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 37 

Abstract 38 

Aim: Providing a quantitative overview of ecosystem functioning in a three-dimensional 39 
space defined by ecosystem stocks, fluxes, and rates, across major ecosystem types and 40 
climatic zones. 41 

Location: Global 42 

Time Period: 1966–2019 43 

Major taxa studied: ecosystem-level measurements (all organism types) 44 

Methods: We conducted a global quantitative synthesis of a wide range of ecosystem 45 
variables related to carbon stocks and fluxes. We gathered a total of 4,479 values from 46 
1,223 individual sites (unique geographical coordinates) reported in the literature (604 47 
studies), covering ecosystem variables including biomass and detritus stocks, gross 48 
primary production, ecosystem respiration, detritus decomposition and carbon uptake 49 
rates, across eight major aquatic and terrestrial ecosystem types and five broad climatic 50 
zones (arctic, boreal, temperate, arid, and tropical). We analysed the relationships among 51 
variables emerging from the comparisons of stocks, fluxes, and rates across ecosystem 52 
types and climates. 53 

Results: Within our three-dimensional functioning space, average ecosystems align along 54 
a gradient from fast rates-low fluxes and stocks (freshwater and pelagic marine 55 
ecosystems) to low rates-high fluxes and stocks (forests), a gradient which we 56 
hypothesize results mainly from variation in primary producer characteristics. Moreover, 57 
fluxes and rates decrease from warm to colder climates, consistent with the metabolic 58 
theory of ecology. However, the strength of climatic effects differs among variables and 59 
ecosystem types, resulting, for instance, in opposing effects on net ecosystem production 60 
between terrestrial and freshwater ecosystems (positive versus negative effects).  61 

Main conclusions: This large-scale synthesis provides a first quantified cross-ecosystem 62 
and cross-climate comparison of multivariate ecosystem functioning. This gives a basis 63 
for a mechanistic understanding of the interdependency of different aspects of ecosystem 64 
functioning and their sensitivity to global change. To anticipate responses to change at 65 
the ecosystem level, further work should investigate potential feedbacks between 66 
ecosystem variables at finer scales, which involves site-level quantifications of 67 
multivariate functioning and theoretical developments. 68 

  69 
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1 | INTRODUCTION 76 

Ecosystems provide multiple services, such as food, carbon storage, or detritus recycling, 77 

that benefit humans (Alsterberg et al., 2017; Byrnes et al., 2014; Hector & Bagchi, 2007). 78 

These services result from the functioning of ecosystems, which is often described in 79 

studies either by individual ecosystem functions (e.g., production, stability; de 80 

Mazancourt et al., 2013) or by proxies which integrate different functions mathematically 81 

but not mechanistically (e.g., indices of multifunctionality; Soliveres et al., 2016). While 82 

both approaches possess strengths to address specific questions (e.g., relationship with 83 

biodiversity, ecosystem state assessment), it is also important to consider the dynamic 84 

processes underlying ecosystem functioning, because ecosystem functions are not 85 

independent from one another. This becomes increasingly important in the context of 86 

global change, because perturbations affecting some functions of an ecosystem, for 87 

instance trophic cascades affecting primary production, might then cascade to others, 88 

such as on carbon storage (Atwood et al., 2015). To better forecast ecosystem response to 89 

such change, we need a mechanistic understanding of how the multiple aspects of 90 

ecosystem functioning constrain one another. With this study, we aim to advance in this 91 

direction by providing a quantitative synthesis of multiple measures of ecosystem 92 

functioning in a mechanistic framework allowing comparisons across major ecosystem 93 

types. 94 

We propose to consider the loop of matter transformation as the central process driving 95 

functioning at the ecosystem level, a process fundamental enough to be common to all 96 

ecosystem types, thus allowing cross-system comparisons, and linking mechanistically 97 

different essential ecosystem functions (see conceptual framework in Fig. 1). Biological 98 

communities build biomass from inorganic material, respire and produce detritus that is 99 

then decomposed and mineralized into new inorganic material. This material processing 100 

loop generates fluxes connecting the different ecosystem compartments (such as with 101 

primary production, detritus production, or decomposition), occurring at different speeds, 102 

hereafter called rates (e.g., uptake or decomposition rates). In our framework, we 103 

distinguish rates –defined as mass-specific fluxes– from fluxes themselves, because rates 104 

provide discriminating information on environmental and physiological constraints 105 

driving processes among ecosystem types (e.g., organism efficiency), which is entangled 106 
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with community dynamics and organism abundance in fluxes. Overall, the balance of 107 

ecosystem fluxes results in specific distributions of matter among living and non-living 108 

ecosystem compartments – the stocks (i.e., biomass, detritus, nutrients). Stocks, fluxes, 109 

and rates –the three dimensions of our ecosystem functioning space– relate commonly 110 

used descriptors of ecosystem functioning associated with ecosystem services (e.g., 111 

biomass production, recycling of detritus, carbon storage). Their interdependency implies 112 

potential feedbacks; for instance perturbations may increase the levels of dissolved 113 

organic carbon in lakes, which can boost phytoplankton production, and eventually lead 114 

to lake eutrophication (Brothers et al., 2014). This illustrates the need of adopting a 115 

comprehensive approach, integrating the whole loop of matter transformation when 116 

studying ecosystem functioning.  117 

However, we still lack a general and quantitative synthesis linking stocks, fluxes and 118 

rates and comparing them across ecosystem types and climates. Knowledge on ecosystem 119 

functioning is concentrated in studies examining either individual aspects of ecosystem 120 

functioning in isolation (e.g., BEF approaches (Loreau et al., 2001) or cross-system 121 

comparisons of single functions (Tiegs et al 2019)), or whole functioning in specific 122 

ecosystems (e.g., ecosystem ecology approach with fluxes and stocks budgets, for 123 

instance in Eyre & McKee (2002)). A comparative synthesis of ecosystem functioning 124 

would reveal potential covariations among ecosystem fluxes, stocks, and rates across 125 

ecosystem types, from which a holistic understanding of ecosystem functioning could 126 

emerge. Moreover, ecosystem functioning varies according to climatic constraints. For 127 

example, ecosystem processes, such as respiration or decomposition, slow down under 128 

colder climates (Tiegs et al., 2019; Yvon-Durocher et al., 2012). The metabolic theory of 129 

ecology scales up the well-known relationship between body size and biological rates, 130 

and its dependency on temperature, to ecosystem processes (Brown, Gillooly, Allen, 131 

Savage, & West, 2004; Schramski et al., 2015). This provides predictions for changes in 132 

ecosystem fluxes and rates across temperature gradients (Schramski et al., 2015). 133 

Integrating this knowledge in a multivariate view of ecosystem functioning across 134 

ecosystem types and climates would allow to characterize ecosystems based on functional 135 

differences. This step is crucial to anticipate changes in ecosystem functions in response 136 

to global changes, and to upscale to global nutrient and carbon cycles. 137 
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In this study, we provide a quantified multivariate view of ecosystem functioning across 138 

major ecosystem types and climatic zones (i.e., at the biome scale; see Fig. 1b). We focus 139 

on carbon, unified for stocks and fluxes across time and area, as a common currency to 140 

make the material loop comparable across systems. We assemble extensive empirical 141 

data from the literature on ecosystem carbon stocks (i.e., biomass, organic carbon, 142 

detritus), fluxes (i.e., gross primary production, ecosystem respiration), and rates (i.e., 143 

uptake and decomposition rates). We then examine the variation and covariation of these 144 

ecosystem variables across ecosystem types and climatic zones. Our analysis 145 

characterizes broad types of functioning as well as patterns of functioning variation with 146 

climatic constraints, that we discuss in the light of the metabolic theory of ecology.  147 

 148 

2 | METHODS  149 

2.1 | Study design 150 

We collected empirical data of carbon stocks (biomass, detritus, and organic carbon), 151 

fluxes (gross primary production (GPP), ecosystem respiration (ER), and net ecosystem 152 

production (NEP)), and rates (community carbon uptake rate, i.e., mass-specific GPP = 153 

GPP/ autotroph biomass, and decomposition rate as described by the k constant) from the 154 

literature (Fig. 1a), for eight major ecosystem types, both terrestrial (forest, grassland and 155 

shrubland –thereafter called “grassland” for simplicity–, agroecosystem, and desert) and 156 

aquatic (stream, lake, ocean pelagic, ocean benthic), and for five climatic zones (arctic, 157 

boreal, temperate, tropical, and arid). We lumped climatic zones of ocean pelagic and 158 

benthic systems into “Cold” and “Warm” to account for lower climatic imprint on marine 159 

systems (see Fig. 1b for the combinations considered and Table S1.1 of Appendix S1 in 160 

Supporting Information for definitions). Note that, as rates are fluxes normalized by 161 

stocks, uptake and decomposition rates represent respectively the mass of carbon taken 162 

up per biomass unit, and the proportion of detritus decomposed in a given time (T-1 163 

dimension). Notably, uptake rate conveys information informs about producers’ 164 

biological efficiency and physiological constraints, while GPP also includes information 165 

on their abundance. We aimed at covering a wide range of ecosystem x climate x variable 166 

combinations, and retrieved at least ten independent values for each of these 167 
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combinations (see Appendix S1 for extended methods and a decision tree on study 168 

selection for data collection, and Appendix S2 in Supporting Information for a detailed 169 

presentation of the dataset). Overall, we compiled a dataset of 4,479 data points from 170 

1,223 individual sites (unique geographical coordinates) distributed across the globe (Fig. 171 

2), extracted from 604 published studies. The list of data sources is provided in Appendix 172 

1. 173 

 174 

2.2 | Conversions 175 

To make the dataset consistent, we homogenized the units of stocks, fluxes and rates into 176 

gC m-2, gC m-2 year-1, and year-1, respectively (noted as “g g-1 year-1” for uptake rates, for 177 

clarity). Data originally not provided in carbon units (21%) were converted with 178 

commonly accepted conversion factors, using preferentially the most specific one 179 

depending on the level of information available (see Table S1.2 for factors). Flux and rate 180 

data provided on timescales shorter than a year (19%) were scaled up to a year assuming 181 

standardized numbers of growing days per climatic zone (Garonna et al., 2014). We also 182 

had to convert volume to areal units for some data on aquatic systems. We integrated 183 

metrics over the relevant depth of water column, which could be average depth (e.g., 184 

shallow stream) or depth relevant to pelagic production (e.g., Secchi depth for gross 185 

primary production in pelagic systems). We standardized soil and sediment organic 186 

carbon data by integrating values over the first 30 centimetres depth. Complete details on 187 

these unit conversions are provided in extended methods (see Appendix S1). 188 

 189 

2.3 | Data analysis 190 

Our goal was to analyse the variation and covariation of the focal ecosystem variables 191 

across ecosystem types, E, and climatic zones, C. To reach this goal we used three 192 

complementary steps: (1) we used linear models to quantify the relative contribution of E 193 

and C in explaining the variance, and to test mean differences within each ecosystem 194 

variable; (2) then, we examined covariation between ecosystem variables with Pearson’s 195 

correlation tests, using a bootstrapping procedure so that we could include the variance 196 

even though data for the different ecosystem variables were measured in different sites; 197 

(3) finally we used Pearson’s correlation to test the relationships between ecosystem 198 
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variables and latitude for each ecosystem type, to further analyse climatic modulation of 199 

ecosystem functioning. Together, these three approaches provide a holistic view on 200 

ecosystem functioning in the three-dimensional space of stocks, fluxes, and rates.  201 

 202 

2.3.1 | Differences among climatic zones (C) and ecosystem types (E) 203 

As a first step, we ran a two-way ANOVA on each ecosystem variable to evaluate the 204 

extent to which they were explained by climatic zones (C), ecosystem type (E) and their 205 

interaction (C:E). We applied the linear model y ~ C + E + C:E to log-transformed data. 206 

The few zero values of biomass, detritus and GPP (seven in total) were removed from 207 

this analysis to allow for log-transformation. NEP data were not log-transformed due to 208 

negative values. We also carried out these two-way ANOVAs on pooled categories of 209 

variables, for stocks (biomass, detritus, and organic carbon), gross fluxes (i.e., GPP, ER), 210 

and rates (uptake and decomposition rates). We scaled each variable between 0 and 1 211 

before grouping to avoid giving different weights to variables among E x C combinations 212 

due to different numbers of data points. Because the residuals were not homogenously 213 

distributed, we repeated the model design using more conservative non-parametric 214 

Kruskal-Wallis tests on ranks, followed by post-hoc multiple comparisons based on rank 215 

sums to identify the groups that were significantly different; parametric and non-216 

parametric tests give the same results on effect significance, so we report ANOVAs 217 

results here to visualize the variance partitioning, and non-parametric tests are reported in 218 

the supporting information (see full statistical results in Appendix S3 in Supporting 219 

Information, Tables S3.1 to S3.7). Finally, since C was found to be an important driver of 220 

fluxes and decomposition rate in the above analysis, and C:E interactions were 221 

significant, we investigated further climate sensitivity of these variables by comparing the 222 

variance explained by C within each ecosystem type. For that, we ran a series of one-way 223 

ANOVAs on GPP, ER and decomposition rates of each individual ecosystem type with C 224 

as the explanatory variable. Desert and Agroecosystem were excluded from this last 225 

analysis since we only had data from one climatic zone.  226 

 227 

2.3.2 | Covariation among ecosystem variables 228 
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As a second step, we examined the correlations among ecosystem variables across 229 

ecosystems and climates. Since data were measured at different sites for each ecosystem 230 

variable, we did not have measurements of all the variables per site. We therefore 231 

adopted a bootstrapping procedure (sampling with replacement) to integrate the 232 

variability present in our data. For each pair of ecosystem variables, we randomly 233 

sampled one value of each variable in the subsets of data corresponding to each 234 

Ecosystem type x Climatic zone combination (E x C), and tested the correlation between 235 

variables with Pearson’s test. We repeated the sampling and test 10,000 times. All values 236 

were log-transformed; therefore, we excluded the few zero values mentioned above. We 237 

display the distributions of the 10,000 Pearson correlation coefficients, and provide the 238 

mean of these distributions and the percentage of significant correlations to assess the 239 

direction and strength of the relationships between ecosystem variable pairs. Correlations 240 

on subsets of data in which pairs of variables were available per site confirm that the 241 

bootstrapping approach is conservative (Appendix S2.4, Figs S2.10 and S2.11, Table 242 

S3.13). Finally, we synthetize the average trends in ecosystem functioning by displaying 243 

the median values of each E x C combination in the 3-D space defined by stocks 244 

(biomass, organic carbon, and detritus), gross fluxes (GPP and ER) and rates (uptake and 245 

decomposition). We scaled the values of each ecosystem variable between 0 and 1 before 246 

pooling them in broader categories (i.e., stocks, fluxes and rates) to avoid biases due to 247 

different numbers of data point per E x C x V combination (V for ecosystem variable).  248 

 249 

2.3.3 | Latitudinal trends 250 

As a third and final step, we analysed the correlations between ecosystem variables and 251 

latitude for each ecosystem type covered on multiple climatic zones (agroecosystem and 252 

desert were excluded) using Pearson’s two-sided correlation tests (Table S3.8) This 253 

analysis was carried out on the 87% of the data for which we could obtain geographical 254 

coordinates. The rest of the data originates from sites with unspecified coordinates, or 255 

were estimated at scales too broad (e.g., GPP of boreal forest in Canada) for coordinates 256 

to be meaningful.  257 

 258 

2.4 | Software 259 



Multivariate ecosystem functioning     

 11 

We analysed the data and plotted the figures with the open source software R version 260 

3.3.3, using the R-packages maps (Becker & Wilks, 2018), vioplot (Adler, 2018), 261 

minpack.lm (Elzhov, Mullen, Spiess, & Bolker, 2016), plot3D (Soetaert, 2017) and 262 

dunn.test (Dinno, 2017). See Appendix S1 for more details. Final artwork was realized 263 

with Illustrator CC 22.0.1. 264 

 265 

3 | RESULTS 266 

3.1 | Variance explained by ecosystem types (E) and climatic zones (C) 267 

All stocks, gross fluxes (GPP and ER), and rates vary significantly among ecosystem 268 

types (E) and climatic zones (C), (see Fig. 3) according to both parametric and non-269 

parametric tests (see Tables S3.1-S3.5). Main and interactive effects (C, E versus C:E) for 270 

each ecosystem variable are all highly significant (Table S3.1). The ANOVAs on pooled 271 

categories (stocks, fluxes and rates) show that E, C and E:C explained about 58% of the 272 

total variance (Table S3.2). When considering individual ecosystem variables, the 2-way 273 

ANOVAs show that more variance is explained for organic carbon (91%) and biomass 274 

(78%) and less for NEP (39%), GPP (57%), and detritus (55%) (Fig. 4a). On average 275 

across the different ecosystem variables, C, E, and C:E represent 18%, 71% and 11% of 276 

the variance explained, respectively. While ecosystem type (E) corresponds to most of 277 

the explained variance, notably for stocks (91%), climatic zones also modulate ecosystem 278 

variables, especially fluxes and decomposition rates (C effect represents 42% and 27% of 279 

the explained variance, respectively, compared to 5% in stocks). This climatic 280 

modulation, however, is highly variable among ecosystem types for some variables, for 281 

instance for GPP, which depends strongly on climatic zones for forests (where climate 282 

explains 66% of the variance) but not for streams (where climate is not significant). By 283 

contrast, the climatic effect on ecosystem respiration (ER) is relatively homogenous 284 

across ecosystems (see Fig. 4c, Tables S3.6 and S3.7). Lastly, interactive effects between 285 

ecosystem types and climatic zones appear to be especially important for NEP and 286 

detritus (27% and 22% of explained variance, respectively; see Fig. 4a and Table S3.1), 287 

indicating that the direction of climatic effects varies across ecosystem types. 288 

 289 
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3.2 | Stocks, fluxes, and rates’ variation across ecosystem types 290 

Stocks, fluxes, and rates vary widely but consistently among ecosystem types. Moreover, 291 

ecosystem types cluster at distinct positions in the space defined by ecosystem variable 292 

pairs, and this clustering drives most of the correlations observed between variables 293 

(Figs. 5 and S4.1). On a log-log scale, stocks, fluxes and rates correlate positively within 294 

each category. For instance, ecosystem types displaying high biomass also have high 295 

organic carbon stocks (Fig. 5a), and those displaying high GPP also show high ER (Fig. 296 

5b). While such relationship between GPP and ER is expected in systems where 297 

productivity is driven by autotrophic organisms like in terrestrial ecosystems (Chen et al., 298 

2015; see Fig. S2.10, and discussion in Appendix S2.4), it could be assumed to be 299 

disconnected in heterotrophic ecosystems where production is mainly driven by the 300 

detritivore biotic loop (e.g., in freshwater ecosystems). Surprisingly, we observe it across 301 

all ecosystem types regardless of their average auto- or heterotrophic status. On the 302 

whole, correlations we observe within stock, flux, and rate categories emerge mainly 303 

from differences among ecosystems types: globally, terrestrial ecosystems have high 304 

stocks and fluxes and low rates while aquatic ecosystems have low stocks and fluxes and 305 

high uptake and decomposition rates. Looking more into detail, stocks and fluxes 306 

decrease from forests to agroecosystems, grasslands, deserts and benthic marine systems, 307 

to finally be the lowest in streams, lakes, and pelagic marine systems (Figs. 5a, 5b), while 308 

rates are higher in streams and pelagic marine ecosystems than in the rest of ecosystem 309 

types (see Fig. 5c; see significantly different groups in Table S3.4). Stocks generally 310 

correlate positively with fluxes, such as biomass with GPP, but negatively with rates, 311 

such as biomass with uptake rate (Fig. 5 panels d and e, and Fig. S4.1), the later relation 312 

being also strongly conserved within ecosystems (Fig. S2.10). Thus, in systems 313 

sustaining more standing biomass, more biomass is produced in total but at a lower rate. 314 

The negative stock-rate relationships, however, does not hold for detritus and 315 

decomposition rates (Fig. 5f; but see the relatively opposed directions of these variables 316 

in a PCA on median ecosystems in Fig. S4.2).  317 

Overall, positioning median ecosystems in the three-dimensional space of stocks, fluxes 318 

and rates results in a gradient of functioning types (Fig. 6): forest ecosystems have the 319 

largest stocks and fluxes but low rates. Grasslands also have relatively slow biological 320 
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processes, but with lower stocks and fluxes than forests. Agroecosystems position close 321 

to grasslands but with noticeably higher rates. This is followed by deserts and benthic 322 

marine systems with intermediate stocks and fluxes. Finally, freshwater and pelagic 323 

marine ecosystems cluster in the region of lower stocks and fluxes but higher rates. In 324 

addition, fluxes and rates in freshwater and terrestrial ecosystems display a marked 325 

climatic-induced secondary gradient ranging from low values in arctic/boreal zones to 326 

higher values in temperate and arid zones, and highest values in tropical zones (see 327 

shapes in Fig. 6). 328 

 329 

3.3 | Climatic modulation 330 

A climatic imprint is most visible on fluxes and decomposition rates (Figs. 4a, 4b, Tables 331 

S3.1 and S3.2). In comparison, stocks vary less, and less consistently, with climate (Figs 332 

4b, S4.3). For instance, while we note a significant decrease in biomass with latitude in 333 

forests, an opposing trend can be found in marine pelagic ecosystems (Fig. S4.3, Table 334 

S3.8). By contrast, GPP, ER and rates systematically decrease with latitude (Figs 7, 335 

S4.4), although the relationship is not significant in all ecosystem types: for instance, 336 

GPP does not correlate with latitude in streams (Fig. 7a). This absence of a climatic effect 337 

was also apparent when using discrete climatic zones (see Fig. 4c and Table S3.6). 338 

Moreover, different responses of GPP and ER to latitude within ecosystem types might 339 

result in opposite response of Net Ecosystem Production (NEP) to latitude, for instance in 340 

grasslands versus streams: NEP decreases significantly with latitude in grasslands, while 341 

it increases in streams (Fig. 7d), a pattern confirmed with discrete climatic zones when 342 

comparing mean NEP of these systems in arctic and tropical zones (Table S3.9).  343 

 344 

4 | DISCUSSION 345 

By integrating quantifications of ecosystem functioning in the 3-D space of stocks, fluxes 346 

and rates, this synthesis provides a global overview of ecosystem functioning, its 347 

characteristics and variability within and among ecosystem types. Compared to previous 348 

work, our comparative and multivariate approach reveals a gradient of functioning. 349 
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Analogous to r-K ecological strategies at the species level, ecosystems have different 350 

typologies, either with fast biological processes and low storage (e.g., freshwater and 351 

pelagic systems), or slower processes but with large storage and production capacity 352 

(e.g., forests). Climate regulates the speed of this processing, modulating the position of 353 

ecosystems in the functioning space.  354 

4.1 | Ecosystem functioning types in a multi-dimensional space 355 

Functioning types – how material is stored and processed within ecosystems – align on a 356 

gradient from terrestrial ecosystems with high storage capacities, high fluxes, but slow 357 

biological rates, to aquatic ecosystems with low stocks and fluxes but fast biological 358 

rates. Forests versus streams and pelagic marine systems occupy the respective extremes 359 

of this gradient.  360 

We interpret these functioning differences observed at the ecosystem level as originating 361 

from fundamental differences in the type of organisms dominating resource use and 362 

primary production. Notably terrestrial versus aquatic physical conditions have selected 363 

contrasting producer types, especially in terms of individual size (Kenrick & Crane, 364 

1997). Terrestrial systems are dominated by large primary producers (trees and grasses), 365 

harbouring complex structures to uptake nutrients in soils and access to light (roots and 366 

stems). In pelagic waters of freshwater and marine systems, carbon enters through 367 

microscopic producers (phytoplankton), whose small sizes are optimized for osmotrophic 368 

nutrient uptake mode (larger surface to volume ratios of small organisms) and sinking 369 

avoidance. These differences in producers primarily impact carbon uptake and 370 

decomposition rates. We observe higher uptake rates in systems having smaller producers 371 

than in those having large ones (e.g., forests versus stream in Table S3.4), in line with the 372 

metabolic theory of ecology (MTE) and previous data compilations (Brown et al., 2004; 373 

Cebrian, 1999; Schramski et al., 2015): smaller organisms grow faster (Gounand et al., 374 

2016). Along with increasing size, which imposes energetic constraints on production 375 

rates, primary producers’ stoichiometry shows increasing C:N ratios (Elser et al., 2000; 376 

Sitters, Atkinson, Guelzow, Kelly, & Sullivan, 2015), leading to decreasing 377 

decomposability from aquatic to lignin-rich terrestrial systems (Cebrian & Lartigue, 378 

2004; Shurin, Gruner, & Hillebrand, 2006; Tiegs et al., 2019). Since aquatic conditions 379 
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also favour decomposition, decomposition rates decrease from aquatic to terrestrial 380 

systems and indirectly correlate positively with carbon uptake rates (Fig. 5c; e.g., 381 

between forest and pelagic marine ecosystems Table S3.4); both ecological processes go 382 

faster in streams and pelagic marine systems, and slower in forests, with benthic and 383 

grassland systems processing material at intermediate speed.  384 

Contrary to rates, stocks are higher in terrestrial than in aquatic systems. This necessarily 385 

results from among-ecosystem differences in input-to-output ratios for the different 386 

stocks. Indeed, forests accumulate more biomass and detritus than streams and pelagic 387 

systems, due to higher production to loss ratios, which could have several origins. 388 

Terrestrial systems experience less herbivory and slower decomposition due to a higher 389 

proportion of structural tissues and dry conditions (Cebrian, 1999; Cebrian & Lartigue, 390 

2004). By contrast, biomass and detritus in aquatic communities experience higher output 391 

fluxes of consumption, mortality, respiration, and export by currents or sinking (McCoy 392 

& Gillooly, 2008). In benthic sediments, however, carbon could accumulate in large 393 

stocks when detritus production rates and sinking input exceed local mineralisation 394 

(Duarte & Cebrián, 1996; Fourqurean et al., 2012).  395 

Ecosystems harbouring higher stocks also have higher fluxes (GPP and ER), resulting, 396 

for instance, in biomass correlating positively with GPP (Fig. 5d), as previously found for 397 

different community types (Hatton et al., 2015); the regression slope lower than 1 on log-398 

log scale indicates, however, that mass-specific uptake rates decrease with biomass across 399 

ecosystems (Fig. 5e). This second relationship also holds with a surprising consistency 400 

within ecosystem types (Fig. S2.10), but explanations of change in uptake rates based on 401 

individual size variation fail because community biomass rarely correlates with mean 402 

individual body mass (Hatton et al., 2015). In similar ecosystems, slower uptake rates 403 

with increasing biomass is better explained by variation in competition: if biomass raises 404 

with abundance of primary producers, then shading would reduce community uptake rate 405 

in high biomass ecosystems. Across broad types of producers, however, differences in 406 

size in itself could drive negative biomass-uptake rate relationships because size integrate 407 

not only differences in uptake efficiency but also in structural and stoichiometric 408 

differences. This likely explains much of the difference in stocks, fluxes and rates at the 409 

ecosystem scale (Allen, Gillooly, & Brown, 2005; Schramski et al., 2015). For instance, 410 
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trees build structural biomass involving complex molecules such as lignin and cellulose 411 

to optimize access to light and therefore production capacity, compared to algae, but this 412 

also lowers uptake and decomposition rates (Cebrian, 1999). In aquatic systems, uptake 413 

rate is fast but production capacity (GPP) is limited by access to light (Krause-Jensen & 414 

Sand-Jensen, 1998), notably in deep or turbid waters (84% of freshwater and 63% of 415 

benthic marine ecosystems in our data are net heterotrophic: more carbon is respired than 416 

locally produced). This interpretation is congruent with observations of strong positive 417 

correlations between carbon residence time and producer individual body mass across 418 

broad types of autotrophic ecosystems (Schramski et al., 2015).  419 

Overall, despite considerable variability in our dataset (see presentation in Appendix S2), 420 

functioning types emerge that we hypothesize are driven by both the dominant primary 421 

producer categories (e.g., tree, grass, algae), which would determine stocks’ general 422 

magnitude and potential activity rates, and by environmental constraints modulating the 423 

realized activity (e.g., water turbidity, water availability, temperature). 424 

 425 

4.2 | Variation of ecosystem functioning with climatic constraints  426 

The high variance observed in ecosystem variables at the broad organisational scale 427 

considered here must arise from variation in species’ functional traits or food web 428 

structure (Cornwell et al., 2008; Datry et al., 2018), or different availability in nutrients, 429 

which we do not examine explicitly, and also in response to climatic constraints. In 430 

particular, rates and fluxes of production and respiration (GPP and ER) consistently 431 

decrease from warmer to colder climates (see Figs. 7, S4.4 and Tables S3.3 and S3.8) as 432 

predicted by the MTE (Brown et al., 2004; Clarke, 2006; Gillooly, Brown, West, Savage, 433 

& Charnov, 2001), and in line with the quite universal temperature-dependency of 434 

biological rates observed across many taxa and systems (Gillooly et al., 2001; Yvon-435 

Durocher et al., 2012). Slowing down of biochemical reactions with decreasing 436 

temperature results in a relatively conserved decrease of biological rates along latitudes 437 

within ecosystems (see decomposition and uptake rates in Figs. 7 and S4.4). While the 438 

flux decrease with latitude is well quantified in some ecosystems, for instance thanks to 439 

the FLUXNET program (Yu et al., 2013), our results also show that the strength of the 440 
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response to latitude might also vary among processes and ecosystems, such as with 441 

production (GPP) and respiration (ER). As a result, net ecosystem production can 442 

respond to latitude in opposite directions among ecosystem types. In grasslands, NEP 443 

decreases with latitude (Fig. 7d) meaning that ER decreases less rapidly than GPP (Yu et 444 

al., 2013), maybe due to differences in soil and air temperatures. Conversely, NEP 445 

increases with latitude in streams (Fig. 7d, Table S3.8), and between temperate and arctic 446 

lakes (Table S3.9). In fact, by slowing down detritivore activity (ER), cold temperatures 447 

make freshwater less heterotrophic, as found by Demars et al. (2011) in Icelandic streams 448 

of different temperatures, even in the absence of any significant GPP decline. 449 

Stocks also vary among climates (see Tables S3.1–S3.3) but not in a systematic way 450 

across ecosystem types (Figs. S4.3, S4.6, Table S3.8). Environmental constraints which 451 

do not follow a latitudinal gradient, such as water availability in terrestrial systems, also 452 

affect the balance between input and output fluxes regulating stocks (Anderson-Teixeira, 453 

Delong, Fox, Brese, & Litvak, 2011; Yang, Yuan, Zhang, Tang, & Chen, 2011). For 454 

instance, drought limits more GPP than respiration, as observed in Europe during the 455 

exceptionally warm summer of 2003 (Ciais et al., 2005), and is associated with specific 456 

output fluxes such as erosion, depleting stocks in arid zones (Ravi, Breshears, Huxman, 457 

& D’Odorico, 2010). This illustrates how different constraints affecting fluxes in 458 

different ways might induce shifts in ecosystem functioning. 459 

 460 

4.3 | Perspectives: ecosystem functioning facing changes 461 

Integrating ecosystem stocks, fluxes, and rates in a single framework allows us to 462 

characterize a gradient of broad functioning types. Environmental constraints, such as 463 

climate, move the cursors of ecosystem within the functioning space, but the fine 464 

directions and possible magnitude of these movements are still to investigate. To develop 465 

fine predictions of process changes at the ecosystem level, we need more complete 466 

quantification of ecosystem functioning at the site level. The main limitation of our study 467 

is that not all variables are available for each site. Our bootstrapping procedure does not 468 

include constraints linking ecosystem variables within specific sites. Observing 469 

relationships despite this limitation demonstrates the strength of feedbacks between 470 
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variables at the cross-ecosystem level. A more mechanistic understanding of these 471 

feedbacks would require examining systematically the persistence of these relationships 472 

within ecosystem types, which we were able to do for GPP-ER and Biomass-uptake rates 473 

variable pairs (Fig. S2.10). Quantification of multivariate functioning at the site level 474 

would further allow us to define reference states in the functioning space, and to analyse 475 

deviations from these states with changes in environmental constraints or in community 476 

composition. This would be a necessary step for early detection and prediction of 477 

ecosystem functioning changes (Petchey et al., 2015). To go further, simple models using 478 

this general framework matter transformation should allow to compare the responses to 479 

perturbations of different ecosystem types and to identify testable mechanisms for 480 

potential variations. In that respect, incorporating the decomposition process would 481 

constitute an interesting mechanistic expansion of the trophic-level-focused ‘Madingley’ 482 

model (General Ecosystem Model; Harfoot et al., (2014)) to investigate indirect 483 

feedbacks of perturbations on the structure of ecosystems. Moreover, the absence of 484 

negative relationships between decomposition and detritus in our data (Fig. 5f) might be 485 

the imprint of cross-ecosystem linkages playing a significant role in ecosystem 486 

functioning: the signal is blurred by the high variability of detritus stocks and 487 

decomposition in freshwater ecosystems, likely because detritus in these systems often 488 

comes from terrestrial inputs (Collins, Kohler, Thomas, Fetzer, & Flecker, 2016; 489 

Gounand, Little, Harvey, & Altermatt, 2018). Thus, anticipating changes in ecosystem 490 

functioning and in the global carbon cycle could necessitate consideration of ecological 491 

processes at both local and meta-ecosystem scales (Gounand, Harvey, Little, & Altermatt, 492 

2018; Gounand, Little, et al., 2018). Overall, the patterns emerging from such global data 493 

synthesis could help evaluating mechanistic ecosystem models (e.g., Madingley) to 494 

generate hypotheses on dominant processes and factors driving ecosystem functioning. 495 

 496 

5 | Conclusion 497 

Acknowledging the multi-faceted nature of ecosystem functioning and the feedbacks 498 

linking these facets is crucial to develop a mechanistic understanding of ecosystems’ 499 

response to change. Our quantified comparison of ecosystem functioning among broad 500 
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ecosystem types and climatic zones integrates previous knowledge into a coherent 501 

framework based on material flow, and sets the basis for a mechanistic investigation of 502 

ecosystem multifunctionality.   503 
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Figures 680 

 681 

Figure 1 | Study design. 682 

a) Ecosystem functioning variables considered in the study for each Ecosystem type x 683 
Climatic zone combination shown in panel b. We compiled values of stocks (squares in 684 
a), fluxes (solid large arrows), and rates (arrows with feathers) from the literature. The 685 
dotted arrows denote production of detritus and decomposition flux, for which we did not 686 
gathered estimates. For decomposition, we compiled rates (arrow with feathers) –the 687 
proportion of detritus processed per unit of time– because they were more available than 688 
fluxes. GPP, ER, and U stand for Gross Primary Production, Ecosystem Respiration, and 689 
Uptake rate, respectively. Note that GPP is a flux, that is an amount of matter produced 690 
per unit of time and area, while U is a rate (i.e., mass-specific GPP), expressed in mass of 691 
carbon uptake per unit of biomass and time. In addition, we also gathered values of Net 692 
Ecosystem production (not shown in a) for all combinations displayed in panel b. 693 
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 695 
Figure 2 | Geographical distribution of the data. 696 

Each dot shows the geographic location of sites from which we obtained data. Colours 697 
denote the different ecosystem types. Note that for about 13% of the data either the 698 
coordinates are not provided or the geographical scale given is too large or too coarse to 699 
be meaningfully reflected in the map (e.g., geographical scale in original study given as 700 
“boreal forests of Canada”), thus these data points are not displayed here. The map is 701 
made with Natural Earth. Free vector and raster map data @ naturalearthdata.com. 702 

  703 
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 704 
 705 
Figure 3 | Carbon stocks, fluxes, and rate across ecosystems and climates.  706 
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Panels show different ecosystem functioning variables (top to bottom) across different 707 
ecosystem types (left to right) and for different climatic zones (colours). Ecosystem 708 
variables considered are a biomass, b organic carbon, c detritus stocks, d gross primary 709 
production (GPP), e ecosystem respiration (ER), f net ecosystem production (NEP), g 710 
uptake rate (i.e., mass-specific GPP), and h decomposition rate. Points give values, with 711 
“x” denoting outliers. Zero values are replaced by 0.005 to be displayed despite log scales 712 
and are given as “+” in the figure panels a, c and h). Boxplots give median (white line), 713 
25% and 75% percentiles (box), extended by 1.5* inter-quartile range (whiskers). Scales 714 
were adapted to maximise clarity. For that purpose, 3 very low values of NEP in tropical 715 
streams and 5 null values of GPP in temperate streams and an aphotic benthic site are not 716 
displayed here (but see figure 7). Tables S3.11 and S3.12 of Appendix S3 in Supporting 717 
Information report the numbers of values of each Variable x Ecosystem type x Climatic 718 
zone combination, and the groups given by non-parametric post-hoc test of multiple mean 719 
comparisons within each variable, following a significant Kruskal-Wallis test (see 720 
methods). 721 

 722 

  723 
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 724 

Figure 4 | Variance of ecosystem variables explained by climatic zone and ecosystem 725 
type. 726 

a Proportion of variance explained in a series of two-way ANOVAs performed on log-727 
transformed values of each individual ecosystem variable, with climatic zone (C) and 728 
ecosystem type (E) as explanatory variables; model: y ~ C + E + C:E. NEP, GPP, and ER 729 
stand for Net Ecosystem Production, Gross Primary Production and Ecosystem 730 
Respiration, respectively. One null value of biomass and of detritus in a desert and 5 of 731 
GPP were removed to allow log-transformation. In b, stocks (Biomass, Organic carbon, 732 
detritus), fluxes (GPP and ER) and rates (uptake and decomposition) are pooled into 733 
broader categories after the individual ecosystem variables are individually scaled. Panels 734 
c, d, and e show the variance explained by climatic zone in a series of one-way ANOVAs 735 
performed individually on GPP, ER, and decomposition rate for each ecosystem type (18 736 
models). Agroecosystem and desert ecosystems are removed because they are represented 737 
in only one climatic zone (temperate and arid, respectively). See full statistical results in 738 
Tables S3.1, S3.2 and S3.6. 739 

 740 
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 742 
Figure 5 | Relationships between ecosystem variables from bootstrap procedure.  743 

Points and bars give mean and standard deviation values, respectively, for the given 744 
ecosystem variables in each ecosystem type (colours) – climatic zone (shapes) 745 
combination. GPP and ER stand for gross primary production and ecosystem respiration, 746 
respectively. Black lines and grey areas give the mean linear regressions and the 95% 747 
confidence interval, respectively, of regressions realized in 10,000 iterations of 748 
bootstrapped values for each ecosystem x climatic zone combination (see methods and 749 
Appendix S1). The violin plots within panels show the distributions of Pearson’s 750 
correlation coefficients for these 10,000 series of bootstrapped values; the numbers give 751 
the mean value of this distribution and the percentage of significant correlations into 752 
brackets. The red lines show the limit value above and below which the correlation is 753 
significant, for positive and negative coefficients respectively. Mean and quantile 754 
regressions are not displayed when less than 75% of the correlations are significant (d). 755 
The equations for the mean regressions in log-log space are: (a) y = 1.31*x -0.48, (b) y = 756 
0.82*x + 1.13, (c) y = 1.72*x + 1.31, (d) y = 0.4*x + 3.75, (e) y = -0.58*x + 3.91. See 757 
relations from bootstrap procedure between other pairs of ecosystem variables in Fig. 758 
S4.1, and correlations for subsets of empirical data for which pairs of variables are 759 
available per site in Table S3.13, Figs S2.10 and S2.11, and Appendix S2.4 for 760 
discussion. 761 

 762 

  763 
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 764 

Figure 6 | Relative positions of median ecosystems in the ecosystem functioning 765 
space.  766 

Ecosystem types (colours, labels) in each climatic zone (shapes) according to the medians 767 
of stocks (biomass, organic carbon, detritus), fluxes (gross primary production, 768 
ecosystem respiration), and rates (mass-specific uptake and decomposition rates). Values 769 
are scaled between 0 and 1 within each ecosystem variable before pooling them into 770 
broader categories (i.e., stocks, fluxes, and rates) to avoid biases resulting from different 771 
numbers of data points among ecosystem x climate x variable combinations. Note that in 772 
each category, variables are pooled and not summed because it would be only meaningful 773 
for stocks. Then each variable has the same weight within each category of stocks, fluxes 774 
or rates. For purpose of clarity, scaled median values are double square root-transformed.  775 

 776 
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 778 

Figure 7 | Latitudinal trends in decomposition rates and Net Ecosystem Production.  779 

Regression lines for significant correlations between latitude and a gross primary 780 
production (GPP), b ecosystem respiration (ER), c decomposition rates (log-transformed 781 
values) or d net ecosystem production (NEP) and latitude, based on two-sided Pearson’s 782 
two-sided correlation tests. Solid circles show the data points. Colours denote ecosystem 783 
types. Pearson correlation coefficients and p-values are provided for the significant 784 
relationships (see colour legend for abbreviations of ecosystem types, and full details on 785 
statistical tests in Table S3.8). Significant correlations of stocks, uptake rates, and 786 
GPP/ER ratios with latitude are available in Figs. S4.3, S4.4 and S4.5, respectively. 787 

  788 
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Appendix S1 – Extended methods 

This appendix provides details on the methods used in this study. 

 

Data collection 

Our systematic search covered four broad categories of terrestrial ecosystems (forest, grassland and 
shrubland, agroecosystem, and desert) and four of aquatic ecosystems (stream, lake, pelagic ocean, 
and benthic ocean). We considered all ecosystems (if available) in five major global climatic zones 
(arctic/alpine, boreal, temperate, tropical, and arid). Table S1.1 provides the definitions of 
ecosystem categories and climatic zones. For marine ecosystems, we grouped arctic, boreal, and 
temperate versus arid and tropical climates into Cold and Warm, respectively, to account for a 
lesser influence of climate on oceanic systems due to the buffering effect of large water volumes. 
For each relevant ecosystem x climatic zone combination, we collected data of carbon stocks 
(biomass, organic carbon, detritus), fluxes (gross primary production (GPP), ecosystem respiration 
(ER), and net ecosystem production (NEP)), and rates (uptake and decomposition rates) (see Fig. 
1). We used all possible combinations of these categories and terms with similar meanings (see 
Table S1.1) in our systematic search. A first systematic search was conducted by using all possible 
combinations of the names of each ecosystem type, climatic zone and ecosystem variable of 
interest, with small variation when relevant (e.g. “decomposition OR decay” for decomposition flux 
and rates). The different terminologies used across various research fields to describe the same 
processes, and the fact that the data of interest were often located in different sections of the studies 
(Methods versus Results) limited the efficiency of standardized keyword search across the data 
types. We therefore complemented the dataset with multiple customized searches until we compiled 
a minimum number of ten independent values of each variable of interest (i.e. different stocks, 
fluxes, and decomposition rate) for each ecosystem x climatic zone combination. Figure S1.1 shows 
the flow of this recursive process and the associated decision tree to integrate studies in the data set. 
Our aim was not to be completely exhaustive but rather to provide representative ranges of variation 
for the different ecosystem variables. In total, we collected 4,479 values from 604 published studies 
(this count does not include the 512 GPP/ER ratios provided in the data table). 
 
 
Calculations used for data extraction 

When only one or two of three major fluxes (gross primary production, ecosystem respiration, and 
net ecosystem production (GPP, R$ , and NEP, respectively) were reported, we estimated the 
unreported flux:  

NEP = GPP − R$  [1] 
NEP = NPP − R)  [2] 
NPP = GPP − R*  [3] 
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NPP  is the net primary production, R)  the heterotrophic respiration, and 𝑅,  the autotrophic 
respiration. The ratio GPP R$⁄  was also calculated to compare with the NEP data (see Appendix 
S2.3). 
 Uptake rates were rarely reported as such. Some relative growth rates (RGR) were 
documented, but often at species and not community level only and as instantaneous maximal 
values (potential growth). Since we wanted to analyse uptake rates relevant at the ecosystem level 
and at yearly timescale, we thus looked at studies reporting both GPP and biomass of autotrophs, 
B*, at the same sites and calculated community uptake rates U: 

U = GPP B*⁄    [4] 
As measures of decomposition rates, we collected values of 𝑘, the first order constant in the 

classical exponential decay model: 
D2 = D3(1 − e789)  [5] 

with D2 the decomposition flux and D3	the detritus stock. When not directly provided, we derived k 
with one of the equations proposed by (Cebrian & Lartigue, 2004) depending on the data available 
in the study:  

D< = D<=e
78(979=)  [6] 

D2 = (D> − 𝐸)(1 − e789) [7] 
In Equation [6], D< is the detrital mass at time 𝑡 and D<= the initial detrital mass. This equation was 
used when decomposition was estimated as the proportion of detrital mass loss (1 − D< D<=⁄ ) via a 
litter-bag experiment, a classical method in freshwater and terrestrial ecology. In equation [7], D2 is 
the (absolute) decomposition flux during the study period 𝑡, that is the flux from detritus stock to 
bacteria and other detritivores, D>  is the detritus production, and 𝐸  the detritus export (e.g. 
sedimentation). In few cases of ocean pelagic data, we used the microbial loop of primary 
production versus bacterial production to parameterize D> and D2, respectively. If not available, the 
export rate was set to 0, leading to 𝑘 underestimation, which is conservative in our cross-ecosystem 
comparison given that 𝑘 is already at the higher end of the range in these pelagic systems.  
 
Unit conversions 

Once collected, we standardized values by converting them all into areal carbon units, that is, gC m–

2 for stocks, and gC m–2 yr–1 for fluxes, and g g-1 yr-1 for mass-specific uptake rates, and yr–1 for 
decomposition rates. Figure S2.2 details this data processing. 

Carbon conversion: We used data in carbon units (gC) when it was directly provided in the 
study, or we calculated the values using carbon content when reported in the study (79% of data 
points). Alternatively, we converted the data into carbon units using the most specific conversion 
factor available depending on the level of detail about the material of interest (see Table S1.2 for 
conversion factors). For uptake rates, mass-normalization often made conversions unnecessary. 
Data were converted for calculations to homogenize units of GPP and autotrophic biomass when 
needed. For decomposition rates, we did not transform units into carbon. We made the most 
parsimonious assumption that carbon loss rate is identical to loss rate in the unit provided (generally 
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dry weight or ash-free dry weight). While this is a simplification, we concluded that this best 
allowed us to keep measurements consistent across data sources, in the absence of more detailed 
information.  

Time extrapolation: 65% of local fluxes or rates were already provided in yearly units. For 
the others, we extrapolated to the year by using the number of days in the growing season as 
reported in the study, or the ice-free period in cold climates. When growing season length (GSL) 
was not specified in the study we used averaged estimates detailed by Garonna et al. (2014) for the 
different climatic zones in Europe (Mücher, Klijn, Wascher, & Schaminée, 2010): 181 days for 
temperate climate (mean of “atlantic” and “continental”), 155 days for boreal, 116 days for arctic, 
and 163 days for arid systems (mean of “Mediterranean” and “steppic”). We assumed no strong 
seasonality in tropical climates (365 days of GSL). We did not apply any conversion if the value 
was measured on a study period longer than the above GSL for the corresponding climate. 

Volume to area conversions and depth integration: Some data were given per unit of 
volume. For freshwater systems, we converted the data into area units by integrating them over the 
water column, using the mean depth of the river or lake. When not directly available in the study we 
calculated depth by dividing the volume per the area in lakes, or by estimating depth from discharge 
in rivers with the formula depth = 𝑐 × 𝑄D , with 𝑐 = 0.2 , 𝑓 = 0.4 and 𝑄 the discharge in m3 s–1 (see 
Rodriguez-Iturbe & Rinaldo (1997)). For small catchment areas, that is <1 km2, we estimated the 
depth to be 5 cm based on known river scaling-properties (Rodriguez-Iturbe & Rinaldo, 1997). For 
marine data, notably production in the pelagic zone, studies generally provide a meaningful depth, 
which defines the euphotic zone such as the Secchi depth or the 1% light inflow depth. We 
integrated values in volume units over this depth, and to 100 m depth when only sampling depths 
were provided. For terrestrial and benthic marine ecosystems, carbon in soils or sediments was 
standardized by integrating it over the thirty first centimetres. 
 

Statistical analyses 

Firstly, we performed two-way analyses of variance (ANOVA) to determine the contribution of 
ecosystem type E and climatic zone C in explaining the variance within each ecosystem variable 
and within broad categories of variables, that is, stocks, fluxes and rates (see Methods in main text 
for details on broad categories, Fig.4, Tables S3.1, S3.2). The linear model used was y ~ C + E + 
C:E, with y being one of the seven ecosystem variables. Since variances were not homogenous, we 
performed non-parametric Kruskal-Wallis tests on ranks for multiple mean comparisons to test the 
mean differences among climatic zones (Table S3.3), among ecosystem types (Table S3.4), and 
climatic zone x ecosystem type combinations (Table S3.5). Results between parametric and non-
parametric tests were identical. We analysed further climatic influence on GPP, ER and 
decomposition rate within each ecosystem type (excluding deserts and agro-ecosystems which are 
represented only in one climatic zone). We performed both one-way ANOVAs (Table S3.6) and 
non-parametric Kruskal-Wallis tests on ranks (Table S3.7), on those 18 ecosystem variables x 
ecosystem type combinations, with climatic zone as explanatory variable. For all the above analyses 
we used the initial five categories of climatic zones (i.e., arctic. boreal. temperate. tropical and arid), 
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but we also performed the non-parametric tests adding the pooled categories “Warm” (i.e., tropical 
+ arid) and “Cold” (i.e., arctic, boreal, temperate) for marine systems to provide the groups 
corresponding to the figure displaying the data (Fig. 3; Table S3.12). After each Kruskal-Wallis 
test, we performed a post-hoc test of multiple comparisons on rank sums to get the groups. For that 
we performed a Dunn’s test using the dunn.test R-package (Dinno, 2017). 

 Secondly, we analysed the covariance between pairs of ecosystem variables across 
ecosystem types. We used a bootstrapping procedure to include the variance present in our data 
despite independent origins between ecosystem variables (see Methods in main text for more details 
on this procedure). We performed two-sided Pearson’s correlation tests on the set of 10,000 
bootstrapped data for each pair of ecosystem variables. We display the distributions of the 10,000 
Pearson correlation coefficients, and provide the mean of these distributions and the percentage of 
significant correlations to assess the direction and strength of the relationships between ecosystem 
variable pairs. In addition, we visualize the variability by showing both the standard deviation of 
ecosystem variables’ distributions (bars in Fig. 5, Fig. S4.1) and the 95% confidence interval (CI) 
derived from linear regressions made on the series of bootstrapped values (shaded areas). CIs were 
calculated for 1,000 values along the x-axis, for which we recorded the y-values predicted by each 
of the 10,000 linear regressions; the boundaries of the shaded area correspond to the 95% 
confidence interval of the y-values distributions along x-axis. Figures also show the ‘mean’ 
regression line defined by the mean slope and intercept (Fig. 5, Fig. S4.1). Note that we minimized 
the sum of orthogonal distances to the line rather than of residuals squares in these linear 
regressions to avoid side bias (we do not assume that one of the two variable explains the other 
one). Furthermore, we carried out a Principal Component Analysis (PCA) on median values of the 
variables in each E x C combination to examine the relative position of ecosystems in the space 
defined by all individual ecosystem variables (see Fig. S4.2). We corroborated our general findings 
by performing correlation tests on the subsets of data for which pairs of variables were available per 
site (see discussion in Appendix S2 section S2.4, Figs S2.10 and S2.11, and Table S3.13). 

 Thirdly, we analysed the correlations between ecosystem variables within each ecosystem 
type and latitude, using two-sided Pearson’s correlation tests. In Table S3.8, we report the results of 
all these tests, along with slopes and intercepts of the corresponding linear regressions when the test 
was significant. 

 

Software 

We analysed the data and plotted the figures with the open source software R version 3.6.1(R Core 
Team, 2019) and different R-packages: 

- Figure 1 (to show the map): maps (Becker & Wilks, 2018)  
- Figures 5 and S4.1: vioplot (Adler, 2018) to show the distribution of correlation coefficients, 

minpack.lm (Elzhov, Mullen, Spiess, & Bolker, 2016) for the linear regression and, ade4 
(Dray & Dufour, 2007) to add a scatter plot; 

- Figure 6: plot3D (Soetaert, 2017); 
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- Figure S4.2: FactoMineR for the PCA (Le, Josse, & Husson, 2008); 
- Statistical tests: pgirmess (Giraudoux, 2018) (post-hoc tests of multiple mean comparison on 

rank sums), dunn.test (Dinno, 2017) (post-hoc test of multiple mean comparison on rank 
sums), multcompView (Graves, Piepho, Selzer, & with help from Dorai-Raj, 2015)(to find 
the groups); 

- Figure S2.2: RColorBrewer (Neuwirth, 2014)for the colours. 
Final artwork was realized with Illustrator CC 22.0.1.  
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Table S1.1 | Definitions of ecosystem and climate categories. 

 Definition Example ecosystems 

Climatic zones   

Arctic 

Extreme temperature limitation of growing season length, 
with abiotic conditions not supporting tree growth in arctic, 
subarctic, and alpine zones; OR high latitude oceans, 
generally above 66.5° 

Tundra (grassland) 

Alpine grassland 

Boreal 

Strong temperature limitation of terrestrial growth, but 
environment supports tree growth. Covers northern parts of 
North America, Europe, and Russia from latitudes 50° to 55°; 
OR oceans between 50° and 66.5°  

Taiga (forest) 

Sub-alpine forest 

Temperate 
Seasonal terrestrial growth with some temperature limitation. 
Covers latitudes between 23.5° and 50° to 55°, including 
oceans in this latitudinal range 

Beech forest 

Tropical 
Warm terrestrial tropical, sub-tropical, equatorial systems not 
limited by drought between 0° to 23.5° latitude (including 
subtropical system), including oceans in this latitude range 

Savanna (grassland), rainforest 

Arid 

Severely water-limited terrestrial systems at all latitudes, 
including arid, semi-arid, xeric, xerophytic, xeromorphic, 
Mediterranean systems, continental, warm or cold, and polar 
deserts 

Garrigue (grassland), shrubland 
(grassland or forest, depending on the 
canopy), chaparral (grassland), steppe 
(grassland), caatinga (forest), cerrado 

Ecosystems   

Forest Complete vegetation cover with trees as dominant vegetation; 
tree canopy covers most of the surface 

Rainforest, caatinga, woodland, some 
shrubland, cerrado 

Grassland and 
shrubland 

Complete vegetation cover. but with only very few or no 
trees; vegetation dynamics dominated by water limitation, 
fires, and grazing. 

Steppe, savannah, meadow, prairie, 
tundra, old field, some shrublands, 
herbaceous rich-fen vegetation 

Desert Extreme growth limitation by water availability. with little 
vegetation distributed in remote patches  Sandy land 

Agro-ecosystem 
Ecosystems devoted to crop production or cattle grazing, 
often fertilized or irrigated to remove nutrient or water 
limitations for growth 

Cropland, pasture, field, vineyard, 
orchard 

Stream Running freshwater and lotic systems of all sizes. including 
rivers Creek, brook, river, stream 

Lake Standing (lentic) freshwater systems  Reservoir, lake, pond 

Ocean All salt water ecosystems with no emerged vegetation, 
including internal seas Sea, ocean shelf, estuary, lagoon 

Ocean pelagic Ecosystems in the open water columns of oceans and seas  Upwelling system, open ocean 

Ocean benthic Ecosystems at the bottom of oceans and seas Coral reef, sea grass bed, eelgrass 
meadow, kelp forest, deep-sea flour 

 

  



Supporting information: Multivariate ecosystem functioning    Gounand et al. 

 9 

Table S1.2 | Factors used for conversions into grams of carbon. 

KJ = kilojoule; Kcal = kilocalorie; mol C = mole of carbon; g CO2 = gram of carbon dioxide; g O2 
= gram of di-oxygen; mol O2 = mole of di-oxygen; g WW = gram of wet weight; g DW = gram of 
dry weight; g AFDW = gram of ash-free dry weight. Values into brackets give the percentage of 
raw values converted using a given factor.  

Type of material KJ Kcal mol 
C 

g 

CO2 

g 

O2 
mol 
O2 

g 
Chla 

g 
WW 

g 

DW 
g 

AFDW 

Organic Tissue a 
0.02 

(0.08%) 

0.09 
(0.10%) 

12 
(3.01%) 

0.2727 
(2.46%) 

  
 0.09 

(0.94%) 

0.45 
(2.70%) 

0.5 
(4.39%) 

Productivity, photosynthetic 
quotient = 1.2 b     

0.3125 
(3.33%) 

10 
(0.26%) 

 
   

Respiration, respiratory 
quotient = 1ab     

0.375 
(3.55%) 

12 
(0.26%) 

 
   

Non-woody primary producer 
terrestrial c       

 
 

0.3* 
(3.11%) 

 

Algae, sea grasses c       
50 

(0.76%) 

1/16.7 
(0.12%) 

1/2.92 
(1.06%) 

 

Arthropodsd       
 

 
0.496 
(0.22%) 

 

a from Table 1 p26 in Weathers, Strayer, & Likens (2013), and references therein. 
b from supplementary references: Duarte et al., (2010); Huchette, Beveridge, Baird, & Ireland (2000); Irons III & 
Oswood (1997). 
c from Table 2.5 p26 in Opitz (1996) for conversions factor from WW and DW; Conversion factor for Chl-a from 
Peterson, Hobbie, & Corliss (1986).  
d from Small, Torres, Schweizer, Duff, & Pringle (2013). 

* used general conversion factor 0.45 for DW in deserts and arid grasslands where the vegetation includes woody 
species. 



Supporting information: Multivariate ecosystem functioning    Gounand et al. 

 10 

 
Figure S1.1 | Decision tree of the data collection process.  

Steps 1, 2, 10, 12 describe the recursive steps of data search. Steps 3 to 9 describe the decision tree 
to include or not a paper in our collection.  
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Figure S1.2 | Data treatment.  

Conversions applied to raw value to homogenize units to g C m-2, g C m-2 yr-1, and yr-1, for stocks, 
fluxes, and rates, respectively. Percentage refer always to the whole data set. Notes: 1 Some lake 
mean depths were found elsewhere when not provided in the study. 2 We estimated river mean 
depth with discharge and lake mean depth with area and volume when not directly provided. 3 
Secchi or 1% light attenuation depths were used to integrate biological fluxes and stocks when 
provided. 4 GSL: Growing Season Length. 5 mean GSL values used to standardize: 116, 155, 163, 
and 181 days for arctic, boreal, arid, temperate climatic zones, respectively (see explanations and 
references in Appendix S1).  
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Appendix S2 – Data set presentation 
This appendix presents the data set, relevant information on its content and on some identified 
possible sources of variability, to facilitate a nuanced interpretation of the observed patterns. 

 

S2.1 Geographical location 

Data are spread over the world (Fig. 2), with a typical under-representation of the southern 
hemisphere, notably for terrestrial and freshwater ecosystems. This tendency is illustrated by 
deserts, for instance, which are mainly represented by North American and Chinese deserts, and 
almost no data for African ones. Partitioning of individual variables shows no obvious geographical 
clustering (Fig. S2.1). 

 

S2.2 Data set structuration among studies and sites 

Half of the studies consider a single site, and less than 15% of the studies consider more than five 
sites (Fig. S2.2a, b). Similarly, most studies (46%) focus on a single ecosystem variable, while 34% 
of the studies consider two to three variables (Fig. S2.2c, d), which was often either several fluxes 
or several stocks; since a special collection effort was made on finding papers which provide both 
GPP and autotrophic biomass to estimate uptake rates, biomass is also recurrently found with flux 
data in our data set. The 15% studies considering more than four ecosystem variables are often 
studies on single sites, mostly aquatic ones, with a whole ecosystem budget perspective. This 
includes, for instance, studies on carbon budget in freshwater ecosystems, or studies gathering 
estimates to feed ECOPATH models in marine or lake ecosystems. Overall, we most often have 
only one ecosystem variable estimate per site (56%), which justified our bootstrapping approach to 
examine pairwise variable correlations (Figs. 5 and S4.1). For example, estimates of decomposition 
rates come mostly from decomposition experiments which do not provide any of the other focal 
variables we are considering here. By contrast, some variables are almost systematically measured 
together at the same site, such as GPP and ecosystem respiration (491 data points), biomass and 
detritus (213 data points), or biomass and GPP due to our search of uptake rate estimates (252 data 
points). Tables S3.13 and figures S2.10 and S2.11 display the significant correlations tests for 
available pairs of variables at the site-level (see also section S2.4 below). 

 

S2.3 Data set composition and variance  

Variance in our data set comes from both natural variation among and within the ecosystems looked 
at, and diversity and variability in what was measured and how (i.e. variation caused by the 
measurement and methods). These two levels of variation cannot be separated in our data set but we 
here discuss the individual components of our study (stocks, fluxes, and rates), their respective 
specificities with respect to data origin and specific possible biases. Coefficients of variation for 
each ecosystem variable are provided in Table S3.11.   
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Biomass  

Biomass represents different components of the ecosystem depending on ecosystem type. Available 
estimates are most often representative for the organisms contributing the most to the biomass. In 
terrestrial ecosystems, or in benthic ecosystems such as dense seagrass beds or kelp forests, primary 
producers constitute most of the biomass (see Fig S2.3). In this case, methods are relatively 
standard (harvesting), but we gathered aboveground-only (A) and above+belowground (AB) 
estimates, which adds to natural variation (Fig S2.3b). Omitting roots necessarily underestimates 
biomass in terrestrial ecosystems, however, biomass increases significantly only in tropical forests 
when removing aboveground-only data (Fig. S2.4). In aquatic ecosystems, biomass also integrates 
heterotrophs (Fig S2.3b), especially when not dominated by macroalgae. In freshwater ecosystems, 
biomass measurements of the whole community are rare and estimates are often epilithon or 
macroinvertebrate-only data without fish. We thus acknowledge that at least half and a quarter of 
the data, for streams and lakes respectively, are obvious underestimations (Fig S2.3c). However, 
removing these partial data gives significantly higher mean biomass only in tropical streams (Fig 
S2.5). Overall, despite variability in the biomass estimates, we are confident that the strong among-
ecosystem differences we observe are robust to those differences in documented biomass. 

 

Organic carbon 

Storage of decomposed organic carbon differs fundamentally in terrestrial-benthic versus 
freshwater-pelagic ecosystems. The estimates for the former are carbon stored in the first 30 cm of 
soils or sediments and reach areal amounts of magnitudes 1000–10,000 g m-2. For the latter, 
estimates are organic carbon dissolved in the water column and range three to four orders of 
magnitude lower. Methods for both types of measurement are highly standardized and variance 
likely reflects the natural variation. 

 

Detritus 

Detritus is the ecosystem variable showing on average the highest coefficients of variation (Table 
S3.11). In terrestrial and macroalgae-dominated ecosystems detritus is most often the litter layer, 
sometimes also including dead standing stock. In freshwater ecosystems, detritus is not only 
autochthonous detritus but also detritus from terrestrial riparian systems in the form of fine or 
coarse particulate matter, and sometimes woody debris. Differences in adjacent terrestrial land use 
thus partly explain a high variance in freshwater detritus. In pelagic marine systems, detritus is 
particulate organic matter, which is either locally produced in the open ocean, or a combination of 
locally produced particulate organic matter and organic matter inflow from freshwater systems in 
estuaries. Sedimentation and fast decomposition through the microbial loop keep detritus stocks at 
low levels in the water column of these systems. 
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Ecosystem fluxes  

The methods to measure ecosystem fluxes vary strongly among ecosystem types (Fig. S2.6). 
Notably, in terrestrial systems, CO2 fluxes are mainly measured with the Eddy-covariance method 
from flux towers or chambers equipped with portable infrared gas analysers (73% of GPP 
estimates), but also satellite data (11% of GPP estimates; MODIS: MODerate Resolution Imaging 
Spectrometer) or more traditional methods involving the budget of biomass increment of plants 
(NPP) and autotrophic respiration (9%). In freshwater and benthic marine ecosystems, the dominant 
methods to estimate of photosynthesis and respiration are based on change of dissolved oxygen 
concentration in time or space (83% of GPP estimates), while in pelagic marine systems, 
incorporation of 14C into the biomass is the preferred method to estimate primary production (62%). 
This last method, however, gives estimates that lie between GPP and NPP depending notably on 
incubation time (Codispoti et al., 2013). To assess that this was not affecting our conclusions, we 
identified data which were estimated from this method with an incubation time longer than 6H or 
unknown (to be conservative), and were likely to underestimate GPP. This concerns 47/687 
estimates of GPP and 18/309 of uptake rates (calculated from local GPP and producer biomass). We 
applied a factor of 0.5 to these estimates, which is also very conservative according to some studies 
providing both NPP and GPP (e.g., factor of 0.88 in Carstensen, Conley, & Müller-Karulis (2003)), 
and re-run the analyses. This obviously has some quantitative effect, for instance lowering the 
strength of the relationship between latitude and GPP but increasing the one with uptake rates in 
pelagic marine systems, or increasing the strength of the correlations observed in Fig5b, 5d and 5e 
between pairs of ecosystem variables. Importantly, the general qualitative cross-ecosystem 
differences and the gradient of ecosystem functioning still hold (Figs. S2.7 and S2.8). Thus, while 
there are differences in the technical approaches how ecosystem fluxes are assessed, these 
differences do not change the qualitative relationships documented here. 

 

NEP versus GPP/ER  

NEP, shown in figure 3f, is a classical metric to assess ecosystem heterotrophy. However, 
differences in methodologies to measure GPP and ER can inflate errors when calculating NEP and 
might skew cross-ecosystem comparisons (Honti & Istvánovics, 2019). We therefore also examined 
the GPP/ER ratio, which removes such potential biases (Fig. S2.9). These latter ratios confirm the 
global trends in ecosystem heterotrophy with values generally above one in terrestrial and pelagic 
systems (78%) and often below one in freshwater and benthic ecosystems (78% also). Significant 
differences among climatic zones are identical for GPP/ER ratios and NEP (Table S3.3). GPP/RE 
also increases significantly with latitude in streams, while the weak negative correlation found for 
NEP in grasslands disappears (Table S3.8 and Figure S4.5). General differences among ecosystem 
types are also confirmed, although slightly weaker than for NEP (Table S3.4).  
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Carbon uptake rates 

The vast majority of our carbon uptake rate estimates is calculated from studies where both GPP 
and autotrophic biomass was provided. In terrestrial ecosystems, uptake rates might be slightly 
overestimated when only aboveground biomass is considered, while in aquatic ecosystems potential 
overestimations due to methods to estimate primary production (see above) did not lead to 
significant differences in mean uptake rates (Fig. S2.7). Our results are thus conservative regarding 
the higher uptake rates in aquatic compared to terrestrial ecosystems. 

 

Decomposition rates 

Decomposition rates are most often obtained from litter bag experiments in terrestrial, freshwater 
and benthic ecosystems. In terrestrial and benthic ecosystems, the litter used comes from the same 
type of ecosystem, often comparing the local decomposition of different leaf species found 
regionally, while in freshwater ecosystems litter is of terrestrial origin. Thus, differences between 
terrestrial and freshwater decomposition rates reflects mostly differences in physical factors and 
decomposer communities. It’s likely that decomposition of autochthonous production would 
increase estimate values in freshwater ecosystems because aquatic primary producers are way more 
labile than terrestrial ones (Elser et al., 2000). The observed differences are therefore conservative. 
Variations in decomposition rates among litter types of different species contribute a lot to within-
ecosystem variations.  

Estimates for pelagic marine ecosystems were not easy to find and the variability of our 
values also reflects strong methodological heterogeneity: Decomposition of local production was 
often estimated by the microbial loop, notably in the open ocean: that is the ratio of bacteria to 
phytoplankton production, in other words the production processed by bacteria (e.g., Cho & Azam, 
1988; Ducklow, 1999; Kirchman, Keel, Simon, & Welschmeyer, 1993). Our data set integrates also 
estimates from measurements of remineralization rates of dissolved or particulate organic carbon 
(e.g., Gan, Wu, & Zhang, 2016), which gives lower values than the bacterial loop, or from a 
classical decomposition experiment on salp carcasses (an important component of zooplankton in 
some places), which gave us a high-value outlier (Stone & Steinberg, 2016). 

 

S2.4 Correlations between pairs of ecosystem variable: bootstrap versus site-level data 

To examine the relationships between ecosystem variables we adopted a bootstrapping strategy (see 
Methods and Appendix S1) due to the low number of per-site data for some pairs of variables. For 
instance, despite very extensive targeted literature searches, we only found ten sites across all 
ecosystem types which had data to document both uptake and decomposition rates. Nevertheless, 
we also tested pairwise-variable correlations on subsets of our data set when estimates for both 
variables were provided (thereafter called ‘empirical’ correlations; see Table S3.13 for all 
significant correlations and figures S2.10 and S2.11). These empirical correlations support all the 
findings obtained from bootstrapped values. They also quantify some significant cross-ecosystem 
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relationships that are not indicated by our conservative bootstrap approach, for instance a negative 
relationship between detritus and decomposition, or positive relationships between ecosystem 
respiration and biomass or organic carbon (Table S3.13).  

Additionally, correlation tests were performed within each ecosystem type for each 
ecosystem variable pair, which reveals whether relationships between variables emerge solely from 
cross-ecosystem differences or also from constraints operating at the ecosystem level. Notably, the 
positive relationship observed between biomass and organic carbon (Fig. 5a) clearly results from 
cross-ecosystem differences, with no within-ecosystem relationships detected (Fig. S2.10b), while 
the strong positive correlation between GPP and ER is also highly significant within each 
ecosystem type (Figs. 5b and S2.10d). This relationship is well-known and expected, notably in 
terrestrial ecosystems where ecosystem respiration is the sum of autotrophic respiration, which is 
causally connected with GPP, and heterotrophic respiration, which consists mostly in soil microbial 
respiration fed by plant detritus and exudates. Note, however, that this relationship is weaker and 
less systematically expected in aquatic ecosystems. In these ecosystems, respiration can result 
dominantly from the decomposition of allochthonous matter and be relatively disconnected from a 
low in-situ GPP (for example in rivers with high riparian cover or benthic ecosystems in deep or 
turbid water).  

Interestingly, the strong negative relationship between ecosystem biomass and primary 
producer uptake rates holds both across and within ecosystem types (Fig. S2.10b). At cross-
ecosystem level, the relationship likely emerges from contrasting differences among primary 
producers (e.g., size, composition in structural tissues), as discussed in the main text. Within 
ecosystems, the relationship can be interpreted as a result of both specific variation in producers and 
competition: higher biomass can result from more individuals which fix carbon at a lower rate due 
to mutual shading for instance.   
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Figure S2.1 | Geographical distribution of data for each ecosystem variable.  

Each dot shows the geographic location of sites from which we obtained data. Colours denote the 
different ecosystem types. For about 13% of the data either the coordinates are not provided or the 
geographical scale given is either too large or too coarse to be meaningfully reflected in the map. 
The map is made with Natural Earth. Free vector and raster map data @ naturalearthdata.com. 
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Figure S2.2 | Data distribution among studies, sites, and ecosystem variables. 

Histograms (a, c, e) and pies (b, d, f) of (a, b) number of sites per study, (c, d) number of ecosystem 
variables per study and (e, f) number of ecosystem variables per site. The eight ecosystem variables 
considered here are: biomass, organic carbon, detritus stocks, gross primary production, ecosystem 
respiration, net ecosystem production, and uptake and decomposition rates. Some of the estimates 
were not directly provided but calculated from data provided in the studies (see Appendix S1). This 
analysis considers the data of 599 of the in total 604 studies in the complete synthesis; data from 
five studies had to be excluded as they provided only biome-scale estimates. 
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Figure S2.3 | Partitioning of biomass data. 

Panel a shows the percentage of biomass estimates representing only primary producers (P), only 
heterotrophs (H) or both primary producers and heterotrophs (P+H). Panel b shows the percentage 
of estimates of primary producer biomass that include only aboveground (A) or both above and 
belowground biomass (A+B) in terrestrial and marine benthic ecosystems. Panel c shows the 
percentage of biomass estimates which are assumed to represent the majority of community 
biomass (in dark; e.g. trees in forests) or which are known to be only a partial estimate (in light 
grey). Estimates of complete communities were difficult to found in freshwater ecosystems. 
Numbers of data points are provided on the top of each panel.  
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Figure S2.4 | Comparing data with or without aboveground-only biomass estimates. 

Biomass data across different ecosystem types (left to right) and for different climatic zones 
(colours). Transparent colour boxes are for data from which we removed aboveground-only 
estimates of primary producer biomass while solid boxes are for the complete distribution. Points 
give values, with “x” denoting outliers. Zero values are replaced by 0.01 to be displayed despite log 
scales and are given as “+”. Boxplots give median (white line), 25% and 75% percentiles (box), 
extended by 1.5* inter-quartile range (whiskers). Numbers of data points (n) are given on the panel 
top. Only tropical forests show a significant difference, denoted by an asterisk) between data with 
or without aboveground-only data (Wilcoxon test W=364; p-value = 0.03).   
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Figure S2.5 | Comparing freshwater data with or without partial biomass estimates. 

Biomass data across different ecosystem types (left to right) and for different climatic zones 
(colours). Transparent colour boxes are for data from which we removed the data that clearly 
underestimate biomass (e.g., invertebrate-, fish-, periphyton- or epilithon-only data). Points give 
values, with “x” denoting outliers. Boxplots give median (white line), 25% and 75% percentiles 
(box), extended by 1.5* inter-quartile range (whiskers). Numbers of data points (n) are given on the 
panel top. Only tropical streams show a significant difference, denoted by an asterisk) between data 
with or without partial biomass estimates (Wilcoxon test W=46.5; p-value < 0.001). 
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Figure S2.6 | Methods used to estimate GPP in our data set. 

EC: Eddy-covariance methods; IRGA: Infrared Gas Analyser. MODIS: MODerate Resolution 
Imaging Spectrometer (satellite data); “Budget” refers to methods adding measures of autotrophic 
respiration and NPP estimates from biomass increment measures. “14C short” refers to methods 
measuring the incorporation of 14C into biomass with incubation times up to 6 hours. “14C long” 
refers to methods measuring the incorporation of 14C into biomass with incubation times higher 
than 6 hours, or when the incubation time is not specified (to be conservative). “Oxygen” refers to 
method based on change in dissolved oxygen concentration in time or space. “Models” refers to 
different empirical models (for instance involving the construction of chlorophyll-a – irradiance 
curves or outputs of ECOPATH models fed with empirical estimates). “Other” includes methods 
for instance measures of CO2 based on pH titration or measure of nutrient uptake. 
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Figure S2.7 | Boxplots comparing data with or without correction of estimates from 14C 
method. 

 

GPP (top panel) and uptake rate data (bottom panel) across different ecosystem types (left to right) 
and for different climatic zones (colours). Transparent colour boxes are for data subsets in which 
estimates were divided by two when estimation involved the method of 14C incorporation with a 
long incubation time because the primary production estimation is thought to be then closer to net 
than to gross primary production (Codispoti et al., 2013). This concerns 47/687 values of GPP and 
18/309 of uptake rates, mainly in ocean pelagic and arctic lake ecosystems.  Points give values, with 
“x” denoting outliers. Zero values are replaced by 0.1 to be displayed despite log scales and are 
given as “+”. Boxplots give median (white line), 25% and 75% percentiles (box), extended by 1.5* 
inter-quartile range (whiskers). Numbers of data points (n) are given on the panel tops. Arrows 
highlight the decrease in median values. None of the Wilcoxon tests performed on pairs of 
corrected/not corrected data (individual pairs of solid and transparent boxplot) showed a significant 
mean difference, thus indicating that, overall, both qualitative and even quantitative differences due 
methodological differences in ecosystem flux measurement methods, have minor consequences on 
global patterns.   
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Figure S2.8 | Functioning type gradient including correction for 14C method. 

Relative positions of median ecosystem in the ecosystem functioning space: Ecosystem types 
(colours, labels) in each climatic zone (shapes) according to the medians of stocks (biomass, 
organic carbon, detritus), fluxes (gross primary production, ecosystem respiration), and rates (mass-
specific uptake and decomposition rates). Values are scaled between 0 and 1 within each ecosystem 
variable before pooling them into broader categories (i.e., stocks, fluxes, and rates) to avoid biases 
resulting from different numbers of data points among ecosystem x climate x variable 
combinations. For purpose of clarity, scaled median values are double square root-transformed. 
Arrows and grey shapes show the new position of median ecosystems when a correction factor of 
0.5 is applied on estimates of GPP and uptake rates which measurement involved the method of 14C 
incorporation with a long incubation time. In this case, primary production estimation is thought to 
be then closer to net than to gross primary production (Codispoti et al., 2013). 
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Figure S2.9 | GPP/ER ratios. 

Ratios of gross primary production (GPP) to ecosystem respiration (ER) across different ecosystem 
types (left to right) and for different climatic zones (colours). Points give values, with “x” denoting 
outliers. Boxplots give median (white line), 25% and 75% percentiles (box), extended by 1.5* inter-
quartile range (whiskers). Numbers of data points (n) are given on the panel top.  
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Figure S2.10 | Correlations among pairwise ecosystem variables (I –fluxes & rate).  

Shapes show the data points in different climatic zones. Colours denote ecosystem types. Lines 
show regression lines for significant correlations between selected ecosystem variables in the 
different ecosystem types, based on two-sided Pearson’s correlation tests. Pearson correlation 
coefficients and p-values are provided for these significant relationships, with the number of data 
points in brackets (see legend for abbreviations of ecosystem types). “ER” and “GPP” stands for 
ecosystem respiration and gross primary production, respectively. Uptake rates are GPP values 
divided by autotrophic biomass. Dotted lines show regression lines for significant correlation tests 
performed on all the points (all ecosystem types). “Tot” reports the corresponding statistics. 
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Figure S2.11 | Correlations among pairwise ecosystem variables (II – among stocks).  

Shapes show the data points in different climatic zones. Colours denote ecosystem types. Lines 
show regression lines for significant correlations between selected ecosystem variables in the 
different ecosystem types, based on two-sided Pearson’s correlation tests. Pearson correlation 
coefficients and p-values are provided for these significant relationships, with the number of data 
points in brackets (see legend for abbreviations of ecosystem types). Dotted lines show regression 
lines for significant correlation tests performed on all the points (all ecosystem types). “Tot” reports 
the corresponding statistics. 
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Appendix S3 – Statistical results 
Table S3.1 | Two-way ANOVAs on ecosystem variables.  
Results of seven analyses of variance (ANOVA) performed on ecosystem variables with climatic 
zone (C) and ecosystem type (E) as explanatory variables; model: y ~ C + E + C:E (statistics for 
Figure 4a). NEP, GPP, and ER stand for net ecosystem production, gross primary production, and 
ecosystem respiration, respectively. Degrees of freedom (DF), sum of squares (Sum Sq), F- and P- 
values of the significance tests, and proportion of variance explained, as well as of the explained 
variance for main and interaction effects are given.  

Response 
Variable 

Explanatory 
variable DF Sum Sq 

% of 
variance 
explained 

F-value P-value Sign.1 
% of the 
explained 
variance 

Biomass C 4 425.1 5.23 45.73 <0.001 *** 6.70 
(log values) E 7 5591.8 68.76 343.72 <0.001 *** 88.03 
 C:E 16 335.8 4.13 9.03 <0.001 *** 5.29 
 residuals 766 1780.2 21.89     
                  
Organic  C 4 288.5 4.09 62.92 <0.001 *** 4.46 
Carbon E 7 5990.8 84.85 746.56 <0.001 *** 92.49 
(log values) C:E 14 197.9 2.80 12.33 <0.001 *** 3.05 
 residuals 509 583.5 8.26     
                  
Detritus C 4 164.68 5.23 12.95 <0.001 *** 9.49 
(log values) E 7 1186.85 37.67 53.34 <0.001 *** 68.37 
 C:E 15 384.57 12.21 8.07 <0.001 *** 22.16 
 residuals 445 1414.46 44.90     
                  
NEP C 4 4004953 3.34 9.27 <0.001 *** 8.51 
 E 7 30288222 25.27 40.06 <0.001 *** 64.38 
 C:E 15 12742041 10.63 7.86 <0.001 *** 27.08 
 residuals 674 72804138 60.75     
                  
GPP C 4 382.52 16.85 63.69 <0.001 *** 29.70 
(log values) E 7 844.34 37.19 80.33 <0.001 *** 65.54 
 C:E 16 61.19 2.70 2.55 <0.001 *** 4.76 
 residuals 654 982.01 43.26     
                  
ER C 4 400.22 31.45 107.33 <0.001 *** 52.87 
(log values) E 7 319.26 25.09 48.93 <0.001 *** 42.18 
 C:E 15 37.50 2.95 2.68 <0.001 *** 4.96 
 residuals 553 515.60 40.51     
                  
Uptake  C 4 52.95 3.34 6.60 <0.001 *** 5.18 
rate E 7 887.84 55.96 63.24 <0.001 *** 86.79 
(log values) C:E 16 82.12 5.18 2.56 0.001 ** 8.03 
 residuals 281 563.60 35.52     
         
Decomposition  C 4 246.2 17.79 47.76 <0.001 *** 27.22 
rate E 7 571.85 41.33 63.39 <0.001 *** 63.24 
(log values) C:E 15 86.13 6.23 4.46 <0.001 *** 9.53 
 residuals 372 479.38 34.65     
                  

1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0.  
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Table S3.2 | Two-way ANOVAs on broad categories of ecosystem variables. 

Results of three analyses of variance (ANOVA) performed on broad categories of ecosystem 
variables with climatic zone (C) and ecosystem type (E) as explanatory variables; model: y ~ C + E 
+ C:E (statistics for Figure 4b). Stocks (biomass, organic carbon, detritus), fluxes (gross primary 
production and ecosystem respiration), and turnover rates (decomposition rate) are pooled within 
each of these categories after the ecosystem variables (log values) are individually scaled. Degrees 
of freedom (DF), sum of squares (Sum Sq), F- and P- values of the significance tests, and 
proportion of variance explained, as well as of the explained variance for main and interaction 
effects are given.  

Response 
Variable 

Explanatory 
variable DF Sum Sq 

% of 
variance 
explained 

F-
value 

P-
value Sign.1 

% of the 
explained 
variance 

Stocks C 4 58.48 3.25 37.68 <0.001 *** 5.26 
 E 7 1005.89 55.94 370.32 <0.001 *** 90.61 
 C:E 16 45.65 2.54 7.35 <0.001 *** 4.11 
 residuals 1773 687.99 38.26     
           
Fluxes C 4 285.71 22.68 151.07 <0.001 *** 42.24 
 E 7 355.86 28.24 107.52 <0.001 *** 52.60 
 C:E 16 34.98 2.78 4.62 <0.001 *** 5.18 
 residuals 1234 583.45 46.31     
           
Rates C 4 50.22 7.11 28.79 <0.001 *** 12.26 
 E 7 324.25 45.93 106.21 <0.001 *** 79.20 
 C:E 16 34.97 4.95 5.01 <0.001 *** 8.54 
 residuals 680 296.56 42.01     
                  

1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0.  
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Table S3.3 | Non-parametric tests for climatic effect on ecosystem variables. 

Results of Kruskal-Wallis tests on ranks (light headers) and groups given by multiple mean 
comparison post-hoc tests on rank sums (dark headers) performed on each individual ecosystem 
variable and on broader categories of ecosystem variables (i.e., stocks, fluxes and rates) testing the 
effect of climatic zone (C); model: y ~ C. Stocks (biomass, organic carbon, detritus), fluxes (gross 
primary production and ecosystem respiration), and turnover rates (uptake and decomposition rates) 
were pooled within each of these categories after the ecosystem variables were individually scaled. 
See below the table for abbreviations. Degrees of freedom (DF), number of data points (n), Chi-
squared and P- values of the Kruskal-Wallis tests are given. Significantly different groups have 
different letters.  

Ecosystem 
Variable 

Kruskal-Wallis test on ranks Multiple mean comparison post-hoc tests 
Chi-

squared DF n P-value Sign.1 Arctic Boreal Temp. Trop. Arid 
Biomass 39.04 4 795 <0.001 *** a bc b c bc 
Organic 
carbon 

22.10 4 535 <0.001 *** a ab c bc abc 

Detritus 26.56 4 473 <0.001 *** a ab b a ab 
GPP 121.78 4 687 <0.001 *** a b c d bc 
ER 165.74 4 580 <0.001 *** a b c d b 
NEP 21.29 4 701 <0.001 *** abc c a bc ab 
GPP/ER 19.33 4 512 <0.001 *** abc c a bc ab 
Uptake rate 10.76 4 309 0.030 * a a a a a 
Decomp. 
rate 

69.51 4 399 <0.001 *** a a b c a 

           
Stocks  76.74 4 1803 <0.001 *** a c b b b 
Fluxes  284.71 4 1267 <0.001 *** a b c d b 
Rates  26.16 4 708 <0.001 *** a ab bc c ab 
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: GPP = gross primary production; ER = ecosystem respiration; NEP = net ecosystem production; 
Decomp. Rate = decomposition rate; Temp = temperate; Trop = tropical. 
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Table S3.4 | Non-parametric tests for ecosystem type effects on ecosystem variables. 

Results of Kruskal-Wallis tests on ranks (light headers) and groups given by post-hoc tests on rank 
sums for multiple mean comparison (dark headers) performed on each individual ecosystem 
variable and on broader categories (i.e., stocks, fluxes and turnover rates) testing the effect of 
ecosystem type (E); models: y ~ E. Stocks (biomass, organic carbon, detritus), fluxes (gross 
primary production and ecosystem respiration), and turnover rates (decomposition rate) were 
pooled within each category after the ecosystem variables were individually scaled. Degrees of 
freedom (DF), number of data points (n), Chi-squared and P- values of the Kruskal-Wallis tests are 
given. Capital letters in dark headers are abbreviations for ecosystem types (see below the table). 
Significantly different groups have different letters. 

Ecosystem 
Variable 

Kruskal-Wallis test on ranks Multiple mean comparison post-hoc tests 

Chi-
squared DF n P-value Sign.1 F G A D S L OP OB 

Biomass 619.29 7 795 <0.001 *** c a a b d d d b 
Organic 
carbon 432.98 7 535 <0.001 *** a a ab abc e d cd b 

Detritus 210.81 7 473 <0.001 *** d b ab ac ab c c b 
GPP 374.01 7 687 <0.001 *** a d a bc b b bc c 
ER 246.14 7 580 <0.001 *** a e a bcd d b bc cd 
NEP 337.09 7 701 <0.001 *** a bc a bcd e d c bd 
GPP/ER 222.84 7 512 <0.001 *** a abc a abc d bd ac bc 

Uptake rate 163.44 7 309 <0.001 *** c a ab ac b b d ab 

Decomp. 
rate 

181.69 7 399 <0.001 *** a a ab a b a b b 

Stocks  1010.9 7 1803 <0.001 *** d a a bc c e ce b 
Fluxes  588.34 7 1267 <0.001 *** a d a bc c b bc c 

Rates 226.54 7 708 <0.001 *** a a ab a c bc d c 

1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: GPP = gross primary production; ER = ecosystem respiration; NEP = net ecosystem production; 
Decomp. Rate = decomposition rate; F = forest; G = grassland; A = agroecosystem; D = desert; S = stream; L = lake; 
OP = ocean pelagic; OB = ocean benthic. 

 

  



Supporting information: Multivariate ecosystem functioning    Gounand et al. 

 32 

Table S3.5 | Non-parametric tests of mean differences among E x C combinations. 
Results of Kruskal-Wallis tests on ranks (light row headers) and groups given by post-hoc tests on 
rank sums for multiple mean comparison (dark row headers) performed on each individual 
ecosystem variable testing the effect of ecosystem type (E) x climatic zone (C) combinations; 
models: y ~ EC. Number of data points (n), degrees of freedom (DF), Chi-squared and P- values of 
the Kruskal-Wallis tests are given. Significantly different groups have different letters. Note that for 
space reasons results are displayed in column (one Kruskal-Wallis test per column). Same tests but 
with clumped climatic variables, “Cold” and “Warm” for marine systems are shown in Table S3.12. 
See below the table for abbreviations. 

   Biom. Org. 
C 

Detritus GPP ER NEP Uptake Dec. 

Kruskal-Wallis 
test 

n 795 535 473 687 580 701 309 399 
Chi-sq. 641.42 449.51 275.68 448.63 385.65 375.77 197.50 272.62 

DF 27 25 26 27 26 26 26 27 
P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Sign.1 *** *** *** *** *** *** *** *** 
 Eco Clim         
Post-hoc test of 
multiplemean compa- 
rison 

F Boreal bg a bc abghi abfghijk abd abd ab 

 Temp g a b abg ab ad a abc 

 Trop g abc bcd a a abd ab abcdefg 

 Arid bg abc bcd abgh abfghi ad abcd ab 

G Arctic abc a bcdf cdefi cdel bcefgh abcde a 

 Temp acde ab abcdefg abgh abg abd abcdef abcdef 

 Trop bcg abc cdfg abgh abfg abcd abcdef abcdefgh 

 Arid acd abcd adefg bcdghi bcfghijkl abcdef abcdef abcdef 

 A Temp abc abc abcdefg ab ab a abcdef abcdefg 

 D Arid adef abcde ae cdef cde abcdef abcde abcdf 

 S Arctic efhi ef a ef de cefghi abcdef abcdefg 

  Boreal fhi f adefg ef cehjl hi cdef defghi 

  Temp fhi f defg ef cehijkl ghi ef efghi 

  Trop i f aefg cef bfgik i ef i 

  Arid fhi f adefg cef cehijkl eghi f ghi 

 L Arctic hi f adefg e d bcefgh bcdef abcdef 

  Boreal adefhi def aeg cef cde cefghi cef abcd 

  Temp fhi ef a cdefi cdehijkl eghi f defghi 

 OP Arctic defhi abcdef aefg ef cdejkl abcdf bcdef abcdefghi 

  Boreal abcdefghi - - bcdefghi - - abcdef - 

  Temp fhi cdef adefg cdfghi cdefghijkl abd f hi 

  Trop adefhi def a cdefghi bcdefghijkl abcdefgh f ghi 

  Arid fhi bcdef aefg cdefi cdel abcdefghi f abcdefghi 

 OB Arctic acdefhi - abcdefg abcdefghi bcdefghijkl abcdefgh abcdef bcdefghi 

  Boreal adefh abcd abcdefg cdefi cdel abcdefghi abcdef defghi 

  Temp adefh abcde bcdefg cdefi cdehijkl efghi f cdefghi 

  Trop acdefhi abcde aeg abdghi abfghijkl abcdefg cdef eghi 

  Arid acdefh abcdef bcd cdefhi cdefhijkl bcdefghi abcdef abcdefghi 
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: Eco = Ecosystem type; Clim = Climatic zone; F = forest; G = grassland; A = agro-ecosystem; D = 
desert; S = stream; L = lake; OB = ocean benthic; OP = ocean pelagic; Temp = temperate; Trop = tropical; Biom. = 
Biomass; Org. C = Organic carbon; GPP = gross primary production; ER = ecosystem respiration; NEP = net 
ecosystem production; Dec.= decomposition rate; Prod. = Productivity rate. 
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Table S3.6 | One-way ANOVAs on fluxes and rates of each ecosystem type. 

Results of 18 analyses of variance (ANOVA) performed on gross primary production (GPP), 
ecosystem respiration (ER) and decomposition rate within each ecosystem type, with climatic zone 
(C) as explanatory variable; model: y ~ C (statistics for Figure 4c-e). Values were log-transformed 
and three zero values of GPP removed for that reason. Agro-ecosystem and desert ecosystems were 
removed because they are represented in only one climatic zone (temperate and arid, respectively). 
Degrees of freedom (DF), sum of squares (Sum Sq), F- and P- values of the significance tests, and 
proportion of variance explained are given.  

Response 
variable 

Explanatory 
variable DF Sum 

Sq 
% of variance 

explained 
F-

value 
P-

value Sign.1 

GPP Forest  C 3 21.61 66.38 69.12 <0.001 *** 
  residuals 105 10.94     
 Grassland C 3 45.31 50.45 35.30 <0.001 *** 
  residuals 104 44.50     
 Stream C 4 30.01 - 2.35 0.055 NS 
  residuals 201 640.83     
 Lake C 2 61.17 38.07 18.75 <0.001 *** 
  residuals 61 99.49     
 Ocean  C 4 26.82 20.73 4.38 0.003 ** 
 pelagic residuals 67 102.52     
 Ocean C 4 38.35 36.72 8.56 <0.001 *** 
 benthic residuals 59 66.09     
            
ER Forest  C 3 17.85 58.78 39.45 <0.001 *** 
  residuals 83 12.52     
 Grassland C 3 48.41 56.08 37.88 <0.001 *** 
  residuals 89 37.91     
 Stream C 4 138.61 30.64 22.64 <0.001 *** 
  residuals 205 313.83     
 Lake C 2 35.63 45.36 21.17 <0.001 *** 
  residuals 51 42.92     
 Ocean  C 3 15.63 45.25 5.79 0.005 ** 
 pelagic residuals 21 18.91     
 Ocean C 4 33.69 30.05 5.37 0.001 ** 
 benthic residuals 50 78.43     
            
Decomp. Forest  C 3 51.97 41.78 17.7 <0.001 *** 
rate  residuals 74 72.43     
 Grassland C 3 46.62 32.05 9.75 <0.001 *** 
  residuals 62 98.84     
 Stream C 4 117.50 54.56 30.62 <0.001 *** 
  residuals 102 97.86     
 Lake C 2 36.88 24.56 8.30 <0.001 *** 
  residuals 51 113.26     
 Ocean  C 3 52.52 50.86 9.32 <0.001 *** 
 pelagic residuals 27 50.74     
 Ocean C 4 15.44 33.36 4.00 0.010 ** 
 benthic residuals 32 30.84     
                  
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0.  
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Table S3.7 | Non-parametric tests on fluxes and rates of each ecosystem type. 

Results of Kruskal-Wallis tests on ranks (light headers) and groups given by multiple mean comparison post-
hoc tests on rank sums (dark headers) performed on gross primary production, ecosystem respiration, and 
decomposition rate within each ecosystem type testing the effect of climatic zone (C); model: y ~ C. Agro-
ecosystem and desert ecosystems were removed because they are represented in only one climatic zone 
(temperate and arid, respectively). Degrees of freedom (DF), number of data points (n), Chi-squared and P- 
values of the Kruskal-Wallis tests are given. Significantly different groups have different letters.  

Eco 
Var 

Eco 
Type 

Kruskal-Wallis test on ranks Multiple mean comparison post-hoc tests 
n Chi-squared DF P-value Sign.1 Arc. Bor. Temp. Trop. Arid 

GPP Forest 109 71.91 3 <0.001 *** - a b c ab 
 Grassland 108 46.18 3 <0.001 *** a - c bc b 
 Stream 210 9.51 4 0.05 . a a a a a 
 Lake 64 29.75 2 <0.001 *** a b b - - 
 Oc. pelagic 72 17.60 4 0.001 ** a ab b ab a 
 Oc. benthic 65 24.08 4 <0.001 *** ab a a b a 
ER Forest 87 42.33 3 <0.001 *** - a a b a 
 Grassland 93 51.14 3 <0.001 *** a - c c b 
 Stream 210 44.70 4 <0.001 *** a ab b c b 
 Lake 54 26.91 2 <0.001 *** a b b - - 
 Oc. pelagic 25 12.36 3 0.006 ** a - b ab a 
 Oc. benthic 55 18.48 4 <0.001 *** ab a ab b ab 
Dec. Forest 78 38.32 3 <0.001 *** - a a b a 
 Grassland 66 26.19 3 <0.001 *** a - b b ab 
 Stream 107 61.97 4 <0.001 *** a ab ab c bc 
 Lake 54 16.23 2 <0.001 *** a a b - - 
 Oc. pelagic 31 16.48 3 <0.001 *** ab - b b a 
 Oc. benthic 37 11.74 4 0.019 * a a a a a 

1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: Eco Var = ecosystem variable; Eco Type = ecosystem type; GPP = gross primary production; ER = 
ecosystem respiration; Dec.= decomposition rate; Oc. = Ocean; Arc. = arctic; Bor. = boreal; Temp. = temperate; Trop. = 
tropical. 
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Table S3.8 | Correlations between ecosystem variables and latitude. 

Results of Pearson’s two-sided correlation tests between ecosystem variables within each ecosystem type 
and latitude (light headers) and slope and intercept of corresponding linear regression (dark headers) for 
significant correlations (P-value < 0.05) (statistics for Figs 7, S4.3, S4.4, and S4.5). Statistic t, degrees of 
freedom (DF), correlation coefficient (r), r squared, and P-values of the correlation tests are given.  

Ecosystem 
Variable 

Ecosystem 
type 

Pearson’s two-sided correlation test Linear regression 
t-stat. DF r r2 P-value Sign.1 Slope Intercept 

Biomass Forest -2.48 114 -0.23 0.05 0.014 * -84.27 13009 
 Grassland -0.97 111 -0.09 0.01 0.332 NS   
 Stream 1.57 125 0.14 0.02 0.118 NS   
 Lake 0.98 60 0.13 0.02 0.329 NS   
 Oc. pelagic 2.46 39 0.37 0.13 0.018 * 0.11 0.69 
 Oc. benthic -0.43 93 -0.04 0 0.668 NS   
Org. C Forest 2.19 70 0.25 0.06 0.032 * 70.15 5134 
 Grassland -0.02 43 0 0 0.981 NS   
 Stream 2.33 90 0.24 0.06 0.022 * 0.30 -6.68 
 Lake -1.52 98 -0.15 0.02 0.131 NS   
 Oc. pelagic 1.55 28 0.28 0.08 0.132 NS   
 Oc. benthic 1.21 43 0.18 0.03 0.234 NS   
Detritus Forest 1.90 92 0.19 0.04 0.06 NS   
 Grassland -0.37 60 -0.05 0 0.709 NS   
 Stream 1.03 135 0.09 0.01 0.306 NS   
 Lake 1.62 41 0.25 0.06 0.113 NS   
 Oc. pelagic 0.42 32 0.07 0.01 0.678 NS   
 Oc. benthic -0.40 44 -0.06 0 0.691 NS   
GPP Forest -12.92 95 -0.80 0.64 <0.001 *** -42.83 3280.4 
 Grassland -5.35 102 -0.47 0.22 <0.001 *** -15.59 1439.5 
 Stream -1.82 177 -0.14 0.02 0.07 .   
 Lake -2.08 62 -0.26 0.07 0.042 * -7.61 631.42 
 Oc. pelagic -3.94 68 -0.43 0.19 <0.001 *** -4.12 394.29 
 Oc. benthic -3.46 61 -0.41 0.16 0.001 ** -20.55 1347.5 
ER Forest -10.51 77 -0.77 0.59 <0.001 *** -39.17 2844.2 
 Grassland -5.29 88 -0.49 0.24 <0.001 *** -20.57 1691.8 
 Stream -6.34 185 -0.42 0.18 <0.001 *** -14.86 1068.3 
 Lake -3.56 51 -0.45 0.20 0.001 ** -6.35 519.27 
 Oc. pelagic -0.7 21 -0.15 0.02 0.493 NS   
 Oc. benthic -5.50 52 -0.61 0.37 <0.001 *** -18.57 1145.35 
NEP Forest -1.34 97 -0.13 0.02 0.184 NS   
 Grassland -2.01 96 -0.20 0.04 0.047 * -3.07 242.25 
 Stream 5.82 179 0.40 0.16 <0.001 *** 11.77 -769.57 
 Lake 1.83 87 0.19 0.04 0.071 NS   
 Oc. pelagic -1.56 49 -0.22 0.05 0.126 NS   
 Oc. benthic -1.38 53 -0.19 0.03 0.172 NS   
GPP/ER Forest 0.96 75 0.11 0.01 0.340 NS   
 Grassland -0.86 76 -0.10 0.01 0.39 NS   
 Stream 3.89 167 0.29 0.08 <0.001 *** 0.01 0.08 
 Lake -0.52 30 -0.10 0.01 0.605 NS   
 Oc. pelagic -0.39 20 -0.09 0.01 0.700 NS   
 Oc. benthic 0.72 41 0.11 0.01 0.478 NS   
Uptake rate Forest -0.65 46 -0.1 0.01 <0.001 NS   
(log values) Grassland -3.80 40 -0.51 0.27 <0.001 *** -0.03 2.42 
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 Stream -2.56 59 -0.33 0.11 0.010 * -0.04 3.82 
 Lake -3.88 37 -0.54 0.29 <0.001 *** -0.13 10.16 
 Oc. pelagic -2.39 21 -0.46 0.21 0.026 * -0.04 5.56 
 Oc. benthic -1.03 27 -0.19 0.04 0.314 NS   
Dec. rate Forest -2.82 30 -0.46 0.21 0.008 ** -0.03 2.30 
(log values) Grassland -6.13 38 -0.70 0.50 <0.001 *** -0.03 0.67 
 Stream -9.81 101 -0.70 0.49 <0.001 *** -0.05 3.13 
 Lake -3.04 47 -0.40 0.16 0.004 ** -0.06 2.77 
 Oc. pelagic -2.38 25 -0.43 0.19 0.025 * -0.05 3.98 
 Oc. benthic -2.82 30 -0.46 0.21 0.008 ** -0.03 2.30 
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: Org. C = organic carbon; NEP = net ecosystem production; GPP = gross primary production; ER = 
ecosystem respiration; Dec.= decomposition rate; Oc. = Ocean. 
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Table S3.9 | Non-parametric tests for climatic effect on NEP of each ecosystem type.  

Results of Kruskal-Wallis tests on ranks (light headers) and groups given by multiple mean 
comparison post-hoc tests on rank sums (dark headers) performed on net primary production 
(NEP), within each ecosystem type testing the effect of climatic zone (C); model: y ~ C. Agro-
ecosystem and desert ecosystems were removed because they are represented in only one climatic 
zone (temperate and arid, respectively). See below the table for abbreviations. Number of data 
points (n), degrees of freedom (DF), Chi-squared and P- values of the Kruskal-Wallis tests are 
given. Significantly different groups have different letters. 

Ecosystem 
Type 

Kruskal-Wallis test on ranks Multiple mean comparison post-hoc tests 

n 
Chi-

squared DF P-value Sign.1 Arc. Bor. Temp. Trop. Arid C W 
Forest 107 4.61 3 0.203 NS        
Grassland 102 12.54 3 0.006 ** a - b b ab - - 
Stream 203 41.56 4 <0.001 *** a a a b a - - 
Lake 99 29.28 2 <0.001 *** a b b - - - - 
Oc. pelagic 73 5.32 1 0.021 * - - - - - a b 
Oc. benthic 58 1.29 1 0.256 NS        
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: Oc. = ocean; Arc. = arctic; Bor. = boreal; Temp. = temperate; Trop. = tropical; C = cold; w = warm. 

 

  



Supporting information: Multivariate ecosystem functioning    Gounand et al. 

 38 

Table S3.10 | Non-parametric tests for climatic effect within forests. 

Results of Kruskal-Wallis tests on ranks (light headers) and groups given by multiple mean 
comparison post-hoc tests on rank sums (dark headers) performed on each ecosystem variable 
within forest ecosystems testing the effect of climatic zone (C); model: y ~ C (statistics for figure 
S4.5). See below the table for abbreviations. Number of data points (n), degrees of freedom (DF), 
Chi-squared and P- values of the Kruskal-Wallis tests are given. Significantly different groups have 
different letters.  

Ecosystem 
variable 

Kruskal-Wallis test on ranks Multiple mean comparison post-hoc tests 

n 
Chi-

squared DF P-value Sign.1 Bor. Temp. Trop. Arid 
Biomass 163 65.06 3 <0.001 *** a b b a 
Organic Carbon 113 11.54 3 0.010 * ab b ab a 
Detritus 99 25.37 3 <0.001 *** b b a a 
NEP 107 4.61 3 0.203 NS     
GPP 109 71.91 3 <0.001 *** a b c ab 
ER 87 42.33 3 <0.001 *** a a b a 
Uptake rate 56 15.31 3 0.002 ** ab b a a 
Decomposition 78 38.32 3 <0.001 *** a a b a 
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: NEP = net ecosystem production; GPP = gross primary production; ER = ecosystem respiration; Bor. = 
boreal; Temp. = temperate; Trop. = tropical. 
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Table S3.11 | Mean values, coefficients of variation and numbers of data points. 
For each combination of ecosystem type, climatic zone and ecosystem variable, the mean value is in 
black, the coefficient of variation in grey and in brackets, the number of data points in red and in 
italics. See abbreviations below. 

Ecosystem type Climatic zone Biom. Org. C Detritus GPP ER NEP Uptake Dec. 
Forest Boreal 5250  

(0.64) 32 
8381 

(0.75) 21 
3807 

(1.57) 22 
914.5 

(0.31) 21 
832.7 

(0.33) 18 
164.8 

(0.83) 21 
0.34 

(1.23) 10 
0.21 

(0.79) 12 
          

 Temperate 12228 
(0.66) 39 

8723 
(0.72) 31 

2428 
(1.16) 45 

1364 
(0.23) 34 

1072 
(0.27) 31 

303.6 
(0.82) 38 

0.19 
(1.49) 13 

0.31 
(0.81) 12 

          

 Tropical 13797 
(0.50) 49 

5689 
(0.77) 30 

791.3 
(1.48) 16 

2921 
(0.27) 34 

2731 
(0.32) 19 

355.9 
(1.05) 21 

0.32 
(0.67) 23 

1.17 
(0.67) 36 

          

 Arid 4679 
(0.72) 43 

5174 
(0.96) 31 

693.1 
(1.07) 16 

1200 
(0.3) 20 

854.8 
(0.40) 19 

271.8 
(0.69) 27 

0.96 
(1.46) 10 

0.3 
(0.68) 18 

          

Grassland Arctic 670.8 
(0.89) 31 

9111 
(0.83) 28 

457.7 
(0.85) 14 

232.7 
(0.82) 21 

218.9 
(0.72) 23 

6.40 
(12.49) 21 

1.39 
(1.52) 11 

0.22 
(0.97) 20 

          

 Temperate 302.8 
(0.60) 30 

8134 
(0.85) 28 

167.2 
(0.44) 10 

1164 
(0.42) 23 

1242 
(0.80) 26 

120.1 
(1.45) 34 

4.03 
(0.52) 10 

0.85 
(0.90) 22 

          

 Tropical 1535 
(1.21) 42 

7714 
(1.21) 31 

371.6 
(1.38) 29 

1138 
(0.66) 40 

1213 
(0.58) 18 

270.5 
(1.60) 17 

5.87 
(1.43) 10 

1.6 
(0.59) 12 

          

 Arid 373.2 
(0.93) 43 

3057 
(0.75) 15 

160.2 
(2.09) 16 

697.3 
(0.7) 24 

599.3 
(0.67) 26 

95.17 
(2.61) 30 

6.25 
(0.92) 14 

0.61 
(0.71) 12 

          

Agro-ecosystem Temperate 462.2 
(0.61) 54 

6866 
(0.64) 17 

175.2 
(0.52) 14 

1730 
(0.38) 39 

1275 
(0.31) 37 

439.7 
(0.94) 36 

4.73 
(0.51) 16 

1.35 
(0.46) 14 

          

Desert Arid 175.7 
(1.17) 50 

1717 
(0.76) 17 

51.80 
(1.39) 16 

157.0 
(0.91) 20 

113.3 
(0.49) 19 

29.95 
(1.56) 23 

1.91 
(1.41) 12 

0.55 
(0.70) 12 

          

Stream Arctic 48.9 
(1.72) 23 

28.12 
(1.84) 20 

13.66 
(1.26) 14 

90.55 
(1.67) 18 

168.2 
(1.69) 20 

-90.24 
(-1.78) 20 

28.28 
(1.92) 10 

1.48 
(0.84) 14 

          

 Boreal 40.97  
(2.29) 25 

4.23 
(1.10) 27 

689.0 
(2.41) 21 

170.7 
(1.45) 37 

398.3 
(1.18) 35 

-245.3 
(-1.17) 35 

22.22 
(1.66) 18 

2.74 
(0.88) 19 

          

 Temperate 25.33 
(1.76) 55 

1.31 
(0.67) 15 

321.2 
(1.14) 47 

213.2 
(1.54) 72 

398.5 
(0.69) 74 

-152.3 
(-2.41) 66 

30.15 
(1.35) 39 

3.48 
(0.82) 23 

          

 Tropical 7.80 
(2.78) 39 

0.12 
(0.51) 16 

106.2 
(1.86) 29 

247.3 
(1.30) 43 

986.3 
(0.92) 43 

-748.6 
(-1.13) 41 

127.7 
(2.50) 10 

30.86 
(1.36) 39 

          

 Arid 23.15 
(1.54) 21 

0.15 
(1.57) 14 

336.3 
(1.59) 30 

403.9 
(1.61) 40 

459.0 
(1.14) 38 

-113.5 
(-2.80) 41 

74.74 
(1.01) 12 

5.44 
(0.49) 12 

          

Lake Arctic 18.14 
(3.05) 24 

14.14 
(1.24) 38 

369.9 
(2.96) 12 

28.15 
(1.21) 21 

33.01 
(0.85) 24 

-5.09 
(-2.57) 38 

18.97 
(1.23) 15 

0.81 
(1.45) 10 

          

 Boreal 95.99 
(0.99) 15 

59.15 
(1.03) 34 

39.98 
(2.42) 12 

316.1 
(1.85) 19 

179.2 
(1.29) 16 

-27.61 
(-1.05) 25 

33.25 
(1.48) 12 

4.81 
(4.08) 22 

          

 Temperate 11.60 
(1.06) 23 

35.80 
(1.06) 39 

7.66 
(1.58) 19 

269.3 
(0.89) 24 

270.0 
(1.11) 14 

-36.49 
(-1.53) 36 

47.57 
(0.75) 12 

3.45 
(0.89) 22 

          

Ocean pelagic Cold 7.15 
(1.02) 26 

51.33 
(0.68) 11 

57.26 
(1.95) 16 

182.3 
(0.98) 53 

201.4 
(0.86) 15 

80.42 
(1.19) 54 

81.64 
(0.73) 11 

45.89 
(1.64) 16 

          

 Warm 3.04 
(0.51) 15 

55.09 
(0.89) 20 

13.27 
(2.09) 20 

208.6 
(1.06) 19 

104.5 
(1.03) 10 

29.31 
(2.04) 19 

154.4 
(0.80) 12 

65.45 
(3.08) 15 

          

Ocean benthic Cold 199.1 
(1.52) 80 

3000 
(1.39) 37 

472.5 
(1.13) 20 

182.5 
(0.86) 30 

202.0 
(1.03) 31 

-35.73 
(-3.29) 30 

120.3 
(1.60) 12 

6.62 
(1.10) 19 

          

 Warm 184.5 
(1.11) 36 

2617 
(1.00) 15 

723.7 
(1.36) 35 

929.0 
(1.23) 35 

701.4 
(1.03) 24 

175.3 
(3.37) 28 

12.04 
(0.93) 17 

4.9 
(1.50) 18 

Abbreviations: Biom. = biomass; Org. C = organic carbon; NEP = net ecosystem production; GPP = gross primary 
production; Dec. = decomposition rate; Uptake; = uptake rate.   
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Table S3.12 | Non-parametric tests of mean differences among E x C combinations.  
Results of Kruskal-Wallis tests on ranks (light row headers) and groups given by post-hoc tests on 
rank sums for multiple mean comparison (dark row headers) performed on each individual 
ecosystem variable testing the effect of ecosystem type (E) x climatic zone (C) combinations; 
models: y ~ EC. Degrees of freedom (DF), number of data points (n), Chi-squared and P- values of 
the Kruskal-Wallis tests are given. Significantly different groups have different letters. Note that for 
space reasons results are displayed in column (one Kruskal-Wallis test per column). These are same 
the tests than in Table S3.6 but with clumped climatic variables, “Cold” and “Warm” for marine 
systems. It gives the significantly different groups per ecosystem variable in Fig. 3 (boxplots). See 
below the table for abbreviations. 

   Biom. Org. C Detritus GPP ER NEP Uptake Dec. 

Kruskal-Wallis 
test 

n 795 535 473 687 580 701 309 399 
DF 21 21 21 21 21 21 21 21 

Chi-
sq. 640.40 448.47 250.97 435.45 347.75 369.12 187.86 261.24 

P-
value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Sign.1 *** *** *** *** *** *** *** *** 
 Eco Clim         
Post-hoc tests 
of multiple 
mean compa- 
risons 

F Boreal bfg a bi abef abfgh abc abc ab 

  Temp fg a i abe abf ab a ab 

  Trop f a bdi a a abc ab acde 

  Arid bfg ac bdi abe abfg ab abcd ab 

G Arctic abc a bdgi cdf cde cdefg abcd b 

  Temp acd a abcdefghi abe abf abcd abcde abcd 

  Trop bcg a bdfg abe abf abcd abcde abcdef 

  Arid acd abc acdefgh bcef cfgh bcde bcde abcd 

 A Temp abc a abcdefgh ab ab a abcde abcde 

 D Arid ade abcde ace cd cde abcde abcd abcd 

 S Arctic ehi ef ae d de efgh abcde abcde 

   Boreal ehi f acdefgh d ceh gh cde cdefg 

   Temp hi f dfgh d cegh fgh e defg 

   Trop h f acefgh d bfg h e g 

   Arid ehi f acdefgh cd cegh efgh e efg 

 L Arctic h f acdefgh d d cdefg cde abcd 

   Boreal adehi bdef aceh cd cde efgh de abc 

   Temp ehi def a cdf cdegh efgh e cdef 

 OP Cold hi bcdef acefh d cde abc e fg 

  Warm ehi bcdef a cd cde abcdef e cdefg 

 OB Cold dei ac bcdfgh cd cde defg de efg 

  Warm adei abcd cdefgh cef cfgh cdef de cdefg 
1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

 

Abbreviations: Eco = Ecosystem type; Clim = Climatic zone; F = forest; G = grassland; A = agro-ecosystem; D = 
desert; S = stream; L = lake; OB = ocean benthic; OP = ocean pelagic; Temp = temperate; Trop = tropical; Biom. = 
Biomass; Org. C = Organic carbon; GPP = gross primary production; ER = ecosystem respiration; NEP = net 
ecosystem production; Dec.= decomposition rate; Prod. = Productivity rate. 
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Table S3.13 | Empirical relationships between pairs of ecosystem variables.  

Significant Pearson’s two-sided correlation tests between pairs of ecosystem variables across and within 
ecosystem types (light headers) in a log-log space (null values were removed from the analysis), and slope 
and intercept of corresponding linear regression (dark headers) (includes statistics for figures S4.6 and S4.7). 
Statistic t, degrees of freedom (DF), correlation coefficient (r), r squared and P-values of the correlation tests 
are given.  

Ecosystem 
Variables 

Ecosystem 
type 

Pearson’s two-sided correlation test Linear regression 
t-stat. DF r r2 P-value Sign.1 Slope Intercept 

GPP ~ 
Biomass 

All 
ecosystems 

13.25 248 0.64 0.41 <0.001 *** 0.38 4.03 

 Forest 2.63 49 0.35 0.12 0.011 * 0.18 5.68 
 Grassland 2.35 37 0.36 0.13 0.024 * 0.36 4.65 
 Lake 3.01 25 0.52 0.27 0.006 ** 0.29 4.13 
Uptake rate ~ 
Biomass 

All 
ecosystems 

-22.36 257 -0.81 0.66 <0.001 *** -0.64 4.30 

 Forest -9.82 53 -0.80 0.65 <0.001 *** -0.76 5.24 
 Grassland -4.06 38 -0.550 0.30 <0.001 *** -0.62 4.55 
 Agroecosy

stem 
-3.31 9 -0.74 0.55 0.009 ** -0.79 6.11 

 Desert -4.26 10 -0.80 0.64 0.002 ** -0.75 3.61 
 Stream -3.84 74 -0.41 0.17 <0.001 *** -0.56 3.69 
 Lake -7.62 23 -0.85 0.72 <0.001 *** -0.69 4.18 
 Ocean 

pelagic 
-4.23 18 -0.71 0.50 <0.001 *** -0.93 5.97 

 Ocean 
benthic 

-6.62 18 -0.84 0.71 <0.001 *** -0.99 6.24 

Uptake rate ~ Grassland 5.58 41 0.66 0.43 <0.001 *** 0.71 -3.65 
GPP Stream 7.59 79 0.65 0.42 <0.001 *** 0.69 -0.75 
 Ocean 

pelagic 
2.83 18 0.55 0.31 0.011 * 1.26 -2.24 

ER ~ GPP All 
ecosystems 

27.80 484 0.78 0.61 <0.001 *** 0.57 2.80 

 Forest 21.76 83 0.92 0.85 <0.001 *** 1.07 -0.73 
 Grassland 24.37 79 0.94 0.88 <0.001 *** 0.89 0.55 
 Agroecosy

stem 
10.14 28 0.89 0.79 <0.001 *** 0.83 1.03 

 Desert 5.56 14 0.83 0.69 <0.001 *** 1.14 -0.85 
 Stream 11.56 182 0.65 0.42 <0.001 *** 0.48 3.49 
 Lake 12.76 30 0.92 0.84 <0.001 *** 0.72 1.43 
 Ocean 

pelagic 
4.29 18 0.71 0.51 <0.001 *** 0.65 1.54 

 Ocean 
benthic 

13.66 36 0.92 0.84 <0.001 *** 0.84 0.98 

ER ~ Biomass All 
ecosystems 

8.9 203 0.53 0.28 <0.001 *** 0.24 4.81 

 Stream 2.11 61 0.26 0.07 0.039 * 0.22 4.89 
Detritus ~ 
Biomass 

All 
ecosystems 

7.54 211 0.46 0.21 <0.001 *** 0.34 3.02 

 Desert 3.85 6 0.84 0.71 0.008 ** 1.15 -1.90 
Detritus ~ 
Org. C 

All 
ecosystems 

4.2 102 0.38 0.15 <0.001 *** 0.29 2.96 
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 Desert 4.68 3 0.94 0.88 0.018 * 3.11 -21.13 
 Lake -2.72 16 -0.56 0.32 0.015 * -0.67 4.46 
Org. C ~ 
Biomass 

All 
ecosystems 

15.8 154 0.79 0.62 <0.001 *** 0.82 2.01 

Org. C ~ GPP All 
ecosystems 

7.51 78 0.65 0.42 <0.001 *** 1.26 -2.47 

 Grassland -2.35 10 -0.6 0.35 0.041 * -0.51 11.98 
 Stream 2.46 18 0.5 0.25 0.024 * 0.43 -2.97 
 Ocean 

benthic 
-10.6 3 -0.99 0.97 0.002 ** -2.06 15.13 

Detritus ~ GPP All 
ecosystems 

4.41 50 0.53 0.28 <0.001 *** 1.15 -2.35 

Org. C ~ ER All 
ecosystems 

5.17 82 0.5 0.25 <0.001 *** 1.45 -4.04 

 Grassland -2.38 14 -0.54 0.29 0.032 * -0.51 11.86 
 Stream 5.27 25 0.73 0.53 <0.001 *** 0.90 -5.81 
Detritus ~ ER All 

ecosystems 
5.09 44 0.61 0.37 <0.001 *** 1.37 -3.42 

 Ocean 
pelagic 

2.67 12 0.65 0.42 0.024 * 1.90 -5.28 

Biomass ~  
Decomposition 

All 
ecosystems 

-7.38 33 -0.79 0.62 <0.001 *** -1.04 5.70 

rate Grassland -4.39 7 -0.86 0.73 0.003 ** -0.64 5.65 
 Ocean 

pelagic 
-3.76 7 -0.86 0.74 0.013 * -0.47 2.94 

Decomposition 
rate ~ Org. C 

All 
ecosystems 

-3.37 17 -0.63 0.40 0.004 ** -0.32 2.07 

          
Decomposition 
rate ~ Detritus 

All 
ecosystems 

-4.22 37 -0.57 0.32 <0.001 *** -0.31 1.53 

 Grassland -2.73 13 -0.6 0.36 0.017 * -0.74 3.77 
Uptake rate ~ 
Org. C 

All 
ecosystems 

-6.44 46 -0.69 0.47 <0.001 *** -0.41 2.85 

 Grassland -2.69 9 -0.67 0.45 0.025 * -0.68 6.22 
Uptake rate ~  
Detritus 

All 
ecosystems 

-2.71 42 -0.39 0.15 0.01 * -0.31 3.30 

          
Uptake rate ~ Grassland 4.7 41 0.59 0.35 <0.001 *** 0.69 -3.40 
ER Agroecosy

stem 
2.33 9 0.61 0.38 0.045 * 0.89 -4.97 

 Stream 5.27 67 0.54 0.29 <0.001 *** 0.76 -1.65 
 Ocean 

benthic 
2.63 12 0.60 0.37 0.022 * 1.07 -3.89 

Uptake rate ~ 
Decomposition 

All 
ecosystems 

3.2 10 0.71 0.51 0.009 ** 0.62 1.86 

 Ocean 
pelagic 

3.76 4 0.88 0.78 0.02 * 0.94 1.21 

1 Significance code (Sign.): 1 ≥ NS > 0.1 > ‘.’ ≥ 0.05 > ‘*’ ≥ 0.01 > ‘**’ ≥ 0.001 > ‘***’ ≥ 0. 

Abbreviations: Org. C = organic carbon; GPP = gross primary production; ER = ecosystem respiration; Dec.= 
decomposition rate; Oc. = Ocean. 
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Appendix S4 – Supplementary figures 

Figure S4.1 | Relationships between ecosystem variables. 
Points and bars give median value and standard deviation respectively for the given ecosystem 
variables in each ecosystem type (colours) – climatic zone (shapes) combination. GPP and ER stand 
for gross primary production and ecosystem respiration, respectively, Black lines and grey areas 
give the median and the 95% confidence interval, respectively, of regressions realized in 10,000 
iterations of bootstrapped values for each ecosystem x climatic zone combination (see methods). 
Text gives the median Pearson’s correlation coefficient for these 10,000 series of bootstrapped 
values and the percentage of significant correlations into brackets. Median and quantile regressions 
are not displayed when less than 75% of the correlations are significant.  
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Figure S4.2 | Principal Component Analysis (PCA) on median ecosystems.  

Quantitative variables included in the analysis are median values of biomass, organic carbon, 
detritus, gross primary production (GPP), ecosystem respiration (ER), net ecosystem production 
(NEP), decomposition rate (Decompo. rate), and uptake rate for each combination of ecosystem 
type (colours in panel a) and climatic zone (shapes in panel a). Panels a and b represent the median 
ecosystems and the map of active variables, respectively, in the two first dimensions of the PCA 
with the percentage of explained variance into brackets in axes’ labels. In panel a, arrows highlight 
axes along which freshwater and terrestrial ecosystems are positioned according to changes in rates 
and fluxes from low to high, globally corresponding to colder or more arid to warmer climatic 
zones.  
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Figure S4.3 | Latitudinal trends in ecosystem stocks. 

Solid circles show the data points. Colours denote ecosystem types. Lines show regression lines for 
significant correlations between latitude and stocks of a Biomass, b Organic carbon, or c Detritus, 
based on two-sided Pearson’s correlation tests. Pearson correlation coefficients and p-values are 
provided for these significant relationships (see legend for abbreviations of ecosystem types). 
Bottom parts of panels are zooming in finer scales than the one of top parts.  
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Figure S4.4 | Latitudinal trends in mass-specific uptake rates.  

Solid circles show the data points. Colours denote ecosystem types. Lines show regression lines for 
significant correlations between latitude and uptake rates, based on two-sided Pearson’s correlation 
tests. Pearson correlation coefficients and p-values are provided for these significant relationships 
(see legend for abbreviations of ecosystem types).  
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Figure S4.5 | Latitudinal trends in GPP/ER ratios. 

Solid circles show the data points. Colours denote ecosystem types. Lines show regression lines for 
significant correlations between latitude and uptake rates, based on two-sided Pearson’s correlation 
tests. Pearson correlation coefficients and p-values are provided for these significant relationships 
(see legend for abbreviations of ecosystem types). GPP and ER stand for gross primary production 
and ecosystem respiration, respectively. 
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Figure S4.6 | Functioning shift of forests among climatic zones.  

Diagrams of ecosystem functioning in (a) boreal, (b) tropical and (c) arid forests. Squares represent 
stocks of biomass (B), detritus (D), and organic carbon (R). Straight arrows represent fluxes of 
gross primary production (GPP) and ecosystem respiration (ER), and bent arrows decomposition 
rates. Significant differences among panels for the different ecosystem variables are highlighted by 
differences in size of boxes or arrows. For instance, biomass is higher in tropical than in boreal or 
arid forests, and not different between boreal and arid forest (see statistical tests in Table S3.10). 
Dotted arrows represent fluxes for which we have not collected data. 
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