F. Altermatt, E. A. Fronhofer, A. Garnier, A. Giometto, F. Hammes et al., , 2015.

, Big answers from small worlds: a user's guide for protist microcosms as a model system in ecology and evolution, Methods Ecol. Evol, vol.6, pp.218-231

J. H. Brown and J. F. Gillooly, Ecological food webs : High-quality data facilitate theoretical unification, Proc. Natl. Acad. Sci, vol.100, pp.1467-1468, 2003.

J. H. Brown, J. F. Gillooly, A. P. Allen, and V. M. Savage, Toward a metabolic theory of ecology, Ecology, vol.85, pp.1771-1789, 2004.

F. Carrara, F. Altermatt, I. Rodriguez-iturbe, and A. Rinaldo, Dendritic connectivity controls biodiversity patterns in experimental metacommunities, Proc. Natl. Acad. Sci, vol.109, pp.5761-5766, 2012.

D. Eddelbuettel and R. Francois, Rcpp: Seamless R and C++ Integration, Journal of Statistical Software, vol.40, issue.8, pp.1-18, 2011.

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, 2013.

D. Eddelbuettel and J. J. Balamuta, Extending R with C++: A Brief Introduction to Rcpp, PeerJ, vol.5, pp.3188-3189, 2017.

D. Eddelbuettel and R. Francois, RcppGSL: 'Rcpp' Integration for 'GNU GSL' Vectors, 2018.

M. Galassi, J. Davies, and J. Thelier, GNU Scientific Library Reference Manual, vol.0954612078, issue.3, p.580, 2001.

A. Giometto, F. Altermatt, F. Carrara, A. Maritan, and A. Rinaldo, Scaling body size fluctuations, Proc. Natl. Acad. Sci, vol.110, pp.4646-4650, 2013.

N. M. Haddad, M. Holyoak, T. M. Mata, K. F. Davies, B. A. Melbourne et al., , 2008.

, Species' traits predict the effects of disturbance and productivity on diversity, Ecol. Lett, vol.11, pp.348-356

E. Harvey, I. Gounand, P. Ganesanandamoorthy, and F. Altermatt, Spatially cascading effect of perturbations in experimental meta-ecosystems, Proc. R. Soc. B Biol. Sci, vol.283, 2016.

R. M. Hope, Rmisc: Ryan Miscellaneous, 2013.

F. Pennekamp, N. Schtickzelle, and O. L. Petchey, BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes, Ecol. Evol, vol.5, pp.2584-2595, 2015.

. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2019.

V. M. Savage, J. F. Gillooly, and W. Woodruff, The predominance of quarter-power scaling in biology, Funct. Ecol, vol.18, pp.257-282, 2004.