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Decoupled Intensity-based Nonmetric

Visual Servo Control
Geraldo Silveira, Luiz Mirisola, and Pascal Morin

Abstract—This brief addresses the problem of vision-based
robot control where the equilibrium state is defined via a
goal image. Specifically, we consider the class of intensity-
based nonmetric solutions, which provide for high accuracy,
versatility, and robustness. Existing techniques within that class
present a fully coupled translational and rotational control error
dynamics, what increases analysis complexity and may degrade
system performance. This paper proposes a new intensity-
based nonmetric visual servoing technique that decouples the
translational control error dynamics, regardless of the observed
object characteristics, camera displacements, and their relative
poses. The obtained system is thus lower-triangular in the general
case. For some practical cases, the proposed general technique
leads to the Grail of a fully decoupled (i.e., strictly diagonal)
linear dynamics. Theoretical analysis of local diffeomorphism,
local exponential stability, and of those decoupling properties
are provided. Improved performances are also experimentally
confirmed using a six-degree-of-freedom robotic manipulator in
various positioning and tracking tasks.

Index Terms—Visual servoing, vision-based control, direct
visual servoing, robot control, nonmetric estimation.

I. INTRODUCTION

Visual servo control, or simply visual servoing, refers to the

use of image feedback to control a robot with respect to the

scene. Its typical task consists in stabilizing the robot around a

pose that is defined by means of a reference image, also called

desired or goal image. Although there exists a myriad of well-

established solutions to this problem [1], its overwhelming

majority: (i) relies on image features, such as points, lines,

ellipses, etc. Thus, they strongly depend on some particular

information, on error-prone feature matching procedures, and

on various special tuning algorithms; and/or (ii) requires

(or estimates, e.g., [2], [3]) some metric information of the

object/scene to provide a provably stabilizing control law.

This holds even for the so called image-based visual servoing

techniques, since depth is part of their necessary interaction

matrix. These topics are further discussed next.
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Techniques of vision-based estimation and control can gen-

erally be classified into feature- or intensity-based. Despite

the aforementioned drawbacks, the vast majority of existing

visual servoing schemes are indeed based on image features.

Possible reasons for this choice are due to their relatively

large domain of convergence and/or to the abundant literature

on feature-based estimation. Differently, within intensity-based

estimation (also called pixel-based or direct methods) there are

no intermediate steps, such as feature extraction and matching.

These techniques directly exploit the intensity value of the

pixels so as to recover the sought parameters. Thus, they make

use of raw and dense image data, what allow them to attain

high levels of versatility and accuracy [4]. Another advantage

is their capacity to ensure robustness to arbitrary illumination

changes, even in color images [5] and omnidirectional ones

[6]. On the other hand, real-time algorithms based on this class

rely on local optimization procedures because global ones are

usually too time-consuming to be applied in that setting. They

have been applied to visual servoing given a goal image in,

e.g., [7]–[9]. Let us note that these intensity-based control

techniques require or estimate some metric information.

Techniques of visual servoing can also be classified into

metric and nonmetric. Their vast majority fall into the former

since at least a depth estimate is used in their control laws.

That choice is possibly due to that natural description of

a scene, readily availability of depth sensors, and/or to the

abundant literature on metric reconstruction. As for nonmetric

visual servoing, there exist only few works on such class of

robot control in spite of its increased level of versatility and

robustness to errors in the camera parameters [10]–[12]. Re-

cent studies in biological vision, indeed, suggest that the brain

processes visual information nonmetrically [11]. A possible

reason for such scarcity is the difficulty of finding an interest-

ing nonmetric control error that is diffeomorphic to the camera

pose, and is regulated by a control law that does not depend on

any metric knowledge (not even a global scalar) of the object.

An early work on nonmetric vision-based navigation is given

in [12], where a ground robot is used. In [13], four Degrees-

of-Freedom (DoF) of a holonomic robot is under control. The

nonmetric methods presented in [14] and [15] take control of

all six DoF, but consider only planar objects or pure rotations

between the reference and initial frames. Recently, a general

intensity-based nonmetric technique has been presented in

[16], called Direct Visual Servoing (DVS), with three variants

in [17]. These techniques are general in the sense that all six

DoF are stabilized regardless of the object characteristics (e.g.,

shape, size), camera displacements, and their relative poses.

Nevertheless, all aforementioned nonmetric techniques present

a fully coupled control error dynamics.
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Couplings in the control dynamics increase analysis com-

plexity and may degrade system performance, e.g. rate and

domain of convergence, transient behavior. Not surprisingly,

a large body of work has been produced on decoupled visual

servo control. This is specially true for image-based and hybrid

strategies since pose-based visual servoing is intrinsically

decoupled. In that spirit, the hybrid schemes proposed in [18]

for planar objects and the two techniques presented in [19]

(one for planar and the other for nonplanar targets) decouple

the error dynamics. A hybrid formulation is also developed

in [20] using spherical projection of a set of points, whereas

[21] deals with the particular case of a spherical object. Within

image-based schemes, the control of translation and rotation

are also decoupled in [22] using a spherical representation.

In this case, object centroid information is used along with

a visual measure of rotation. The strategy described in [23]

partitions the interaction matrix to isolate motion related to

the optical axis. In [24], a vanishing point and the horizon line

have been used as image features to decouple the translational

and rotational DoF. Nonetheless, existing decoupled visual

servoing techniques require some metric information.

This brief proposes a new general intensity-based nonmetric

visual servoing technique that decouples the error dynamics.

Indeed, the decoupling idea presented in [25] for planar

surfaces is here developed and extended to general objects,

camera displacements, and their relative poses as in the DVS.

In this proposed Decoupled DVS, the translational control

error dynamics is decoupled from the rotational one. The ob-

tained system is thus lower-triangular in the general case. For

some practical cases, this paper also shows that the proposed

technique leads to the Grail of a fully decoupled (i.e., strictly

diagonal) linear dynamics. In these cases, each control error

element is, hence, linearly related to only one DoF. The new

nonmetric control error is theoretically proved to be locally

diffeomorphic to the camera pose, and the latter is proved to be

locally exponentially stable. All of those decoupling properties

and improvements are also experimentally confirmed using a

camera-mounted six-DoF robotic arm in various tasks. This

paper is a revised and extended version of [26]. Indeed, it

clarifies several aspects, presents and discusses many new

positioning experiments in distinct configurations and relative

to different objects, as well as includes a new tracking task

of a fast freely-moving target. Additionally, another practical

case of full decoupling is described and also experimentally

demonstrated. These revisions and additions better highlight

the advantages of this new vision-based control technique.

II. THEORETICAL BACKGROUND

This section defines the notation used throughout this brief,

and recalls essential models and methods. Let ‖v‖ and v′

denote the Euclidean norm and a transformed version of

the variable v, respectively. An asterisk, e.g., v∗, is used

to indicate that v is defined with respect to the reference

frame F∗. The identity matrix and the matrix composed of

zeros, all of appropriate dimensions, are written I and 0,

respectively. The notations [w]× and vex([w]×) represent,

respectively, the antisymmetric matrix associated to the vector

F∗ F

I

I∗

e

π

m∗
π

m∗

p∗
p
Gp∗

Figure 1. Two-view geometry. Given the 3-D point m∗, its projection p∗

on the image I∗ is related to its projection p on I by the point Gp∗, and
the point e multiplied by the projective parallax (2).

w = {wi}
3

i=1
= [w1, w2, w3]

⊤ and its inverse mapping, i.e.,

[w]× =





0 −w3 w2

w3 0 −w1

−w2 w1 0



 , vex([w]×) =





w1

w2

w3



 . (1)

A. Two-view Nonmetric Geometry

The general relation between corresponding points pi ↔
p∗

i ∈ P
2, i = 1, 2, . . . , n, in two perspective images can be

described in different geometries. In the projective geometry

(which is an extension of the metric stratum), that general

relation is written in homogeneous coordinates as [27]

pi ∝ Gp∗

i + ρ∗i e, (2)

where the symbol “∝” denotes proportionality, G ∈ SL(3) is a

projective homography relative to a (dominant) plane, e ∈ R
3

denotes the epipole on the current image I, and ρ∗i ∈ R is the

projective parallax of the 3D point whose projection on the

reference image I∗ is p∗

i , relatively to that plane (see Fig. 1).

The homography G can be characterized as

G ∝ G∞ + eq∗⊤, (3)

where q∗ ∈ R
3 is a representation of the image of the line at

infinity of such plane, and G∞ ∈ SL(3) is the homography at

infinity. A procedure to estimate all parameters {G, e, ρ∗i }
n
i=1

that relate corresponding pixels (2) is recalled next.

B. Intensity-based Parametric Estimation

Intensity-based estimation exploits the pixel intensities with

no intermediate steps, e.g., no feature extraction or matching.

Its basic framework is the direct image registration, which

consists in seeking the parameters that best transform the

current image such that each pixel intensity I(p) in the

transformed image I ′ matches as close as possible to the

corresponding one in the reference image I∗(p∗). Hence, it

also amounts to tracking the scene/object between images.

Therefore, a first step consists in devising a suitable pho-

togeometric transformation model. This can be performed by

choosing an appropriate model of illumination changes, e.g.,

[5], along with a warping model w(·) from (2). The action of

such transformation model on pixels is given by [5]

I ′(g,h,p∗) = S(p∗) · I
(

w(g,p∗)
)

+ β ≥ 0, (4)
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where the operator “·” represents elementwise matrix multi-

plication, and the geometric and photometric parameters are

respectively gathered in g = {G, e, ρ∗i }
n
i=1

and h = {S, β},

where S can be viewed as a surface that compensates for both

global and local illumination variations, and β ∈ R accounts

for global changes only.

A typical direct image registration system can then be

formulated as the following nonlinear optimization problem:

min
g,h

1

2

n
∑

i=1

[

I ′(g,h,p∗

i )− I∗(p∗

i )
]2
, (5)

which seeks to minimize the norm of the vector of image

differences, where n is the number of pixels considered for

exploitation. Other cost functions may be considered, e.g., an

M-estimator [28] if there exist unknown occlusions. Finally,

that optimization problem (5) can be solved by standard itera-

tive methods. e.g., Gauss–Newton. For an improved solution in

terms of convergence properties, the reader is referred to [5].

C. Direct Visual Servoing

The geometric parameters g = {G, e, ρ∗i }
n
i=1

estimated

using pixel intensities directly (see Section II-B) can be used

to visual servoing in robotics. The translational and rotational

nonmetric control errors proposed in the Direct Visual Servo-

ing [16], i.e., ευ ∈ R
3 and εω ∈ R

3 respectively, are given

as

ε =

[

ευ

εω

]

=

[

(H− I)m∗′ + ρ∗e′

ϑµ

]

, (6)

where

H = K−1 GK, e′ = K−1 e, m∗′ = K−1 p∗, (7)

and ρ∗ ∈ R is the parallax of the chosen control point p∗ ∈ P
2.

The positive definite matrix K ∈ R
3×3 contains the camera

intrinsic parameters, i.e., focal lengths, skew and principal

point. Even for nonmetric techniques, at least an estimate of

such matrix is needed to control all six DoF of a robot. The

rotational error εω in (6) is computed from the homography

H ∈ R
3×3 in (7) via

r =
1

2
vex

(

H−H⊤
)

, ϑ =

{

ψ, if tr(H) ≥ 1

π − ψ, otherwise
, µ =

r

‖r‖
,

(8)

where ψ = real
(

arcsin(‖r‖)
)

, and the function tr(·) denotes

the trace of a matrix. If ‖r‖ = 0, then µ is not determined

and therefore can be chosen arbitrarily (e.g., µ = [0, 0, 1]⊤).

As shown in [29], the linearization of the interaction matrix

of ε (6) at the equilibrium 0 is given as

L
∣

∣

ε=0
= −







1

z∗
I −[m∗′]×

1

2
[q∗′]× I






, (9)

where z∗ > 0 is the metric depth of the chosen control point,

and q∗′ = K⊤q∗. This matrix reveals that the dynamics of ε

is fully coupled. Let us note that (9) is used only for analysis

purposes, i.e., it is not needed during the servoing.

Indeed, let the control inputs be the translational and rota-

tional velocities of the camera, gathered in v = [υ⊤,ω⊤]⊤ ∈
R

6 respectively. The nonmetric control law

v = Γ ε, (10)

with Γ = diag(γυI, γωI), γυ, γω > 0, is proven in [16] to

locally stabilize the equilibrium ε = 0 if the control point (7)

is chosen such that its parallax ρ∗ is sufficiently small.

III. PROPOSED DECOUPLED DIRECT VISUAL SERVOING

This section presents the Decoupled Direct Visual Servoing

technique, which extends some results in [25] and [16].

This new intensity-based nonmetric technique decouples the

translational control error dynamics from the rotational one,

regardless of the object characteristics, camera displacements,

and their relative poses. Theoretical analysis for the general

case is provided in this section, whereas the next one shows

that fully decoupling is realized for some practical cases.

A. Control Error and Some Properties

As in the Direct Visual Servoing [16], the new control

error is constructed from the estimated parameters g =
{G, e, ρ∗i }

n
i=1

(see Section II-B), and is defined next.

Definition 3.1: The new nonmetric control error ε̄ ∈ R
6 is

ε̄ = M ε
′, (11)

where

M =

[

2I [m∗′]×
−[c∗′]× I

]

(12)

is a constant (6× 6)-matrix, c∗′ is a control 3-vector, and

ε
′ =

[

ε
′
υ

ε
′
ω

]

=

[

(H− I)m∗′ + ρ∗e′

vex(H−H⊤)

]

(13)

is a reduced version of the general control error ε in (6) as

the rotational control error is equivalent to the original one

via ε
′
ω = 2r = 2ϑ−1‖r‖εω. Furthermore, ε

′
ω ≈ 2εω as

ϑ−1‖r‖ ≈ 1 around the equilibrium. Details on choosing the

control vector c∗′ as well as the normalized control point m∗′

(7) will be given further on (especially in Corollary 3.1).

Remark 3.1: The new control error (11) is constructed

without requiring any metric information of the observed

object, regardless of its characteristics (e.g., shape, size), of the

camera displacements, and of their relative poses. Moreover,

all error elements are either control parameters or are estimated

using an intensity-based technique.

Theorem 3.1: The control error ε̄ defined in (11) is locally

diffeomorphic to the camera pose around the reference image

provided that the following conditions are satisfied:

m∗′⊤c∗′ 6= 2, (14)

m∗′⊤q∗′ 6=
2

z∗
. (15)

Furthermore, the linearization of the interaction matrix of ε̄

(11) at this configuration is given by

L̄
∣

∣

ε̄=0
= −







2

z∗
I+ [m∗′]×[q

∗′]× 0

−
1

z∗
[c∗′]× + [q∗′]× 2I+ [c∗′]×[m

∗′]×






.

(16)
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Proof: The proof is presented in [26].

A nice property of such interaction matrix (16) is its

block-triangular structure. This property is exploited next to

derive simple stabilizing feedback laws with nice decoupling

properties. Let us note that this interaction matrix will be used

only for analysis purposes, i.e., it will not be needed for the

control computation. Thus, no estimate of the metric depth z∗

will be needed.

B. Control Law and Stability Analysis

In the sequel, consider a camera-mounted six-degree-of-

freedom holonomic robot observing a motionless rigid object

of unknown shape, size, texture, depth and orientation. Let the

control inputs be the translational and rotational velocities of

the camera, gathered in the vector v = [υ⊤,ω⊤]⊤ ∈ R
6.

Definition 3.2: The new nonmetric control law is

v = Λ ε̄, (17)

with a diagonal gain matrix Λ = diag(Λυ,Λω), and Λυ =
diag(λ1, λ2, λ3), Λω = diag(λ4, λ5, λ6).

Remark 3.2: Following the properties of the control error

(see Remark 3.1), the proposed control law (17) is constructed

without requiring any metric information of the observed

object, and any linearization.

Theorem 3.2: The nonmetric control law (17) ensures local

exponential stability of the equilibrium ε̄ = 0 provided that

the following conditions are satisfied:

sign(λ1) = sign(λ2) = sign

(

2

z∗
−m∗′⊤q∗′

)

, (18)

sign(λ4) = sign(λ5) = sign(2−m∗′⊤c∗′), (19)

λ3, λ6 > 0. (20)

Proof: The proof is developed in [26].

Corollary 3.1: An immediate consequence of (18)–(20) is

that local exponential stability of ε̄ = 0 is guaranteed ∀λi > 0,

i = 1, 2, . . . , 6, if the normalized control point m∗′ and control

vector c∗′ are chosen such that

m∗⊤q∗′ < 2, (21)

m∗′⊤c∗′ < 2. (22)

Let us remind that m∗′ is computed from the chosen image

pixel p∗ using (7). In fact, both conditions can always be veri-

fied as follows. The condition (21) expresses the perpendicular

distance between the dominant plane and the chosen control

point since m∗ = z∗m∗′. This condition can then be easily

satisfied if the control point p∗ (and hence m∗′) is chosen

such that its parallax ρ∗ is sufficiently small. In fact, one

could simply choose a point that has ρ∗ = 0 as the dominant

plane crosses the object. This condition also holds in the DVS

[16], where more details on choosing it are provided (after its

Corollary 3.2). As for condition (22), it can be easily satisfied

by setting, e.g., c∗′ = βm∗′/‖m∗′‖2, ∀β < 2. Therefore,

from (11) and (17) the obtained closed-loop system

˙̄ε = L̄
∣

∣

ε̄=0
v = L̄

∣

∣

ε̄=0
Λ ε̄ (23)

can always be made locally exponentially stable around the

equilibrium ∀λi > 0, i = 1, 2, . . . , 6, independently of z∗.

Remark 3.3: Equation (23) shows that the proposed tech-

nique decouples the control error dynamics. Moreover, let us

note that this is obtained regardless of the object characteris-

tics, of the camera displacements, and of their relative poses.

IV. SOME PARTICULAR CASES OF FULL DECOUPLING

As stated in Remark 3.3, the obtained closed-loop system

(23) is lower-triangular in the general case. This section

presents some particular cases of special interest. Indeed, they

occur often in practice and such dynamics becomes strictly

diagonal, i.e., a fully decoupled system is obtained. In these

cases, not only the translational control error dynamics is

decoupled from the rotational one and vice-versa, but also

each control error element is independently regulated. Once

again, let us remark that the obtained interaction matrices are

used only for analysis purposes, i.e., they are not needed to

compute the proposed control law (17).

A. Fronto-parallel Planar Object

Consider a planar object such that its scaled normal vector is

n∗ = [0, 0, 1/d∗]⊤, i.e., a plane fronto-parallel to the reference

frame whose perpendicular distance is of d∗ > 0. Let us

choose the control point such that m∗′ = [0, 0, 1]⊤ and set

c∗′ = [0, 0, 1]⊤. As consequences, 1/z∗ = n∗⊤m∗′ = 1/d∗,

q∗′ = n∗, the stability conditions (21) and (22) are both

satisfied, and the obtained interaction matrix (16) writes

L̄
∣

∣

ε̄=0
= −





diag

(

1

z∗
,
1

z∗
,
2

z∗

)

0

0 diag(1, 1, 2)



 . (24)

Therefore, a fully decoupled linear system (23) with strictly

negative diagonal elements is obtained ∀λi > 0, i =
1, 2, . . . , 6, i.e.,

˙̄ε = −diag

(

λ1
z∗
,
λ2
z∗
,
2λ3
z∗

, λ4, λ5, 2λ6

)

ε̄. (25)

B. Pure Rotation

This case corresponds to a particular camera displacement

between the reference and current poses, regardless of the

object characteristics and camera-object poses. Let us choose

c∗′ = 0. As consequences, q∗′ = 0 (because of the displace-

ment), the stability conditions (21) and (22) are both satisfied

∀m∗′ ∈ R
3, and the obtained interaction matrix (16) writes

L̄
∣

∣

ε̄=0
= −2

[

1

z∗
I 0

0 I

]

. (26)

Once again, a fully decoupled linear system (23) with strictly

negative diagonal elements is obtained ∀λi > 0, i =
1, 2, . . . , 6, i.e.,

˙̄ε = −2 diag

(

λ1
z∗
,
λ2
z∗
,
λ3
z∗
, λ4, λ5, λ6

)

ε̄. (27)
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V. EXPERIMENTAL POSITIONING RESULTS

This section reports experimental results using a 6-DoF

robotic arm in different situations. In all cases, the control

objective consists in positioning the robot such that the current

object image coincides with its image captured at the reference

pose, called reference image. The control signals do not use

metric information, nor extract or match any image feature.

Indeed, pixel intensities are directly exploited to estimate

the needed parameters. This is performed via direct image

registration, which ends up in tracking the object between

images (see Section II-B). Although the entire image could be

exploited, only an image region (i.e., a template) is processed

because of the real time constraints. For the vast majority

of the experiments, the template is defined as a rectangle in

the middle of the reference image, and its center is chosen

as m∗′. The used CPU runs at 2.8GHz with 4GB RAM, and

the applied direct registration algorithms are given in [5], [30].

Comparison results are presented using Direct Visual Servo-

ing (DVS) and the proposed Decoupled DVS. The considered

setups do not aim to optimize or compare their rate of

convergence, but rather to verify the decoupling properties

of the latter. Thus, their control gains are set such that the

norms of their control signals are approximately equal at the

beginning of the tasks. The norms of the initial displacements

vary from 3 to 48 cm in translation, where the latter is the

double of the perpendicular depth, and from 27 to 57 degrees

in rotation. If those gains are equal, the rate of convergence

for the Decoupled DVS is much faster, as its translational

dynamics is decoupled from the rotational one.

Unless otherwise stated, the equipments and configurations

are identical for all experiments. A coarsely calibrated camera

is used, i.e., the hand-eye displacement is measured by hand,

the focal length comes from the camera specifications, no

skew, and the principal point is assumed to be at the center of

the image, which has 640×480 pixels and is captured at 30Hz.

In spite of all perturbations (coarse calibrations and large

initial displacements) and unknowns about the objects (depth,

orientation, size, texture), the positioning is successfully per-

formed for all experiments. The stop condition is reached

when the control error norm is less than 10−3. Final Cartesian

errors are in submillimeter amounts in translation and in

subarcminute in rotation. These characteristics show that the

proposed approach possesses a large region of attraction, is

highly accurate and versatile. Table I summarizes the three

considered positioning setups, which are described next.

A. Generically-placed Planar Object

In this first set of positioning experiments, the observed

object is planar and is oriented generically with respect to the

image plane. Figure 2 shows this experimental setup, named

Setup A. Further details are given in Table I. In particular, let

us note the relevant displacement between the reference and

initial poses. Its norm of translation and rotation are of 48 cm

(about double the perpendicular depth) and 57◦, respectively.

1) DVS results: Figure 3 shows the results obtained us-

ing the DVS technique for Setup A. The positioning task

is successfully performed with no prior knowledge of any

Table I
SPECIFIC CONFIGURATIONS FOR EACH POSITIONING SETUP.

Setup A Setup B Setup C

Image registration
object shape planar planar nonplanar
object orientation general fronto-parallel general
template size (pixels) 420× 260 420× 260 250× 250

Initial displacement

norm of translation (mm) 477.4 477.4 33.3
norm of rotation (deg) 57.1 57.1 26.9

DVS control
translational gains 0.4 0.3 0.1
rotational gains 0.8 0.8 0.4

Decoupled DVS control

translational gains 0.1 0.1 0.1
rotational gains 0.45 0.4 0.4

control vector c∗′ [0, 0, 1]⊤ [0, 0, 1]⊤ [0, 0, 0]⊤

(a) reference pose (b) initial pose

(c) reference image (d) initial image

Figure 2. Setup A: Generically-placed planar object. (Top) Poses of the
camera-mounted robotic arm with respect to the object. (Bottom) Respective
images. All pixels within the outlined template are exploited.

metric information of the object. However, a coupling between

the translational velocity and the rotational one (they are

proportional to the respective control error) can be observed

in Fig. 3(a), in particular for the υy component.

2) Decoupled DVS results: The results obtained using the

Decoupled DVS technique for Setup A are given in Fig. 4, and

on video (supplementary material) as well. The positioning

task is also successfully performed, and the translational

velocities are now decoupled from the rotational ones as shown

in Fig. 4(a). Let us observe that the rate of convergence is

improved. Indeed, although the control gains are much smaller

than in the DVS case, the settling time is about the same.

B. Fronto-parallel Planar Object

This second set of positioning experiments comprises the

same object and robot displacement between the reference

and initial poses as in Setup A. However, the planar object is

now fronto-parallel to the image plane at the reference pose.

This new configuration obviously changes the system behavior.
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Figure 3. DVS results for the Setup A: Generically-placed planar object.
(Top) Control signals. (Bottom) End-effector motion in the Cartesian space.
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Figure 4. Decoupled DVS results for the Setup A: Generically-placed planar
object. (Top) Control signals. A decoupled behavior is observed in 4(a).
(Bottom) End-effector motion in the Cartesian space.

Figure 5 shows this experimental setup, named Setup B.

Further details are given in Table I. In particular, the control

gains are modified so as to equalize the norms of the control

signals for both techniques at the beginning of the task.

1) DVS results: Figure 6 shows the results obtained using

the DVS technique for Setup B. Again, the positioning task is

successfully performed with no prior knowledge of any metric

information of the object. However, a coupling between the

translational velocity and the rotational one can be observed

in Fig. 6(a), in both υx and υy components.

2) Decoupled DVS results: The results obtained using the

Decoupled DVS technique for Setup B are given in Fig. 7, and

on video (supplementary material) as well. The positioning

task is also successfully performed, and the translational

velocities are now decoupled from the rotational ones as shown

in Fig. 7(a). Let us note that the rate of convergence is again

improved. Indeed, although the control gains are much smaller

(a) reference pose (b) initial pose

(c) reference image (d) initial image

Figure 5. Setup B: Fronto-parallel planar object. (Top) Poses of the camera-
mounted robotic arm with respect to the object. (Bottom) Respective images.
All pixels within the outlined template are exploited.
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Figure 6. DVS results for the Setup B: Fronto-parallel planar object.
(Top) Control signals. (Bottom) End-effector motion in the Cartesian space.

than in the DVS case, the settling time is about the same.

C. Mostly Rotation using a Nonplanar Object

This third set of positioning experiments comprises a dif-

ferent object and a distinct robot displacement between the

reference and initial poses. Indeed, the observed object is

here nonplanar (with different texture, size, etc.), and that dis-

placement has relatively large rotational components, whereas

the translation is small. Figure 8 shows this experimental

setup, named Setup C. Further details are given in Table I.

In particular, let us note that equal control gains are applied

for both DVS and Decoupled DVS techniques.

1) DVS results: Figure 9 shows the results obtained using

the DVS technique for Setup C. The task is successfully per-

formed, but the coupling interferes in the translational velocity,

imposing a nearly zero υz and degrading performance.
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Figure 7. Decoupled DVS results for the Setup B: Fronto-parallel planar
object. (Top) Control signals. A decoupled behavior is observed in Fig. 7(a).
(Bottom) End-effector motion in the Cartesian space.

(a) reference pose (b) initial pose

(c) reference image (d) initial image

Figure 8. Setup C: Mostly rotation using a nonplanar object. (Top) Poses of
the camera-mounted robotic arm with respect to the object. (Bottom) Respec-
tive images. All pixels within the outlined template are exploited.

2) Decoupled DVS results: The results obtained using the

Decoupled DVS technique for Setup C are given in Fig. 10,

and on video (supplementary material) as well. The task is

successfully performed with no interferences of the rotational

motion in the translational one as shown in Fig. 10(a). Given

its decoupling properties, the evolution of the translation error

differs significantly between Figs. 9(c) and 10(c). The rate of

convergence of the Decoupled DVS is in fact much higher

relatively to the DVS, with a much lower settling time.

VI. EXPERIMENTAL TRACKING RESULTS

All aforementioned experiments have consisted of a posi-

tioning task with respect to a motionless object. To demon-

strate the versatility and performance of the proposed Decou-

pled DVS, an experiment of tracking a fast freely-moving
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Figure 9. DVS results for the Setup C: Mostly rotation using a nonplanar ob-
ject. (Top) Control signals. (Bottom) End-effector motion in Cartesian space.
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Figure 10. Decoupled DVS results for the Setup C: Mostly rotation using a
nonplanar object. (Top) Control signals. (Bottom) End-effector motion in the
Cartesian space. Much faster convergence is observed with respect to Fig. 9.

object has been conducted as well. In this experiment the

camera framerate is 120Hz, the template size has 320 × 240
pixels, and the control gains are 1.8 exp(−0.9 ‖ε̄(t)‖). These

variable gains induce faster robot motion when the control

errors are small. Let us remark that neither error integrators

nor state observers are added to the system, what could still

improve its performance. The obtained results are available

in the accompanying video (supplementary material), where

some excerpts are shown in Fig. 11. The control signals

and norm of control errors are given in Fig. 12, where

fast robot motion in all six DoF can be observed. Indeed,

translational and rotational velocities of more than 0.7 m/s

and 70 degrees/s, respectively, are successfully attained even

for an observed object of unknown depth, orientation, size,

texture, and undergoing disparate and large displacements.
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Figure 11. Excerpts of a tracking task using a camera-mounted robot and a fast freely-moving planar object of unknown depth, orientation, size, and texture.
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Figure 12. Control signals (left axis in mm/s and right one in degrees/s)
and norm of control errors, respectively, for the tracking experiment shown
in Fig. 11. Fast robot motion is observed in all six degrees of freedom.

VII. CONCLUSIONS

This brief has proposed a general intensity-based nonmetric

visual servoing technique that decouples the control error

dynamics. This new decoupled technique is general in the

sense that all 6-DoF of a holonomic robot are stabilized

regardless of the observed object characteristics, camera dis-

placements, and their relative poses. The proposed strategy

exploits the pixel intensities without extracting or matching

image features, does not require any metric information of

the object, and is proven to locally exponentially stabilize the

equilibrium. Various comparison results with a state-of-the-

art direct technique using a camera-mounted 6-DoF robotic

arm confirm the improvements. Moreover, a tracking task of a

fast freely-moving object has also been possible given its high

rate of convergence and versatility. In future work we plan to

extend the proposed framework to control other mechanical

systems, such as nonholonomic and underactuated robots.
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