [100]. We also explore the degree to which setwise max regret
SMR changes as a function of recommendation/query set size k. (By Observation 2, of course, we know larger sets
have lower SMR.) Figures 10 (synthetic data set) and 11 (rental dataset) plot SMR for different values of k for four
algorithms: SCAS, QI-SCAS, top-k and Random. Evaluation of SMR is based on the recommendation set generated
after the user has responded to five queries.

We see that, even when considering the same input preferences, there can be large differences in quality of the
recommendation sets. While top-k generates good recommendation sets, these are generally suboptimal. Not surpris-
ingly, SMR drops with increasing set size for each method, but it drops more quickly with SCAS and QI-SCAS than
with the others. Furthermore, both SCAS and QI-SCAS yield lower SMR than top-k across the entire range of set
sizes, but perform similarly in these two domains. Random performs quite poorly.

Incremental elicitation in database problems. We next evaluate the elicitation and recommendation performance of
our regret-based setwise strategies by examining the reduction in minimax regret as elicitation proceeds, specifically,
as a function of the query round t. The (single-item) minimax regret at round t corresponds to the final recommenda-
tion in the case that elicitation stops at round t; in other words, we assume the system provides a final recommenda-
tion when elicitation is terminated. We perform this evaluation on all three datasets and vary the number of options
k. Apart from minimax regret, we also measure true regret, that is, the user’s true utility for the minimax-optimal
recommendation relative to the true optimal item with respect to the user’s true utility.

Minimax regret is an upper bound on true regret; indeed, the recommender may recommend the optimal option to
a user long before it can “prove” that the recommended item is optimal. Of course, the recommender cannot actually
determine this true regret (unless max regret is zero), but we illustrate it here to give an indication of the performance
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Figure 12: Minimax regret reduction (k = 2, synthetic dataset, 30
runs).

0 5 10 15 20 25 30 35 40 45 50

number of queries

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
in

im
a

x
 r

e
g

re
t

SMMR

QI-SCAS

SCAS

random

Figure 13: Minimax regret reduction (k = 2, rental dataset, 30 runs).
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Figure 14: Minimax regret reduction (k = 3, rental dataset, 50 runs).
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Figure 15: True regret (k = 3, rental dataset, 50 runs).
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Figure 16: Minimax regret (k = 5, rental dataset, 50 runs).
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Figure 17: True regret (k = 5, rental dataset, 50 runs).
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Figure 18: Average true regret vs. minimax regret (SCAS, k = 3,
Boston dataset, 30 runs).
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Figure 19: Average true regret vs. minimax regret (SCAS, k = 6,
Boston dataset, 20 runs).

of each algorithm relative to a user’s true preferences. In the following experiments, the parameters of the true utility
function are sampled uniformly at random (we sample each parameter i.i.d. between the lower and upper bound).

We first consider the synthetic dataset of 81 items and recommendation sets of size k = 2—the small set size per-
mits exact computation of SMMR. Figure 12 plots minimax regret of as function of the elicitation round, comparing
SMMR, QI-SCAS, SCAS/CSS9 and random. While SMMR is effective up to the 20th query, it gradually trails QI.
We conjecture that the “dense” nature of this specific dataset (where each combination of feature values is feasible)
makes it somewhat harder for SMMR to generate good sets, since there may often be ties (i.e., sets with the same
SMR), making it difficult to discriminate among more or less informative sets. Interestingly, QI performs somewhat
better than both SCAS/CSS and SMMR: by optimizing each element of the S -cover, QI improves not only WR, but
apparently also the a posteriori regret given any answer to a query.

Figure 13 shows the same evaluation using the Rental dataset. While SMMR is optimal, both SCAS and QI offer
very good approximations, and are much more computationally efficient. For this reason, we focus on SCAS and QI
in the remaining experiments.

We next compare the QI-SCAS, SCAS and Random on the Rental dataset using larger set sizes k = 3 and k = 5,
and also evaluate top-k for k = 3. For k = 3, Figures 14 and 15 plot minimax regret and true regret; and for k = 5,
Figures 16 and 17 do the same. Both regret-based query strategies, Q-SCAS and SCAS, perform similarly. Each
reduces max regret very quickly, reaching zero minimax regret in about 35 queries on average (resp., 20) when k = 3
(resp., k = 5). True regret reaches zero significantly faster, after roughly 25 (resp., 10) queries. In the k = 3 case,
top-k does a relatively poor job of reducing minimax regret, performing no better than Random for the first 35 rounds
and requiring 50 queries on average to reach zero minimax regret. Its recommendations do have relatively low true
regret—though this cannot be known to the recommender—but it still lags the regret-based methods on this metric
as well. The benefits of reasoning explicitly about the “joint value” of a set (either as a recommendation or a query)
rather than focusing on the individual items is evident in this comparison with top-k.

Finally, we test SCAS and random on the Boston Housing dataset using k = 3 (see Figure 18) and k = 6 (see
Figure 19). The anytime performance of the algorithm with respect to minimax regret and true regret is similar to the
Rental domain.

Elicitation in configuration problems. We next examine regret-based elicitation strategies in the configuration setting.
We compare SMMR (using the mixed integer program of Equations 24-31), SCAS and QI-SCAS with Random.
Figures 20 and 21 show the minimax regret after each round of elicitation for set sizes k = 2 and k = 5, respectively.
SMMR is tested only when k = 2 since it is too computationally intensive when k = 5 (see results on computation

9When k = 2, CSS and SCAS are identical.
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Figure 20: Max regret reduction in configuration problems (k = 2; 100
total runs)
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Figure 21: Max regret reduction in configuration problems (k = 5; 100
total runs)
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Figure 22: EUS wrt set size (rental dataset, 30 runs, RNL)
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Figure 23: EUS wrt set size (rental dataset, 30 runs, RL with γ = 1.5)

time in Table 8). When k = 2, SMMR outperforms QI-SCAS and SCAS over the first 30 rounds, at which point the
two heuristics both match, then improve, minimax regret relative to SMMR. When k = 5, QI-SCAS and SCAS have
very close performance.

Computation time. We compare the computation times of the different optimization methods in Table 8. In the case
of configuration problems, we use the integer programming formulation developed in Section 3.5.1. Unsurprisingly,
the optimal method SMMR is only feasible for very small k; in database problems, k = 3 is infeasible, and even
for configuration problems k = 3 is challenging enough to make SMMR impractical for interactive elicitation. Both
SCAS and QI-SCAS are quite practical, with SCAS being fast enough across all problems to support the real-time,
interactive optimization required to drive preference elicitation. Given the negligible differences in recommendation
set and query quality between SCAS and QI-SCAS, this would suggest that SCAS is most promising, at least in the
domains tested here.

5.3. Bayesian Recommendation and Elicitation

In this subsection, we assess the performance of our Bayesian methods.

Page 53



Paolo Viappiani and Craig Boutilier. Optimal Recommendation Sets.

Computation Times

dataset k (set size) SMMR QI SCAS

synthetic 2 19.47 0.78 0.31
synthetic 3 - 1.92 0.40
synthetic 5 - 5.49 0.36
synthetic 7 - 12.53 0.48

rental 2 37.52 1.93 0.69
rental 3 - 1.32 0.34
rental 5 - 1.66 0.46
rental 7 - 2.68 0.69

boston 2 277.33 2.81 0.72
boston 3 - 2.99 1.10
boston 5 - 20.40 2.12
boston 7 - 11.34 3.35

configuration 2 0.75 0.40 0.10
configuration 3 39.07 0.64 0.13
configuration 5 742.07 1.15 0.20
configuration 7 - 1.67 0.36

Table 8: Average computation times (in seconds) of different strategies for generating recommendation sets in the regret-based framework.

EUS computation and set size. As in the regret-based setting, we first evaluate the ability of our algorithms to generate
good recommendation sets. For this task, we compare the expected utility of selection EUS of the recommended
sets when considering the same input preferences for all methods (and therefore the same belief θ) We analyse the
impact of the size of the recommendation set, varying k from 2 to 7, on EUS in the Rental dataset (187 items).
Figure 22 shows EUS as a function of set size, assuming a noiseless response model, for several of the Bayesian
recommendation heuristics as well as the Random strategy. EUS is shown for the recommendation sets generated
after the user has provided five preference statements. Figure 23 shows the same results when responses have logistic
noise with γ = 0.33. EUS is not monotone in k with such noisy responses: indeed, notice that EUS of the greedy
method reaches its maximum value when k = 8 and slowly decreases after that. Similarly, EUS obtained by the
other methods quickly improves for small values of k but then stalls when k is greater than 10 to 12. Using randomly
generated queries, EUSL when k = 2 is on average less than the expected utility of the current best recommendation;
this is not surprising, since Random will often add “uninteresting” elements with low utility to the recommendation
set—with response noise, these are selected by the user with some non-trivial probability, lowering the expected utility
of the set.

Incremental elicitation with noiseless responses. We next compare the elicitation/recommendation strategies on rec-
ommendation problems with random user utility functions assuming noiseless user response. We use two methods to
sample utility functions: 1) uniformly distributed parameters; and 2) normally distributed utility parameters. In each
case, each parameter is sampled i.i.d. We assume that the Bayesian recommender system is given the correct prior,
hence, the initial belief θ corresponds to the sampling distribution.

Bayesian inference is realized using Monte Carlo with importance sampling, with particle weights determined
by applying the response model to observed user responses. (We describe the method in general, which applies to
noisy response models as well, as examined below.) To overcome the problem of particle degeneration (i.e., the
fact that particles tend to eventually evolve to have low or zero weight), we use slice sampling [95] to regenerate
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Figure 24: Average true regret (rental dataset, k = 2, RNL, uniformly
distributed utilities; 30 runs).
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Figure 25: Average true regret (rental dataset, k = 2, RNL, normally
distributed utilities; 30 runs).
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Figure 26: Average true regret (rental dataset, k = 3, 30 runs, RNL,
uniformly distributed utilities; 30 runs).
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Figure 27: Average true regret (rental dataset, k = 5, RNL, normally
distributed utilities; 30 runs).
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dataset γ (noise) average-∆ min-∆ max-∆ bound ∆̂

synthetic 1 0.1644 0.1256 0.1827 0.2785
synthetic 10 0.0092 0.0074 0.0129 0.0278
synthetic 30 0.0011 0.0008 0.0017 0.0093

rental apt 1 0.1692 0.0052 0.2393 0.2785
rental apt 10 0.0087 0.0019 0.0238 0.0278
rental apt 30 0.0011 0.0001 0.0074 0.0093

boston housing 1 0.1653 0.0300 0.2184 0.2785
boston housing 10 0.0027 0.0007 0.0208 0.0278
boston housing 30 0.0003 0.0001 0.0061 0.0093

Table 9: Actual loss values of pairs (i.e. k = 2) compared to the bound on maximum loss.

particles w.r.t. the response-updated belief state θ whenever the effective number of samples drops significantly (50000
particles were used in our simulations). Figures 24 (with uniformly distributed utility parameters) and Figure 25
(normally distributed utility parameters) show the average loss of our strategies in Rental dataset with k = 2. Greedy
optimization performs almost as well as exact optimization, and the optimal item is found in roughly 10–15 queries.
Query iteration performs reasonably well, though not as well as Greedy. Initializing QI with sampling provides
slightly better performance than using random seeds.

In Figure 26 we show the result of incremental elicitation with choice queries of size three (k = 3). This experiment
includes EU-topk, the non adaptive strategy that selects the k items with highest expected utility. EU-topk performs
poorly in the early rounds but gradually catches up and performs on par with QI.

Figure 27 shows experimental results with k = 5 with normally distributed utility parameters. In this setting,
QIsampling performs particularly well and is almost as good as GreedyEUS; we noticed a similar pattern in other
tests (unreported) with normally distributed parameters. We attribute this to fact that, with an informative prior, the
sampling initialization can focus the search in more promising query sets.

Bound of the logistic noise response model. Using the Rental dataset, we compare the actual values of EUSNL(S ) −
EUSL(S ), the loss due to logistic noise, with the worst-case bound of Theorems 30 and 31. Table 9 shows the average,
minimum and maximum loss over all pairs of items in the dataset. The last column displays the bound ∆̂ provided by
Theorem 31. Apart from verifying our theoretical results, the table demonstrates that the loss due to response noise is
often much lower than the bound in practice.

Elicitation with logistic noise. We now examine elicitation performance under logistic response noise, and assess the
impact of the temperature parameter γ, specifically, testing γ = 20 (“low” noise) and γ = 5 (“high” noise). We test
Greedy, QI with both sampling and random initial seeds, and Random. In these experiments. Greedy is optimized
“assuming” noiseless responses, but is evaluated using the true response model RL (other experiments, not reported,
show no advantage in optimizing EUSL).

Figures 28 and 29 show results on the Rental dataset. We see that, in both cases, QI with sampling performs
significantly better than QIrandom and almost as well as GreedyEUS. “High” noise delays convergence of elicitation
in finding the true best item to some extent: GreedyEUS converges to the optimal item in five rounds when γ = 20,
but needs about 12 rounds when γ = 5; similarly, QIsampling needs 8 and 10 rounds, respectively.

The Boston housing dataset is examined in Figures 30 (low noise) and 31 (high noise). While all query strategies
are effective in the low-noise scenario (average loss is zero or negligible after 10 rounds), in the high-noise scenario
we see that the average loss of GreedyEUS, after having decreased considerably, fails to reach 0 before the end of
the simulation (upon inspection, we notice that GreedyEUS usually converges to true best items, but stalls with a
suboptimal item on a small number of runs). In this setting, however, query iteration performs quite well, in particular
QIsampling.
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Figure 28: Average true regret in “low” noise scenario (rental dataset,
k=3, RL, γ = 20, uniformly distributed utilities; 20 runs).
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Figure 29: Average true regret in “high” noise scenario (rental dataset,
k=3, RL, γ = 5, uniformly distributed utilities; 20 runs).
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Figure 30: Average true regret in “low” noise scenario (Boston dataset,
k=2, RL, γ = 20, uniform utilities; 20 runs).
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Figure 31: Average true regret in “high” noise scenario (Boston
dataset, k=2, RL, γ = 5, uniform utilities; 20 runs).

Overall, these experiments show that (greedy or approximate) maximization of EUS is often able to find good
query sets even in the case of noisy responses. However, the lack of convergence of GreedyEUS in the last experiment
shows that the theoretical guarantees of (greedy) EUS maximization may not be sufficient in practice. Given the strong
performance of QIsampling in noisy settings, we think that an investigation of query iteration and similar strategies
may be a promising direction for further research.

Computation times. Finally, we compare recommendation/query set optimization times of the different Bayesian
methods on the three database-oriented datasets in Table 10. Among our strategies, QI is certainly most efficient
computationally, and is best suited to large outcome spaces. Interestingly, QI is sometimes faster when initialized
using sampling rather than random seeds because it needs fewer iterations to converge (due to the rejection involved
in the random initialization). Note that this table shows only the computation time for generation of the recommen-
dation/query sets themselves, and does not include the time needed for Bayesian inference (updating the posterior
given a user response). In our simulations, Bayesian updates with importance sampling resampling performs well,
requiring less than a second in all datasets. However, in our implementation of preference elicitation with simulated
users, every few steps (typically 4–8) we need to sample additional particles from the updated posterior in order to
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Computation Times

dataset k (set size) EUSopt greedyEUS QI(sampling) QI(random)

synthetic 2 1.22 0.03 0.01 0.01
synthetic 3 36.21 0.03 0.01 0.01
synthetic 5 289.21 0.04 0.01 0.02
synthetic 7 - 0.05 0.01 0.01

rental 2 2.55 0.06 0.01 0.01
rental 3 97.95 0.07 0.01 0.01
rental 5 - 0.08 0.01 0.02
rental 7 - 0.09 0.01 0.02

boston 2 41.26 0.06 0.01 0.01
boston 3 - 0.07 0.01 0.01
boston 5 - 0.10 0.01 0.01
boston 7 - 0.13 0.03 0.01

Table 10: Average computation times (in seconds) of different strategies for generating recommendation sets in the Bayesian framework.

avoid degeneracy. This is significantly slower (with 50000 particles the time needed is around 30–60s., depending on
the dataset).

6. Future Directions, Extensions and Related Work

In this work we consider the value of a set with respect to its capacity to “cover” the uncertainty associated with
a partially known user utility function. The underlying assumption is that the user is looking for a single item to
consume, purchase or use, and the quality of a recommendation set is related to the odds that at least one item in
the set has high utility for the user. It is important to note that other models consider recommendation sets under
a different semantics, for example, dealing with the problem of recommending a set that accounts for positive or
negative synergies between items [44, 60] .

One key advantage of our framework is that it supports anytime recommendations—our techniques can be used
to leave the decision to accept a current recommendation or engage in further elicitation in the hands of the user.
Indeed one of the motivations of this work is the need for interactive recommender systems that allow some form
of user-directed exploration of the item space. A possible application is to augment example-critiquing tools [134],
with principled utility-elicitation techniques. Of course, it is challenging to develop precise mathematical models for
open-ended user responses, such as critiquing a displayed example. Another interesting area of investigation consists
in elicitation methods for qualitative decision problems [15, 41].

One could consider alternative criteria, other than probabilistic methods or minimax regret as considered here,
for aggregating the uncertainty over the utility function. Maximin is one such criterion, in which one recommends
the item with greatest utility in the worst case [136, 112]. The use of maximin in the context of adaptive utility
elicitation is studied by [135], who present a similar connection between the optimality of a query and the optimality
of a recommendation set. However, maximin as a decision criterion is such that myopic optimization is often unable to
differentiate queries: since maximin is inherently pessimistic, in many cases no single choice query is able to improve
maximin utility in one step, and heuristic tie-breaking schemes are needed. This often renders incremental elicitation
ineffective.

While we focused on the notion of helping a user/decision maker identify her most preferred item from a wide
set of possibilities, our techniques can also be applied to collaborative-filtering based recommender systems. There
active elicitation might take the form of asking the user queries about the her ratings (as a proxy for utility) of different
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items (for instance, movies that the user is likely to have seen) [83]. In particular, EVOI-based queries may perform
better than techniques presented in [48] to select “rating queries” (asking the user to rate a set of movies); we refer to
[23] for one use of EVOI for elicitation in collaborative filtering domains.

In sequential problems, utility uncertainty takes the form of partially specified reward values in Markov decision
processes (MDPs) or reinforcement learning, where the system recommends a policy π, mapping states to actions.
Akrour et al. [5] apply our EUS criterion to the problem of selecting the best pair of trajectories to present to the user
for a comparison query. A noisy response model is considered where probability of error decreases linearly with an
increasing utility gap between the two trajectories. Regan and Boutilier [101] use minimax regret to explicitly elicit
MDP reward functions from users.

A recent active area of research is the automatic assessment of the weights of complex non-linear decision models,
in particular, rank-dependent aggregators as the Choquet integral [56, 55]. Eliciting or learning a utility model based
on the Choquet integral is challenging however because of the number of parameters that must be assessed, which
is exponential in the number of attributes. In particular, technical problems arise due to the number of constraints
required to assure monotonicity of the underlying capacity measure (a property deemed essential). The problem can
be relaxed by making additional assumptions. For instance, Tehrani et al. [121] restrict attention to Choquet models
determined by 2-additive capacities. Another approach limits attention to query types that are easy to handle—
[12] provides efficient computation and elicitation techniques based on minimax regret, at the cost of restricting to
comparison queries involving fictitious alternatives.

A number of important directions for future research remain. Further theoretical and practical investigation of
local search strategies such as query iteration is important. Another direction is the development of strategies for
Bayesian recommendation and elicitation in large-scale configuration problems, e.g., where outcomes are specified
by a constraint satisfaction problem, and for sequential decision problems (such as MDPs with uncertain rewards). It
is also interesting to study how to automatically learn user response models from preference data. We are interested
in the problem of preference elicitation when users have specific risk attitudes [65, 98]. We also believe that there is
potential value in elicitation strategies that combine probabilistic and regret-based models.

We now discuss connections to related works in machine learning. The last several years have seen a dramatic
shift to the use of deep neural network (DNN) models across machine learning, and for recommender systems in
particular. The move to DNNs has transformed recommender research and practice (e.g., recommendations for video
on YouTube [42], movies on Netflix [53], and music on Spotify [70]), allowing complex non-linear user behavior to be
modeled. Furthermore, multi-task models allow recommenders to predict not just user clicks, choices, or ratings, but
multiple aspects of a user’s response to a recommendation [129, 137, 42, 37] to predict user responses (e.g., content
engagement, likes or shares) to generate, score and serve recommended items.

Our general results on the relationship between optimal set recommendations and optimal choice queries are in-
dependent of the “representation” of user preferences or choice behvaior—for example, some DNN models can be
loosely interpreted as uncovering or constructing latent feature representations of items over which user utility (or
response behavior) is defined. Our general algorithmic techniques (e.g., query iteration) are also independent of the
particular form of the user utility model; but many of the concrete algorithms we propose assume, for example, linear
utility over item attributes. An important direction for future research is to develop tractable algorithmic methods
for computing key notions like setwise max regret, worst-case a posteriori regret, expected utility of selection, ex-
pected posterior utility, and expected value of information with DNN preference representations or utility models,
and especially adding uncertainty representations to such models. One direction might be to treat DNN hidden lay-
ers as domain features, and treating the last layer as a linear utility model, as proposed in recent work on Bayesian
exploration using DNNs [107].

A fair amount of work in recommenders has also begun to consider the impact that an entire sequence of recom-
mendations has on a user, especially (though not exclusively) in content-based recommendation where users generally
consume multiple recommended items over an extended period. As a consequence, the use of temporal models such
as hidden Markov models and recurrent neural networks [105, 31, 62, 109, 120, 141], and long-term planning using
reinforcement learning (RL) techniques (e.g., [116, 119, 51, 38]) is relevant. Very recently, work modeling the impact
of slates of recommendations on RL methods has been considered [144, 36, 68], providing an interesting lever for
engaging in direct preference elicitation. An important direction for future research is the integration of elicitation
techniques like ours—which involve inherently sequential interaction with users—into recent RL methods.

Elicitation techniques bear a natural connection to exploration-based methods such as those based on bandit
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algorithms [14], since both aim to uncover (or sharpen their estimates of) the value of a set of alternatives (e.g.,
items). Bandit methods have been proposed for recommender systems by a number of authors (e.g., [75, 138]); but
the nature of the interaction with users is generally different in bandit methods, which usually suggest items and
receive direct (possibly stochastic) feedback of the true value of the item suggested (in bandit parlance, of the arm
pulled). The algorithms are usually designed to minimize regret over the interaction horizon (or to identify the best
arm) and do not address the theoretical or practical questions we consider regarding the connection between “queries”
and “recommendations” as we do.

The recent literature on dueling bandits [4, 117] and related methods such as Bayesian optimization with compar-
ison feedback [39, 16, 54], bears a stronger connection to our work. These models generalize bandits and Bayesian
optimization by allowing pairwise feedback comparing two alternatives—which has higher value or is preferred—
rather than providing direct “values” or utilities. (As mentioned earlier, a pairwise comparison is equivalent to a
choice query of size k = 2.) Augmenting our analyses to study the regret and/or query complexity of our heuristic
elicitation schemes is of tremendous interest; we refer to Dragone et al. [46] for excellent progress in that direction.

While our emphasis in studying setwise recommendations was its connections to elicitation, considerable attention
has been paid to set-based recommendation in itself, especially work that explicitly tries to capture diversity in the set.
Apart from work discussed earlier, recent work on diversity includes the use of determinantal point processes [140].
Work on off-policy correction for slate recommendations is relevant to learning models of user responses from data
(e.g., [118, 36]).

More broadly, an interesting extension of our approach is the investigation of alternative user choice models, and
how they might impact our results. Parametric and semi-parametric models offer the greatest potential for formal
analysis, e.g., hierarchical extensions of the multinomial logit model, or cascade models [73, 43, 80] have proven
popular in the machine learning community to explaining user interactions with ordered lists of search results, recom-
mendations, search results, etc. (these are especially effective at capturing position bias). Recently, DNN, sequence
and autoencoder models have been developed for explaining user choice behavior in recommendation sets or lists in
a more general, non-parametric fashion [3, 9, 72]. Extending our analysis or empirical techniques to such general
models would be especially fruitful.

7. Conclusions

Assessing user preferences, either directly or indirectly, is a crucial task in many AI applications. Explicit prefer-
ence elicitation requires that one choose informative queries to quickly converge to good recommendations and limit
the cognitive cost imposed on users. Among the many possible types of queries, choice queries ask a user to indicate
which choice (item or product) is most preferred from a set of k options. Often a set of recommendations is presented
to the user, as showing a diverse set of recommendations increases the odds of recommending at least one item with
high utility to the user. Note that a set of items can also be presented to the user with the simultaneous goals of
recommendation and of elicitation.

In this article, we have provided a novel analysis of set-based recommendations in recommender systems, and
have shown how it is offers a tractable means of generating myopically optimal or near-optimal choice queries for
preference elicitation. We examined two frameworks, one based on minimax regret and the other on Bayesian decision
theory. These models offer a well-defined semantics for both set recommendation and choice queries. We developed
strong theoretical connections between set-based recommendations and queries in both settings that are strongly
analogous.

In the regret-based approach, we use minimax regret as a principled way to generate recommendations under strict
uncertainty and formalized a natural extension of the itemwise minimax regret decision criterion to sets. We proved
that optimal recommendations sets are also optimal query sets, when query sets are evaluated with respect to myopic
worst-case regret reduction.

In the Bayesian model, we considered several user response models, showing that optimal recommendation sets
are also optimal query sets, when queries are evaluated using expected value of information, under both noiseless
and constant-noise user response models. Under the logistic/Luce-Sheppard response model, we showed that optimal
recommendation sets are near-optimal query sets, both theoretically and experimentally. We stress that our results are
general and do not depend on the specific form of the Bayesian prior, nor that of the utility function, though there is
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some dependence on the user response model. Our greedy strategies, which exploit the submodularity of the expected
utility of selection from a set, perform very well in practice and have theoretical approximation guarantees. Finally
our experimental results demonstrated that query iteration, a simple local search strategy, is especially well-suited to
large decision spaces.

Naturally, each of the two treatments of utility uncertainty, regret-based and Bayesian, has its own advantages
and drawbacks. We do not advocate for one over the other—each may be useful in different circumstances. Instead,
we present a model and analysis of recommendation and query sets in both settings, and derive qualitatively similar
results and observe related phenomenon in each. In particular, under both models of uncertainty, the relationship
between optimal recommendation sets and optimal choice queries can be exploited effectively in the design of unified
interactive recommendation algorithms that simultaneously accommodate both set-based preference elicitation and
recommendation.
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[111] Salo, A. and Hämäläinen, R. P. (2001). Preference ratios in multiattribute evaluation (PRIME)–elicitation and decision procedures under

incomplete information. IEEE Transactions on Systems, Man, and Cybernetics, 31(6):533–545.
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Appendix A. Monty Hall Problem

Consider the following 3-item recommender problem where we have items X = {a, b, c}. The recommender
systems is allowed to ask a single comparison query to the user, mister Monty, and then needs to provide a final
recommendation. Let’s further assume that utility values (u(a), u(b), u(c)) belong to W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
all realized with equal probability prior 1

3 , that constitute the initial belief θ0. The value of the set S = {b, c} as
recommendation set in this initial belief θ0 is

EUS(S ; θ0) =
∑
w∈W

max
[
u(b), u(c)

]
· P(w; θ0) = 0.33 ·max(0, 0) + 0.33 ·max(0, 1) + 0.33 ·max(1, 0) = 0.66. (A.1)

The set S is an optimal recommendation set of size k = 2, as no other pair can be better, given the symmetric and
“egalitarian” prior. Then, in virtue of our theorem for noiseless responses (Theorem 25), an optimal recommendation
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set is also an optimal query set:

EPU(S ; θ0) = EPU∗, and EPU(S ; θ0) = EUS(S ; θ0) = 0.66.

In fact any set {a, b}, {a, c} and {b, c} is optimal in θ0; let’s assume to pick {b, c}. We then ask Mr Monty to identify,
among b and c, the item that he prefers. Upon receiving the answer, we now have to make a (single) recommendation;
should we recommend item a, b, or c ?

In fact, we know that the optimal recommendation/query set is a fixed point for operator T (Corollary 26). This
means, that the optimal recommendation in the updated belief θ0|S B b coincides with the user’s selection from the
set (Proposition 21). As the query is between item b and item c, the system should recommend item b or item c
depending on which is selected/preferred by Monty (the item a is never optimal in expected utility in any of the two
cases). Assume, with no loss of generality, that the answer is b; then we should recommend this item to him.

If we want to calculate precisely the expected utility of recommending an item, we can proceed as follows. We
define beliefs θ1 := θ0|S B b (item b is preferred) and θ2 := θ0|S B c (item c is preferred). From the equivalence
EUS(S ; θ0) = EPU(S ; θ0) = 0.66 we derive (substituing the definition of EPU)

EUS(S ; θ0) = P(S Bb; θ0)EU(b; θ1) + P(S Bc; θ0)EU(c; θ2) and P(S Bb; θ0) = P(S Bc; θ0) = 0.5

and then it has to be EU(b, θ1) = EU(c; θ2) = 0.66. Because Proposition 21, b is optimal in θ1 (respectively c is
optimal in θ2) and expected utility in the posterior belief is 0.66.

This problem is formally equivalent to the famous Monty Hall problem [115]:

Suppose you’re on a game show, and you’re given the choice of three doors: behind one door is a car; behind the
others, goats. You pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another door, say
No. 3, which has a goat. He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch
your choice?

We make the further assumption of an explicit uniform prior on possible locations of the car and a sound response
model for Monty; these assumptions are not explicitly stated in the original problem, but taken for granted in the
solution (see [61], pag. 216, for a discussion of the implications of the possible assumptions on Monty’s “response
model”; i.e. protocols in Halpern’s formalization).

After you initially pick a door, the fact that Monty opens a particular door, revealing a goat, is a signal for the
unopened door to be likely to have the prize. Assume you pick door number 1; Monty opens a door according to the
following “response model”: if both door no. 2 and 3 have a goat, he opens one of the two doors at random; otherwise
he opens the only door with the goat between no. 2 and door no. 3.

The analogy between the 3-item recommendation problem above and the Monty Hall puzzle is completed with
the following correspondences: items a, b and c corresponds to, respectively doors 1, 2 and 3; goats correspond to
items with utility 0, the car corresponds to utility 1 and the action of picking the initial door corresponds to a choice
query between the two other doors/items with Monty answering according to the response model RNL. In fact, when
Monty reveals a goat behind door no. 3, it means that door no. 2 is “preferred” to the other, door no. 1 (while the
precise numerical value of the “utility” of neither item/door is revealed).

The strategy “keep-same-door” in the Monty hall problem corresponds to the recommendation of the item not
included in the choice query in our “recommender problem” with 3 items; while the strategy “switch-door” in the
original puzzle corresponds to picking the item that is preferred by Monty in the choice query rather than the item
a, that was not part of the query (no rational strategy will recommend the item c that is stated to be least preferred
than b; assuming Monty’s answers to be noiseless). As discussed before, since the comparison query is an optimal
query, it is a fixed point for the T operator (Corollary 26), and the optimal recommendation in the updated belief must
necessarily agree with Monty’s response (Proposition 21). Our reasoning shows that “switch-door” is the best action,
and it gives (according to Equation A.1) a probability of 0.66 of picking the right door/item.

Using our framework for evaluating queries and sets, we are able to solve the Monty Hall puzzle in what we
consider a very elegant form without an explicit Bayesian update.
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Appendix B. Bound for the Logistic Noise Model

Theorem 30 Assume a set selection problem with known user utility, in which the user with utility w—inducing item
utilities v1, . . . , vk—selects an item from slate S (of size k). The expected loss induced by user choice under response
model RL is at most:

∆̂k =
1
γ
· L(

k − 1
e

), (76)

where L is the Lambert W function [40]. Moreover, the maximum loss is attained by utilities v1, . . . , vk:

v1 = . . . = vk−1 = ζ (77)

vk = ζ +
1
γ
·
[
1 +L

(k − 1
e

)]
(78)

with ζ ∈ R, or any permutation of these values (since the loss does not depend on the ordering of the values v1, . . . , vk).

Proof. Case k=2 (pairs of items) We consider a two items x1 and x2. Let z = u(x1)−u(x2) be the difference in utility;
assume z ≥ 0 with no loss of generality. The expected loss is exactly the utility difference z times the probability of
choosing the less preferred option under RL: 1 − L(γz) = L(−γz) where L is the logistic function.

δ(z) =
z

1 + eγz (B.1)

We are looking for δ̂ = max δ(z). The derivative of the loss δ(z) wrt z is

dδ(z)
dz

=
1

1 + eγz + γz
−eγz

(1 + eγz)2 =
1

1 + eγz

(
1 − γz

eγz

1 + eγz

)
. (B.2)

We impose the derivative equal to zero ah solve the equation in z in order to find ẑ:

dδ(z)
dz

= 0 ⇔ 1 + eγz − γzeγz = 0 ⇔ (γẑ − 1) eγẑ−1 = e−1 ⇔ γẑ − 1 = L

(
1
e

)
⇔ ẑ =

1
γ

[
1 +L

(
1
e

)]
(B.3)

whereL(·) is the Lambert-W function. The last expression of Eq. B.2, substituted into Eq. B.1, gives δ̂ = δ(ẑ) = e−γẑ

γ
=

ẑ − 1
γ
. Thus:

ẑ =
1
γ

[
1 +L

(
1
e

)]
; δ̂ =

1
γ
L

(
1
e

)
. (B.4)

The second derivative is
d2δ(z)

d2z

∣∣∣∣∣∣
z=ẑ

= −
1

ẑ eγẑ < 0

confirming that ẑ is a (relative) maximum; by the fact that ẑ is the only real value with null derivative, and that
δ(0) = 0 < δ̂, we conclude that ẑ is an absolute maximum.

General case (k ≥ 2) We consider the loss when choosing an item among k possibilities. Let’s assume that
v1, . . . , vk are the utility values attained by the k items. The logistic response model is such that PL(S  xi) = evi∑k

j=1 ev j .

Assume, with no loss of generality, that v1 ≤ . . . ≤ vk. In order to determine the bound, we need to maximize the
following function:

(vk − v1)
ev1

ev1 + . . . + evk
+ . . . + (vk − vk−1)

evk−1

ev1 + . . . + evk
=

k∑
i=1

(vk − vi)
evi∑k

j=1 ev j
= (B.5)

=

k−1∑
i=1

(vk − vi)
1

1 +
∑

j,i ev j−vi
. (B.6)
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We notice that the expected loss is expressed as a function of terms v j − vi. We set zi = vk − vi, equal to the utility
difference between vk and vi (that is ≥ 0, given the assumption that vk is the highest value); in this way, we are left
with a problem with k − 1 free variables, representing the utility loss of each item with respect to the kth item.

f (z1, . . . , zk−1) =
∑
i∈K−

zi
1

1 + ezi +
∑

j,i ezi−z j
(B.7)

where K− = {1, . . . , k − 1}.
We look for null gradient by setting the partial derivatives to 0:

∂ f
∂zi

= 0 ⇐⇒ e
∑

j z j (zi − 1) +
∑
j,i

[
e
∑

l, j zl (zi − z j − 1)
]
− e

∑
j,i z j = 0 (B.8)

where all indices i, j, l are meant to belong to K−. By subtracting the expression B.8 for a index j from the expression
of another index i, we obtain:

∂ f
∂zi
−
∂ f
∂z j

= 0 ⇐⇒
[
e
∑

l zl +
∑

l

e
∑

o,l zo
]
(zi − z j) = 0 ⇐⇒ zi = z j. (B.9)

Therefore we conclude that it must be z1 = z2 = . . . = zk−1 in order for the gradient to be null. We therefore restrict
our attention to solutions such that all zi are the same:

f (z, . . . , z) =
(k − 1) z

k − 1 + eγz . (B.10)

First order conditions require that:

k − 1 + eγz − γzeγz = 0. (B.11)

We solve the equation in z in order to find ẑ:

(γẑ − 1)eγẑ = k − 1 ⇔ (γẑ − 1) eγẑ−1 = (k − 1)e−1 ⇔ γẑ − 1 = L

(
k − 1

e

)
⇔ ẑ =

1
γ

[
1 +L

(
k − 1

e

)]
(B.12)

where L(·) is the Lambert-W function.

∆̂ = f (ẑ) = (k − 1)
e−γẑ

γ
= ẑ −

1
γ

(B.13)

We finally obtain:

ẑ =
1
γ

[
1 +L

(
k − 1

e

)]
; ∆̂ =

1
γ
L

(
k − 1

e

)
. (B.14)
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