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Abstract. We propose an interactive elicitation protocol for the Sugeno
integral. Our approach at each step asks the decision maker whether the
overall evaluation of a given alternative attains at least a certain level.
This information is encoded in terms of constraints on the capacity and
a lattice of feasible capacities is identified. The procedure continues until
a necessary winner is identified. The efficiency of our methodology is
evaluated in numerical experiments.
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1 Introduction

The Sugeno integral is used in multicriteria decision making as a tool for guiding
decision support [7, 13]. Sugeno integrals are qualitative aggregation operators
that take as input some local evaluation of alternatives and output a global eval-
uation. In this paper we provide an elicitation protocol for the Sugeno integral.

The problem of eliciting some Sugeno integrals agreeing with a dataset has
received some attention [11, 13, 6, 12] both from theoretical and practical point of
view. The theoretical results concern the elicitation of a unique family of Sugeno
integrals expected to be consistent with a set of data. Inconsistency is usually
to be avoided; in [9] the data is partitioned in classes and a fuzzy integral is
calculated for each one. In [12, 11] the aim is to identify the bounds of the set
of the family of Sugeno integrals consistent with the data. If the dataset is not
fully consistent with only one family of Sugeno integrals, they consider several
ones; this point of view is motivated by the fact that the dataset may contain
many classes of profiles.

Sugeno integrals are defined with capacities used in multicriteria decision
making to represent the weights of subsets of criteria. Sugeno integrals are used
in [11] to extract knowledge from experimental data in multi-factorial evalua-
tion; a capacity associated to a Sugeno integral consistent with the dataset is
calculated and then a set of rules corresponding to the capacity are derived.
Some other work on eliciting or learning a capacity from examples are based on
linear programming methods that minimize the total error [1].
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The approach presented in this paper is different. We are proposing incremen-
tal elicitation and winner determination processes in which preference queries
are selected one at a time. The elicitation is targeted towards the determination
of the best choice among a set of alternatives.

The aim of this paper is to introduce an adaptive elicitation procedure in the
context of the Sugeno integral for the fast determination of a necessary winner
and to evaluate the practical efficiency of this procedure.

The elicitation continues until we have enough information about the capacity
to identify the alternative associated with the highest Sugeno value; to do this
we adopt the maximin criterion as proposed in a previous work in multi attribute
decision making [16]. The proposed method bears strong similarity to the regret-
based approach for eliciting a capacity for the Choquet integral [2]; the main
difference lies in the fully ordinal setting under consideration in this paper, that
makes regret a meaningless concept in our context.

The paper is organized as follows. In Section 2 we provide some background
on the Sugeno integral and its use in multiple criteria decision making. We then
describe our elicitation method in Section 3. In Section 4 we provide numerical
tests to evaluate our approach; we conclude with final remarks in Section 5.

2 Background and notation

Let X be a finite set of alternatives or objects that need to be compared in
order to make a decision. An object x ∈ X is evaluated with respect to a set
of n criteria C = {1, · · · , n}. An object is represented by a vector (x1, · · · , xn)
where xi represents the evaluation of x according to the criterion i. The criteria
are evaluated on a common (finite) evaluation scale L. The global evaluation is
also given on L. We assume that L is a bounded totally ordered finite set with
a bottom denoted by 0L, a top denoted by 1L. Moreover L is equipped with an
involutive negation denoted by 1L− which is an order reverse function.

2.1 Lattice of capacities

A capacity (or fuzzy measure) v is a set function, defined over subsets of C, that
is monotone with respect to set inclusion, i.e., v : 2C → L such that if A ⊆ B ⊆ C
then v(A) ≤ v(B), v(∅) = 0 and v(C) = 1.

We denote by VC the set of all capacities on C, and we drop the subscript
C when it is clear from the context. A partial order ≤ between capacities is
established as follows:

v1 ≤ v2 whenever v1(G) ≤ v2(G) for all G ∈ 2C .

The pair (VC ,≤) is a bounded lattice. It can also be identified by the tu-
ple (VC ,∧,∨,⊥,>) where the binary operators ∨ (join) and ∧ (meet), and the
elements ⊥ and > are established as follows:

– given v1, v2 ∈ VC , the capacity v1∧v2 is such that (v1∧v2)(G) = min(v1(G), v2(G))
for all G ∈ 2C ;
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– given v1, v2 ∈ VC , the capacity v1∨v2 is such that (v1∨v2)(G) = max(v1(G), v2(G))
for all G ∈ 2C ;

– ⊥ gives 0 to all proper subsets of C, ⊥(G) = 0 for all G ⊂ C;
– the > element is the capacity that associates 1 to every non-empty subset,
>(G) = 1 for all G ⊆ C.

Considering two capacities v̌, v̂, an interval [v̌, v̂]VC is the subset {v ∈ VC |v̌ ≤
v ≤ v̂}; the interval is nonempty if and only if v̌ ≤ v̂. Note that a nonempty
interval is a sublattice [5] i.e., the interval is closed with the infimum ∧ and the
supremum ∨.

Since the intersection of two sublattices is a sublattice, then the intersection
of two intervals which is an inteval is also a sublattice. The intersection of n
intervals [v̌i, v̂i]V , with i = 1, . . . , n is given by⋂

i=1,...,n

[v̌i, v̂i]V =
[∨

v̌i,
∧
v̂i
]
V
.

It follows that the intersection of n intervals is not empty if and only if∨
v̌i ≤

∧
v̂i i.e for all i, j ∈ {1, · · · , n}, we have v̌i ≤ v̂j .

We provide a direct proof, using lattice theory, of a statement mentioned in
the proof of Proposition 6 in the paper by Prade et al. [11].

Proposition 1. Assume n intervals [v̌i, v̂i]V , with i = 1, . . . , n whose pairwise
intersections [v̌i, v̂i]V ∩ [v̌j , v̂j ]V for all i, j ∈ {1, . . . , n}, are not empty. Then
the intersection

⋂
i=1,...,n[v̌i, v̂i]V is not empty.

Proof. The fact the pairwise intersections are not empty means that

[v̌i, v̂i]V ∩ [v̌j , v̂j ]V 6= ∅ ∀i, j ⇐⇒ v̌i ∨ v̌j ≤ v̂i ∧ v̂j ∀i, j

Since, by definition of ∨ and ∧, it holds v̌i ≤ v̌i ∨ v̌j and v̂i ∧ v̂j ≤ v̂j , it also
follows that v̌i ≤ v̂j ∀i, j. It follows that

∨
i v̌
i ≤

∧
i v̂
i that exactly means⋂

i=1,...,n[v̌i, v̂i]V is not empty.

2.2 Discrete Sugeno integral

We now review the definition of the Sugeno integral, as used in Multi Criteria
Decision Analysis (MCDA) to aggregate into a single score the evaluation of an
object with respect to several criteria.

Let σ be a permutation on C such that xσ(1) ≤ . . . ≤ xσ(n). The Sugeno
integral [14] of an alternative x with respect to capacity v can be defined by
means of several equivalent expressions:

Sv(x) = max
A⊆C

min(v(A),min
i∈A

xi) = min
A⊆C

max(v(A),max
i∈A

xi), (1)

where A is the complement of A. These expressions can be simplified as follows:

Sv(x) = max
α∈L

min(v({i : xi ≥ α}), α) = min
a∈L

max(v({i : xi > α}), α). (2)
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A basic property of the Sugeno integral is that the result of the aggregation
is between the minimum and the maximum component.

min
i=1,...,n

xi ≤ Sv(x1, . . . , xn) ≤ max
i=1,...,n

xi

A direct consequence is that Sv(c, . . . , c) = c for any capacity v (idempotency
or unanimity). Note also that the value of the Sugeno integral of an alternative
x is monotone with respect to the order between capacities:

If v1 ≤ v2 then Sv1(x) ≤ Sv2(x) ∀x ∈ X (3)

2.3 The set of capacities consistent with preference data

We now summarize the results presented in [13] about the identification of the
family of Sugeno integrals consistent with a dataset of statements comparing
alternatives to a global evaluation level. More precisely, we consider preference
statements of the type “the global evaluation of x is higher or equal than a level
α” or “the global evaluation of y is lower or equal than a level λ”, and we want
to derive the set of capacities consistent with such statements.

For a pair (x, α) ∈ X × L, we define the capacities v̌x,α and v̂x,α as follows.

Definition 1. Given x ∈ X and α ∈ L, the capacities v̌x,α and v̂x,α are defined
as:

v̌x,α(A) =

1L if A = C
α if {i ∈ C|xi ≥ α} ⊆ A
0L otherwise

and v̂x,α(A) =

0 if A = ∅
α if A ⊆ {i ∈ C|xi > α}
1L otherwise.

Note that we always have v̌x,α ≤ v̂x,α. Using v̌x,α and v̂x,α we can determine
the set of capacities (that is a sub-interval of the lattice of capacities) consistent
with a statement of the type SV (x) ≥ α, Sv(x) ≤ α, or Sv(x) = α.

Proposition 2. The set of capacities satisfying the equation Sv(x) ≥ α is:

{v ∈ V |Sv(x) ≥ α} = {v ∈ V |v̌x,α ≤ v ≤ >V } = [v̌x,α,>V ]V (4)

while the set of capacities satisfying the equation Sv(x) ≤ α is:

{v ∈ V |Sv(x) ≤ λ} = {v ∈ V |⊥V ≤ v ≤ v̂x,λ} = [⊥V , v̂x,α]V . (5)

Therefore, the set of capacities satisfying Sv(x) = α is:

{v ∈ V |Sv(x) = α} = {v ∈ V |v̌x,α ≤ v ≤ v̂x,α} = [v̌x,α, v̂x,α]V .

In [13] the authors focus in considering a set P of assignments of alternatives
to global evaluations, that is the constraints Sv(x

k) = αk for k = 1, . . . ,m. The
set of the capacities compatible with all assignments in P is

V P =
{
v ∈ V

∣∣∣ m∨
k=1

v̌xk,αk
≤ v ≤

m∧
k=1

v̂xk,αk

}
=
[ m∨
k=1

v̌xk,αk
,

m∧
k=1

v̂xk,αk

]
V
.
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In order to know if the set of capacities V P consistent with the preferences P,
is empty it is not necessary to compare the capacities ∨mk=1v̌xk,αk

and ∧mk=1v̂xk,αk

for all subsets of criteria A since it is is proved in [13] the following property
(that makes use of Proposition 1).

Proposition 3. The set of capacities VP = [∨mk=1v̌xkαk
,∧mk=1v̂xk,αk

]V is not
empty if and only if for all αk < αl we have {i|xli ≥ αl} 6⊆ {i|xki > αk}.

In this work we do not assume that all input statements are assignments, but
we collect, using an interactive process, statements of the type Sv(x) ≥ α or
Sv(x) ≤ α. Let P be divided in two parts (xk, αk)k=1,...,m1

and (yk, λk)k=1,...,m2

such that the global evaluation of xk is bigger than αk and the global evaluation
of yk is lower than λk. Hence the set of consistent capacities V P is:

V P =
{
v ∈ V

∣∣∣∨
k

v̌xk,αk
≤ v
}
∩
{
v ∈ V |v ≤

∧
k

v̂yk,λk

}
(6)

=
[ m1∨
k=1

v̌xk,αk
,

m2∧
k=1

v̂yk,λk

]
V
. (7)

Note that this intersection can be empty. We will see, in the next section, that
this intersection is always non empty with the proposed algorithm.

We conclude this section with a remark concerning the focal sets of a capacity.
The qualitative Moebius transform of a capacity v is the set function v# defined
as follows:

v#(A) =

{
v(A) if v(B) < v(A) ∀B ⊂ A
0 otherwise

The sets A such that v#(A) > 0 are call the focal sets of v. The qualitative
Moebius transform contains all the information to compute v since for all A,
v(A) = ∨B⊆Av#(B), and the qualitative Moebius transform is sufficient to cal-
culate the Sugeno integral:

Sv(x) = max
A⊆C

min(v#(A),min
i∈A

xi) (8)

This means that we just need to identify the focal sets in order to calculate
the Sugeno integral. The preferences, described above, may be just given for
objects with local evaluations equal to 0L or 1L. Nevertheless, in practice these
theoretical objects could be inappropriate. For instance, imagine the situation of
caregivers assessing the overall health of given patients: it would be difficult for
them to assess abstract patients without referring to real cases. This difficulty of
reasoning with abstract items is the reason why we decide to not use focal sets
in the method proposed in this paper.

3 Incremental elicitation protocol

We provide an interactive elicitation method based on the maximin decision
criteria. The goal of the elicitation is to determine a necessary winner.
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Our method bears similarity to methods, relying on minimax regret, for the
incremental elicitation of a capacity for the Choquet integral [2]. We note that, in
our qualitative framework, minimax regret is not applicable since the difference
of two Sugeno value is meaningless in decision context.

First of all, in Section 3.1, we introduce some concept of decision-making
under uncertainty to be used to identify the most promising alternative when
the capacity is not known precisely. We focus in the case where the capacity lies
in an interval between a lower and a upper capacity.

Then in Section 3.2 we use these concepts to design our interactive elicitation
protocol.

3.1 Reasoning with an uncertain capacity

Suppose now that a set P of statements have been collected and that the set of
capacities V P ⊆ V consistent with P has been identified; each v ∈ V P is such
that v satisfies all preferences in P.

First of all, we observe that, in some cases, the set P is enough to identify the
best alternative in X. An alternative is a necessary winner if it is the optimal
alternative with respect to all capacities in V P .

Definition 2. A necessary winner with respect to P is an alternative x ∈ X
such that

x ∈ arg max
x∈X

Sv(x) ∀v ∈ V P .

If a necessary winner exists, it is not necessary to elicit further information
from the decision maker in order to make a decision, since the current available
information is enough to identify the best choice (or one of the best choices, in
case of ties) among the set of alternatives.

In most cases, however, a necessary winner does not exists. When it is nec-
essary to make a choice with the only knowledge that the capacity lies in V P ,
we can recommend the alternative(s) ensuring the highest Sugeno value in the
worst-case. We therefore adopt the maximin criterion (similarly to a previous
work in multiattribute decision making [16]), that is particularly apt to the or-
dinal settings where the Sugeno integral is typically used.

Given a set of capacities V P and an alternative x ∈ X, the minimum (or

pessimistic) value according to Sugeno is s↓P(x) = minv∈V P Sv(x) while its max-

imum (or optimistic) value is s↑P(y) = maxv∈V P Sv(x). We now define the max-
imin Sugeno value s∗P as

s∗P = max
x∈X

s↓P(x) = max
x∈X

min
v∈V P

Sv(x)

and a maximin recommendation x∗P is such that:

x∗P ∈ arg max
x∈X

s↓P(x) = arg max
x∈X

min
v∈V P

Sv(x)
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and x∗P is said to be maximin optimal (x∗P has the highest “pessimistic” value).

The value s↓P(x) is the worst-case “utility” associated with recommending alter-
native x; any choice that is not maximin optimal has strictly lower Sugeno value
than x∗ for some capacity v ∈ V P .

We further assume that all preference statements are of the kind S(x) ≥ α or
S(x) ≤ α. Then, as we have seen previously in Section 2.3, the set of capacities
consistent with P can be written as the intersection of intervals. We will see
that, using the proposed algorithm, this set of capacities is a lattice interval; i.e.,

V P = [v̌, v̂]V .

Given an interval of capacities, the maximin alternative (the choice that maxi-
mizes the worst-case Sugeno value) is easily found: using the property described

in Equation 3 and the fact that the set of the valid capacities is a lattice, s↓P(x),
the minimum Sugeno value of an alternative x, is just Sv̌(x), the Sugeno integral
of x computed with the “bottom” capacity v̌.

Proposition 4. Assuming that the set of feasible capacities V P is an interval
(sublattice) of V , then we have:

s↓P(x) = Sv̌(x), s∗P = max
x∈X

Sv̌(x) and x∗P = arg max
x∈X

Sv̌(x) (9)

We need a measure of how “uncertain” we are with respect to our recom-
mendation. Now, we consider the most optimistic Sugeno value, i.e. the maximax
value, that can be attained by any alternative y different from the recommen-
dation x∗P .

s◦P = max
y 6=x∗P

s↑P(y) = max
y 6=x∗P

max
v∈V P

Sv(y) = max
y 6=x∗P

Sv̂(y)

y◦P ∈ arg max
y 6=x∗P

s↑P(y) = arg max
y 6=x∗P

max
v∈V P

Sv(y) = arg max
y 6=x∗P

Sv̂(y)

We dub y◦P as the “adversary”, since it is the alternative that may have the high-
est value. Recall that s∗P is the value of the maximin optimal recommendations.
By comparing s∗P and s◦P we determine whether there is any residual uncertainty
about which is the optimal alternative. We notice that if s∗P ≥ s◦P then it means
that the current maximin recommendation x∗P is surely an optimal recommen-
dation. This observation is formally stated in the following proposition, whose
proof is very straightforward.

Proposition 5. If s∗P ≥ s◦P then x∗P is a necessary winner.

Proof. For all v ∈ V P , Sv(x
∗
P) ≥ s∗P , and s◦P ≥ s↑P(y) ≥ Sv(y), for all y 6= x∗P .

Therefore, if s∗P ≥ s◦P , then by transitivity we have Sv(x
∗
P) ≥ Sv(y) for all

v ∈ V P and for all y 6= x∗P .

Example 1. Suppose that the available alternatives are X = {a, b, c, d} whose
performances are given in the following table of criteria.
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Criteria
Alternative 1 2 3

a 0.2 0.4 0.5
b 0.7 0.2 0.4
c 0.1 1 0.7
d 0 0.5 0

The scale is L = {0, 0.1, 0.2, . . . , 0.9, 1}. Assume that we know that alternative a
is deemed to have value higher or equal than 0.4, that alternative b has Sugeno
value at least 0.5, and that alternative c has Sugeno value at most 0.8; that is
Sv(a) ≥ 0.4, Sv(b) ≥ 0.5, and Sv(c) ≤ 0.8. We now inspect the lower bound v̌
and the upper bound v̂ capacities, based on combining Equations 4 and 5.

Subset ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v̌(·) 0 0.5 0 0 0.5 0.5 0.4 1
v̂(·) 0 1 0.8 1 1 1 1 1

We determine the optimistic s↑P and the pessimistic value s↓P of each alter-
native by computing the Sugeno integral of a, b, c with respect to v̌, v̂.

Alternative a b c d

s↓P(·) 0.4 0.5 0.4 0

s↑P(·) 0.5 0.7 0.8 0.5

We can determine that b attains the maximin optimal value s∗P = s↓P(b) = 0.5,

while the adversary is c that can obtain up to s◦P = s↑P(c) = 0.8 in the optimistic
case.

We conclude this part by observing that the condition in the proposition
above gives us a sufficient condition for detecting a necessary winner, but not
a necessary one3: it is possible that a necessary winner exists even when such
condition is not satisfied (see example below). This means that, in some cases,
the interactive approach that we present next may pose some questions that
could be avoided with a more precise check for determining a necessary winner.
However, by proceeding in this way we keep the algorithm rather simple and
efficient.

Example 1 (continued). Now consider the set of alternatives to be restricted
to c and d. Note that c dominates d, that is, the former has a strictly higher
performance than the latter with respect to all three criteria; it follows that
Sugeno of c is higher than the value of d. Alternative c is a necessary winner in
X ′ = {c, d}. However, we have s↓P(c) = 0.4 < 0.5 = s↑P(d) and the condition of
Proposition 5 is not met.
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Algorithm 1 Interactive Elicitation and Winner Determination

1: procedure InteractiveElic(X, P)
2: (v̌, v̂) = Init(P) . Initialization
3: repeat
4: x∗P = arg maxx∈X Sv̌(x) . Determine maximin recommendation
5: s∗P = maxx∈X Sv̌(x)
6: y◦P = arg maxy 6=x∗P

Sv̂(y)
7: s◦P = maxy 6=x∗P

Sv̂(y)
8: q ← SelectQuery(v̌, v̂, x∗P , y

◦
P) . Use a query strategy

9: p← AskQuery(q) . Ask query q to user
10: P = P ∪ p
11: (v̌, v̂) = Update(v̌, v̂, p) . Update lattice of capacities
12: until s∗P ≥ s◦P . Termination condition
13: return x∗P . We return the necessary winner

3.2 An interactive elicitation scheme for determining a necessary
winner

This section proposes an interactive elicitation process based on the concepts
introduced above; Algorithm 1 depicts the pseudocode of our procedure. The
input parameters are X, the dataset, and the preference statements P. During
the course of the process, we maintain an explicit representation of the set V P

of feasible capacities.
The pair (v̌, v̂) is initialized depending on P:

– In the case that we start from an empty set of statements (P = ∅) we
initialize the pair (v̌, v̂) = (⊥,>). These capacities entails particular cases
for Sugeno integral: S⊥(x) = minni=1 xi and S>(x) = maxni=1 xi.

– If P is not empty, for each p ∈ P, we use Equation 7 in order to initialise
(v̌, v̂).

At each step of the elicitation, a query is asked and a new statement is
acquired. Based on this the lattice is updated. We then we compute the new
maximin optimal alternative ensuring the highest value s↓P .

Questions are chosen considering the value s∗P of the maximin alternative,
given preferences P, and the value of y◦P that is the alternative, different than
x, that have the highest Sugeno value. Proposition 5 gives us a termination
condition for ending the elicitation process.

The function Update updates the lower bound v̌ and the upper bound v̂ of
the lattice of capacities consistent with the current information. That is,

v̌ := v̌ ∨ v̌x,succ(α) if p of type S(x) > α

v̂ := v̂ ∧ v̂x,α if p of type S(x) ≤ α

3 In future works, we will consider optimization techniques for identifying necessary
winners.
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where succ(α) is the level in L right above α; see Definition 1 for how v̌x,α and
v̂x,α are defined.

A question is identified by a pair (x, α): the alternative x that we are asking
about, and the level α. The space of possible queries at a given step of the
elicitation is

Q(v̌, v̂) = {(x, α)|x ∈ X,Sv̌(x) ≤ α ≤ Sv̂(x)}.

We now formally state a property ensuring that the algorithm cannot lead
to an empty set of feasible capacities.

Proposition 6. During all the steps of procedure InteractiveElic we have
v̌ ≤ v̂ (that means the sublattice of capacities that they represnt is not empty).

Proof. The property is true when we start the procedure. The proof is based on
showing that the property is still satisfied after updating the lattice of capacities.

Suppose to have v̌ and v̂ with v̌ ≤ v̂. Consider any pair (x, α) ∈ Q(v̌, v̂), i.e.,
x and α satisfy Sv̌(x) ≤ α ≤ Sv̂(x). There are two possible answers we want to
have either Sv(x) ≥ α or Sv(x) ≤ α. Hence we update the bounds of the set of
capacities solution. In the first case the lower bound of the set of the capacities
solution changes, while in the second one it is the upper bound.

– Suppose to have Sv(x) ≥ α. Let us denote the new lower bound by v̌′,

v̌′(A) = v̌(A) ∨ v̌x,α(A) =

{
max(v̌(A), α) if {i|xi ≥ α} ⊆ A
v̌(A) otherwise

Let us prove that v̌′ ≤ v̂. We have v̌ ≤ v̂ so we just need to prove that
v̂(A) ≥ α if {i|xi ≥ α} ⊆ A: We have

Sv̂(x) = max
β∈L

min(v̂({i|xi ≥ β}), β) ≥ α,

so there exists β ≥ α such that v̂({i|xi ≥ β}) ≥ β. We have {i|xi ≥ β} ⊆
{i|xi ≥ α} which entails v̂({i|xi ≥ α}) ≥ v̂({i|xi ≥ β}) ≥ β ≥ α. We
conclude using the monotonicity of v̂.

– Suppose to have Sv(x) ≤ α. Let us denote the new upper bound by v̂′,

v̂′(A) = v̂(A) ∧ v̂x,α(A) =

{
min(v̂(A), α) if A ⊆ {i|xi > α}
v̂(A) otherwise

Let us prove that v̌ ≤ v̂′. We have v̌ ≤ v̂ so we just need to prove that
v̌(A) ≤ α if A ⊆ {i|xi > α}: We have

Sv̌(x) = min
β∈L

max(v̌({i|xi > β}), β) ≤ α,

so there exists β ≤ α such that v̌({i|xi > β}) ≤ β. We have {i|xi > α} ⊆
{i|xi > β} which entails v̌({i|xi > α}) ≤ v̌({i|xi > β}) ≤ β ≤ α. We
conclude using the monotonicity of v̌.



Incremental Elicitation of Capacities for the Sugeno Integral 11

Fig. 1. The CSS1 strategy analyzes the different relative positions of the upper bounds
and lower bounds of x∗P and y◦P .

3.3 Strategies to choose the next question

We now address the problem of choosing the next question. This is an important
point since a good strategy for asking questions will reduce the length of the elic-
itation process and as well mitigate the cognitive effort of the user. We consider
different strategies to select the next question based on the current lattice of
valid capacities. The effectiveness of these strategies are evaluated in simulation
(see Section 4).

The Current solution strategy (CSS) uses the information about the current best
recommendation x∗P , and the “adversary” y◦P to derive a question to ask. We
propose two versions of this idea:

– CSS0 (simpler version): we simply choose to ask about x∗P or y◦P depending
on which has the largest interval, and as level we pick the midpoint.

– CSS1 ( more elaborate): we evaluate candidate queries with respect to their
capability of resolving the uncertainty about which between x∗P and y◦P
has the highest Sugeno value. The discussion depends on how the inter-
vals [s↓P(x∗P), s↑P(x∗P)] and [s↓P(y◦P), s↑P(y◦P)] relate to each other. It is worth

noticing that we know that s↓P(x∗P) ≥ s↓P(y◦P) by definition of maximin.

We inspect the order between s↑P(x∗P) and s↑P(y◦P) to decide which queries
to consider. We then propose an heuristic in order to choose between these
possible queries based on the length of the intervals [s↓P(x∗P), s↑P(x∗P)] and

[s↓P(y◦P), s↑P(y◦P)] as depicted in Figure 1. Note that, in the following discus-
sion, we denote by d(α, β) the number of levels between α and β where α
and β are elements on the scale L.

• Case i): s↑P(y◦P) ≤ s↑P(x∗P), i.e.,

[
s↓P(y◦P) [s↓P(x∗P) s↑P(y◦P)

]
s↑P(x∗P)].

The optimistic value of y◦P is lower or equal than the pessimistic value
of x∗P .
In this case we could ask the user to compare alternative x∗P and the

level s↑P(y◦P). If the answer is that Sv(x
∗
P) ≥ s↑P(y◦P), we know that

y◦P cannot be better than x∗P , and therefore we resolve the uncertainty
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between the two; this event happens if the true Sugeno value of x∗P
is between s↑P(y◦P) and s↑P(x∗P). We then quantify the “score” of this

query as the proportion of the interval of [s↓P(x∗P), s↑P(x∗P)] that makes
us certain that x∗P is preferred to y◦P , i.e. the number of levels between

s↑P(x∗P) and s↑P(y◦P) divided by the number of levels between s↑P(x∗P) and

s↓P(x∗P). Hence the value of this query is
d(s↑P(x∗P),s↑P(y◦P))

d(s↑P(x∗P),s↓P(x∗P))
.

Alternatively, we could also ask to compare alternative y◦P and the level

s↓P(x∗P). If the user states that the Sugeno value of y◦P is lower than

s↓P(x∗P), then we can also conclude that y◦P cannot be better than x∗P .

Reasoning as above, we score this query
d(s↓P(x∗P),s↓P(y◦P))

d(s↑P(y◦P),s↓P(y◦P))
.

We ask the query (among the two) that has the highest “value”.

• Case ii): s↑P(x∗P) ≤ s↑P(y◦P), i.e.,

[
s↓P(y◦P) [s↓P(x∗P) s↑P(x∗P)] s↑P(y◦P)

]
.

(the optimistic value of y◦P is at least the pessimistic value of x∗P).

We can ask to compare alternative y◦P and s↑P(x∗P), whose “score” is
d(s↑P(y◦P),s↑P(x∗P))

d(s↑P(y◦P),s↓P(y◦P))
, or, as in the previous case, to compare y◦P and s↓P(x∗P),

with value
d(s↑P(x∗P),s↑P(y◦P))

d(s↑P(y◦P),s↓P(y◦P))
. Since the denominator of both formulas is the

same, the test reduces to checking d(s↑P(y◦P), s↑P(x∗P)) ≥ d(s↑P(x∗P), s↑P(y◦P)).

• Case iii): s↓P(y◦P) = s↓P(x∗P) and s↑P(y◦P) = s↑P(x∗P). In this case we ask
about x∗P and its midpoint level.

The Halve largest gap (HLG) asks the question about alternative xH with the

largest gap measured by the number of levels; xH = arg maxx∈X d(s↓P(x), s↑P(x))

and the level αH is the midpoint between s↑P(xH) and s↓P(xH).

The Random strategy chooses, as q query, an alternative x at random and a the
midpoint between s↑P(x) and s↓P(x) (this strategy is considered as a baseline).

Example 1 (continued). We show how the different strategies will determine the
next query to ask in our example. Remember that x∗P = b and y◦P = c. The
strategy CSS0 asks about alternative c and its midpoint level 0.6, since the
interval [s↓P(b), s↑P(b)] = [0.5, 0.7] is smaller (in terms of number of levels) that

the interval [s↓P(c), s↑P(c)] = [0.4, 0.8].

Since s↑P(x∗P) = 0.7 < 0.8 = s↑P(y◦P) the analysis performed by CSS1 proceeds
by considering the second case. CSS1 asks either to compare alternative c with
level 0.5 or to compare alternative c with level 0.7 (their “score” is the same).

HLG asks about alternative d, that has the widest gap [s↓P(d), s↑P(d)] =
[0, 0.5], and its midpoint level 0.2. This query is not very informative since we
know already that d cannot be strictly better than b.



Incremental Elicitation of Capacities for the Sugeno Integral 13

Query Strategies
Dataset m n Capacity CSS1 CSS0 HLG Random

Tiny 7 4 WeightedMax 5.5 6.3 9.1 16.9
Tiny 7 4 WeightedMin 8.1 9.1 10.4 17.8
Tiny 7 4 Sampled 8.9 8.3 11.1 16.9

Synthetic 30 8 WeightedMax 14.7 10.2 45.2 56.2
Synthetic 30 8 WeightedMin 15.8 17.2 34.8 70.6
Synthetic 30 8 Sampled 27.3 22.3 54.7 100.6

Cars 80 6 WeightedMax 3.6 4.1 12.8 4.7
Cars 80 6 WeightedMin 12.6 12.2 26.8 42.7
Cars 80 6 Sampled 9.3 10.0 31.0 22.2

Table 1. Simulation results (averaged over 30 runs) showing the number of queries
that are needed in order to find a necessary winner.
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Fig. 2. The values s∗ and s◦ as a function of the number of queries with CSS1 on the
tiny dataset (averaged over 30 runs)

4 Experimental Results

We evaluate the proposed paradigm with numerical experiments where we simu-
late the elicitation process by assuming that the preferences of a decision-maker
are consistent with a Sugeno integral with a capacity v. At each step of the
simulation, a question of the type “Is Sv(x) lower or equal to α?” is asked to
decision maker. The simulated user answers such questions based on the “true”
capacity v, and the answers are used by our algorithm to update the lattice of
consistent capacities, determine the maximin recommendations and to select the
question to ask next, as discussed before in Section 3.2.

In our tests we considered 3 different datasets: a very small dataset, dubbed
“tiny” of 7 items and 4 criteria (with an evaluation scale of 20 levels), a randomly



14 Agnès Rico, Paolo Viappiani

generated “synthetic” dataset (30 items, 8 criteria, 25 levels), and a dataset of
“cars” (100 items, 6 criteria, 5 levels).

Simulated users answer queries according to capacities that are either Weight-
edMax, WeightedMin or generic capacities (note that the form of the capacity
is not known to the elicitation algorithm). Capacities are randomly generated
in the following way: for WeightedMax and WeightedMin the weight vector is
uniformly sampled (one criteria forced to have weight 1L). For generic capaci-
ties, we iteratively pick a random subset of criteria and assign it a random level
(sampled uniformly) between 0L and 1L with subsets and supersets updated
accordingly to monotonicity; the process is repeated a fixed number of times.

We compare the effectiveness of the heuristic strategies (presented in the
Section 3.2) for choosing the next question to ask to the user. In Table 1 we
show the average number of queries that are needed to find a necessary winner
according to the different query strategies, in the different simulation settings
(all experiments have been repeated 30 runs).

In Figure 2 we provide, for one of the experiments, the detail about how the
values s∗P and s◦P evolve over time: the former is monotonically non decreasing,
while the latter decreases most of the time. Note that our protocol can be ter-
minated early providing a “good” recommendation before a necessary winner is
found.

The experimental results show the superiority of the CSS strategies with
respect to the other heuristics, with both CSS0 and CSS1 performing quite well.

5 Discussion and Conclusions

The Sugeno integral is used as an aggregation method for multicriteria deci-
sion making. Despite its popularity, the elicitation of a Sugeno integral is still
a problematic issue. In this paper we have provided a novel formalization for
decision-making under capacity uncertainty using the maximin utility criterion.
We have provided an incremental elicitation method for determining a neces-
sary winner; at each step the user is asked to answer a query of the type “Is the
Sugeno value of item x at most α ?” where x and α are dynamically chosen to
improve the knowledge about the capacity as much as possible. The algorithm
maintains a representation of the lattice of consistent capacities that is updated
after each answer. We provided an experimental validation of the approach with
simulations comparing different heuristics for choosing the next question to ask.

Several directions for future research are possible: additional strategies for
choosing the next question (for instance adapting the ideas of [15] in an ordinal
setting), experimentation with real data, the extension to different type of ques-
tions (e.g. comparing two alternatives) and handling combinatorial domains. We
are also interested in methods that support the interpretation of real data, for
instance by using if-then rules based on Sugeno integrals. As the Sugeno integral
represents a single threshold rule [6], an interesting direction is to adapt our
procedure for Sugeno Utility Functionals (SUF) [4].
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Another challenge is the prediction of preferences [10]; one idea is to compute
a family of capacities on a training set of preferences and use it for prediction.
The analogy-based method [3] seems as well to be an approach to consider.
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