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INTRODUCTION

Proteorhodopsins (PR) constitute a major group of
proteins that are expressed in the marine environ-
ment. Since their discovery in 2000 (Béjà et al. 2000),
several studies have revealed their broad phyloge-
netic and geographic distribution (de la Torre et al.
2003, Finkel et al. 2013) and their high abundance in
marine waters (Venter et al. 2004, Rusch et al. 2007,
Campbell et al. 2008, Finkel et al. 2013). These data
suggest the importance of this protein in bacterial
physiology and for potentially regulating energy
fluxes in the oceans.

The physiological roles of PR are currently being
investigated. Although some rhodopsins in marine
microbes may be light sensors (Fuhrman et al. 2008),
experimental studies and sequence analyses have

indicated that PR are proton pumps, enabling photo -
phosphorylation and cell motility (Walter et al. 2007).
Recent studies have found that PR promotes the sur-
vival of marine bacteria during starvation (Gómez
Consarnau et al. 2010, Steindler et al. 2011). Also,
Wang et al. (2012) showed that PR can be expressed
in vibrios under respiratory stress, while Feng et al.
(2013) found higher PR expression in the flavobac-
terium Psychroflexus torquis when grown in salini-
ties below or above optimal levels. Results from these
previous studies are consistent with the hypothesis
that light provides additional energy for PR-contain-
ing bacteria starved of organic carbon or stressed by
low nutrient concentrations or other environmental
properties.

However, the effects of light on the growth-related
activity of PR-containing bacteria remain unclear.
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PCR approach. We found that the expression of SAR11 PR was 2.5-fold higher during the day than
at night. However, SAR11 16S rRNA levels remained constant during the day and night on all
cruises, suggesting that the growth-related activity of SAR11 was not directly affected by sunlight.
There was a tight correlation between expression of PR in SAR11 and photosynthetically active
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affects PR expression by SAR11 populations, but the energy from PR appears to  contribute relatively
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Light does not affect the growth of a cultivated repre-
sentative of the SAR11 clade (Giovannoni et al. 2005,
Steindler et al. 2011), and the gammaproteobac-
terium SAR92 HTCC2207 and the flavobacterium
Dokdonia PRO95 grew equally well under dark and
light (Stingl et al. 2007, Riedel et al. 2010). In con-
trast, Dokdonia MED134 has been shown to grow
faster with light (Gómez-Consarnau et al. 2007,
Kimura et al. 2011), and salinity-stressed P. torquis
also grows faster with light, although there was no
effect when it was grown under organic carbon limi-
tation (Feng et al. 2013). In one of the few studies
with natural communities, light did affect the growth
of SAR11 bacteria in microcosms exposed to artificial
light−dark cycles (Lami et al. 2009a). Also, the frac-
tion of cells using leucine in the light was 25% higher
for SAR11 bacteria than for the total bacterial com-
munity in Delaware Bay, although the effect was not
consistently seen (Straza & Kirchman 2011). Other
studies have seen either no effect or even inhibition
by light of the activity of natural microbial communi-
ties with potential PR-containing bacteria (Michelou
et al. 2007, Straza & Kirchman 2011, Ruiz-González
et al. 2012a,b).

A few contradictory studies have examined the
effects of light on PR expression. Light significantly
induces PR expression in Dokdonia MED134 cells
grown in pure culture (Gómez-Consarnau et al. 2007,
Kimura et al. 2011), while Steindler et al. (2011)
found PR expression by a Candidatus Pelagibacter
strain (HTCC1062) to be 2-fold higher in the dark
compared with the light, although mass spectrometry
data indicate that the PR protein is present in the
light and dark (Giovannoni et al. 2005). In contrast,
PR transcript levels were similar in light and dark for
Dokdonia PRO95 (Riedel et al. 2010). Interestingly,
Akram et al. (2013) found that expression of PR was
higher at the transition from the exponential growth
phase to the stationary phase for Vibrio sp. AND4.
These authors argued that nutrients, not light expo-
sure, regulated PR expression by this bacterium.
During a microcosm experiment with natural micro-
bial communities, light-dependent PR expression
was observed in SAR11 and flavobacterial groups
(Lami et al. 2009a), and PR transcripts were more
abundant during the day than at night in the North
Pacific Ocean (Poretsky et al. 2009), but not in coastal
waters of northern California (Ottesen et al. 2013).
These data indicate the need to better characterize
the relationships between light, other environmental
conditions and PR expression. In particular, it is not
clear whether light stimulates PR expression by natu-
ral marine communities and whether this expression

is tied to enhanced growth-related activity by PR-
containing bacteria.

In this study, we examined the expression of PR
and 16S rRNA by bacteria in the SAR11 clade under
natural day−night cycles during 3 cruises in Delaware
coastal waters. SAR11 bacteria are often the most
abundant taxa in marine systems (Morris et al. 2002),
including Delaware coastal waters (Campbell et al.
2011). We used a quantitative PCR (qPCR) approach
to examine the genes and transcripts of PR and 16S
rRNA for SAR11 and the total bacterial community.
The total diversity of 16S rRNA genes was also deter-
mined by 454 pyrosequencing to explore overall
changes in the bacterial communities during the 3
diurnal studies. We observed light-dependent rela-
tive expression of SAR11 PR during all cruises, but
light did not seem to directly affect activity of SAR11
bacteria.

MATERIALS AND METHODS

Water samples were collected aboard the R/V ‘Hugh
R. Sharp’ from Delaware coastal waters (38° 50.935’ N,
75° 6.456’ W) at 1 m depth using a rosette of Niskin
bottles mounted on a CTD profiler. The light sensor
was a Biospherical PNF-210 radio meter. The cruise
dates were 3−4 May 2007, 20−21 September 2007
and 8−9 September 2008. Samples were taken about
every 4 h. All samples were processed immediately
onboard. A total of 1 l was filtered for each sample,
under reduced light intensities over night to minimize
the effects of filtration on gene expression. All data
are expressed as a function of solar time, which was
2 h before local time during these cruises.

Environmental parameters and 
nucleic acid  extraction

Total prokaryote abundance, bacterial production
and chlorophyll a (chl a) were measured following
previously described protocols (Cottrell et al. 2006).
For pyrosequencing and qPCR analyses, all water
samples were pre-filtered through 0.8 µm polycar-
bonate filters to minimize the presence of eukaryotic
DNA, and the <0.8 µm size fraction was collected on
0.22 µm Durapore filters. Filters were then placed in
2% N-cetyl N,N,N-trimethylammonium bromide and
stored onboard at 80°C. Total DNA was extracted
using standard protocols (Dempster et al. 1999) and
quantified via a standard picogreen assay (Invitro-
gen) on a POLARstar Optima fluorometer (BMG
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Labtech). Total RNA was co-extracted with DNA and
isolated using the following mix (Turbo DNA-free
Kit, Ambion): 0.5 units of DNase I per 100 ng of total
nucleic acids with 1 µl of 10× buffer (Ambion)
(30 min, twice, 37°C). Total RNA was quantified via a
ribogreen assay (Invitrogen) on the POLARstar
Optima fluorometer. DNA removal from RNA sam-
ples was confirmed by PCR amplification without the
reverse transcription step, following the PCR condi-
tions described below. No amplification was detected
in these controls.

Quantification of PR gene and 
transcript  abundance

SAR11 PR genes and transcripts were targeted by
qPCR. The SAR11 PR primers and PCR conditions
were the same as those described in Lami et al.
(2009a). One PR-containing plasmid was used as a
positive control to establish standard curves in the
qPCR assays. This PR gene, similar to the one in the
targeted SAR11 populations (data not shown), was
isolated from environmental clones (Qiaprep Kit,
Qiagen) and linearized with PstI (Invitrogen). Stan-
dard reactions with linearized plasmid contained
approximately 101 to 106 copies per reaction. All
standard curves were linear within the ranges tested.

Quantitative PCR was performed in triplicate or
quadruplicate with 1 µl of diluted DNA (0.1 ng µl−1)
or 1 µl of diluted RNA (0.05 ng µl−1) in a final volume
of 12.5 µl using the Stratagene SYBR green mix with
an ABI 7500 (Applied Biosystems). The PCR condi-
tions were an initial denaturation step at 95°C
(10 min for qPCR, 5 min for real-time qPCR), followed
by 30 to 40 cycles of amplification at 95°C for 15 s, the
indicated annealing temperature for 45 s, and 72°C
for 45 s, with a final dissociation step. No reverse
transcription was performed during the qPCR reac-
tions. For real-time qPCR, an additional step was
added before the denaturation step (40°C, 1 min).
Final primer concentrations were 0.2 µM. Only single
peaks were observed in the dissociation curves for
both the standards and samples, indicating specific
amplification with each set of primers. Amplification
efficiencies were between 92 and 103%, and no inhi-
bition was detected when a known quantity of stan-
dard was added to each sample (data not shown).
The detection limit of qPCR assays was about 50
copies of genes or transcripts per ml. The specificity
of the SAR11 PR primers has been previously con-
firmed, as discussed in more detail by Campbell et al.
(2008).

Sequence analysis of 16S rRNA genes

All 16S rRNA genes were pyrosequenced on a
Roche 454 FLX instrument (Research and Testing
Laboratory) using a mixture of Hot Start and HotStar
high-fidelity Taq polymerases, which generated
amplicons of 250 to 550 bp starting from position 27
(Escherichia coli 16S rRNA number). Sequences
were run through AmpliconNoise and Perseus
(Quince et al. 2009) to remove noise and chimeras
from the original SFF files. The 16S rRNA sequences
were de-multiplexed and quality filtered, and homo -
polymers were removed using QIIME (Caporaso et
al. 2010). QIIME was also used to calculate alpha-
and beta-diversity indices (Caporaso et al. 2010).
Sequences are available at the European Nucleotide
Archive, accession number ERP003436/ PRJEB4174.

RESULTS

Environmental parameters and microbial diversity

Salinity was relatively constant during the 3 cruises,
varying between 30.4 and 31.6 PSU (Table 1). Chl a
concentrations were low in May 2007 (1.61 ± 0.03
[SD] to 2.94 ± 0.04 µg l−1) and higher during Septem-
ber 2007 and 2008 (8.4 ± 0.1 to 15.6 ± 0.7 µg l−1). Bac-
terial abundances varied overall between 1.56 × 106 ±
5.68 × 105 and 6.9 × 106 ± 0.2 × 106 cells ml−1 (Table 1).
Bacterial production (leucine incor poration) was
lower in May 2007, varying from 16 to 54 pM h−1,
than in September 2007, when it varied between 86
and 151 pM h−1 (Fig. 1). Production was highest in
September 2008 (between 116 and 397 pM h−1).

Light penetration in the water column, as indicated
by the attenuation coefficient, varied from 0.66 to
0.21 m−1 during May 2007, from 0.6 to 0.54 m−1 dur-
ing September 2007, and from 0.73 to 0.63 m−1 during
September 2008. Photosynthetically active radiation
(PAR) was between 160 and 2050 µmol m−2 s−1 in
May and between 110 and 2990 µmol m−2 s−1 during
the September cruises (Table 1).

UPGMA clustering revealed 3 groups of 16S rRNA
gene pyrosequences (97% similarity) representing
the entire bacterial communities sampled by the 3
cruises. 16S rRNA genes varied more between the
cruises than during one cruise (Fig. 2). Similarly,
there was no significant correlation between 16S
rRNA diversity and the tides (data not shown).

The SAR11 clade dominated the community com-
position during all cruises, making up 32 to 37% of
the total sequences (Table 2). The SAR86 clade was
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May 2007 cruise                            Day 1             Day 1             Day 1             Day 2             Day 2           Average             SD
                                                        09:00              13:00             21:00             01:00             09:00

SAR11                                              34.6                35.6                36.8                41.3                39.2                37.1                 3.0
Other Alphaproteobacteria           14.0                13.4                15.5                13.1                15.3                14.0                 1.1
SAR86                                              12.3                10.7                11.7                10.8                10.6                11.4                 0.8
Other Gammaproteobacteria         3.5                  4.2                  3.6                  3.1                  2.5                  3.6                  0.5
Bacteroidetes                                   9.4                 10.1                 9.4                  8.3                 12.3                 9.3                  0.7
Cyanobacteria                                 0.7                  0.9                  1.0                  0.6                  6.9                  0.8                  0.2
Actinobacteria                                 7.9                  6.4                  6.9                  7.9                  1.2                  7.3                  0.8
Other groups                                   17.6                18.7                15.1                14.9                12.0                16.6                 1.9
                                                                                                                                                                                

Sep 2007 cruise                             Day 1             Day 1             Day 1             Day 2                                  Average             SD
                                                        10:30             14:30             22:30             02:30

SAR11                                              37.2                32.9                38.2                29.0                                       34.3                 4.2
Other Alphaproteobacteria           11.7                14.6                14.6                12.7                                       13.4                 1.4
SAR86                                               7.5                  7.3                  8.6                 11.5                                        8.7                  1.9
Other Gammaproteobacteria         4.2                  4.2                  4.3                  4.4                                         4.3                  0.1
Bacteroidetes                                   6.8                 11.4                 9.2                  9.9                                         9.3                  1.9
Cyanobacteria                                 13.8                13.2                 7.6                 12.2                                       11.7                 2.8
Actinobacteria                                 9.6                  7.7                  8.0                  8.5                                         8.5                  0.8
Other groups                                    9.2                  8.7                  9.5                 11.8                                        9.8                  1.4

Table 2. Relative abundance of major bacterial clades examined in this study during the 3 cruises in Delaware coastal waters, 
given as % of total sequences. Sampling between 19:00 and 02:30 h was at night (table continues on next page)

Cruise                 Temp.   Salinity         PAR           Atten.             Chl a       SD         Abund.       SD       Leucine inc.  SD
Solar time (h)     (°C)       (PSU)    (µmol m−2 s−1)     (m−1)     (µg l−1) (106 cells ml−1) (pM h−1)

May 2007
09:00                   11.7        31.2             1460             0.66                2.92         0.04             1.9           0.5             20.3         2.3
13:00                   12.1        31.3             1870             0.42                2.43         0.09             1.6           0.5             33.6         7.3
17:00                   12.2        31.4              160             0.39                1.62         0.03             2.0           0.5             16.0         9.5
21:00                   12.3        31.0            Night           Night               1.69         0.05             2.5           0.6             53.7         3.6
01:00                   11.8        31.4            Night           Night               2.07         0.10             3.9           0.5             37.1         2.9
05:00                   11.8        31.3              240             0.43                2.31         0.05             3.0           0.1             31.1         5.1
09:00                   11.8        31.5             2050             0.21                1.95         0.05             2.3           0.4             31.1         2.2

Sep 2007                 
06:30                   21.3        31.4              110             Night               8.41         0.14             3.7           0.7             150.7        7.6
10:30                   21.2        31.5              224               0.6                 9.63         0.10             4.2           0.5             97.9         4.7
14:30                   21.8        31.5             1900             0.59                8.23         0.92             3.7           0.7             128.0       11.9
18:30                   21.6        31.6            Night           Night               7.25         0.33             4.0           0.4             106.2       17.6
22:30                   21.2        31.5            Night           Night               8.48         0.32             3.3           0.3             96.0         1.0
02:30                   21.2        31.5            Night           Night               8.52         0.24             3.3           0.6             85.8         7.5
06:30                   21.3        31.5             2990             0.56                9.50         0.28             2.9           0.8             94.6         7.9
10:30                   21.3        31.5             2210             0.54               10.22       0.25             3.6           0.7             91.1        11.7

Sep 2008                 
07:00                   22.8        30.7             1727             0.7                13.18       0.73             6.3           0.8             191.4       14.2
11:00                   23.2        30.8             2160             0.69               13.73       0.64             4.4           0.8             115.6        4.3
15:00                   23.3        30.8             1360             0.64               14.02       0.18             1.2           0.2             235.0       16.2
19:00                   23.5        30.8            Night           Night             12.48       0.55             3.9           0.1             289.9       19.0
23:00                   23.2        30.7            Night           Night             13.13       0.16             4.7           0.7             249.3        7.2
03:00                   23.1        30.7            Night           Night             12.43       0.06             5.7           0.2             396.5        3.6
07:00                   23.1        30.6              630             0.73               14.48       0.50             6.9           0.2             240.5       12.4
11:00                   23.8        30.4             1460             0.66               14.80       0.48             6.2           0.2             303.6       11.7
15:00                   23.4        30.4              270             0.63               15.60       0.65             6.5           0.1             199.4       12.5

Table 1. Selected biogeochemical parameters during the 3 cruises in Delaware coastal waters. PAR = photosynthetically active 
radiation. Inc. = incorporation, Abund. = Abundance, Atten. = Attenuation
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also abundant, varying between about 9% (Septem-
ber 2007) and 11% (May). Cyanobacteria varied from
0.8% of all 16S rRNA sequences in May 2007 to 11.7%
in September 2007 (Table 2). Actinobacteria, another
abundant group in Delaware coastal waters, made up
7.3% in May and 8.5% in September 2007, but only
1.8% in September 2008 (Table 2). Rare faction curves
showed that our sequencing effort recovered about
65% of the total diversity (data not shown).

Expression of PR and 16S rRNA genes

The relative expression of SAR11 PR genes varied
over the day−night cycle during the 3 cruises (Fig. 3).
During the May cruise, the transcript to gene ratios of
SAR11 PR genes (SAR11 PR mRNA:DNA ratio)
peaked at 09:00 h both on Day 1 (ratio of 1.5 ± 0.1)
and Day 2 (3 ± 0.03). Expression was slightly lower at
13:00 h (ratio of 1.3 ± 0.05). During all other hours of
this cruise, the relative expression of SAR11 PR
genes was very low (mRNA:DNA < 0.3) (Fig. 3A). In
September 2007, a similar pattern was observed

(Fig. 3B). The SAR11 PR mRNA:DNA
ratio peaked at 10:30 h on Day 1 (2.4
± 0.1) and Day 2 (2.5 ± 0.04). The rel-
ative expression at other times was
lower, remaining below 0.75 during
the day and night. In September 2008,
the relative expression of SAR11 PR
was again higher during the day than
during the night (Fig. 3C). The re -
lative expression was highest at
11:00 h during Day 1 (ratio 1.4 ± 0.3)
and at 15:00 h during Day 2 (1.5 ±
0.03). During the night, SAR11 PR
mRNA: DNA ratios were <0.6. Most
of the change in the SAR11 PR ratios
was due to changes in mRNA. Dur-
ing each cruise, PR gene abundance

varied 3-fold, while PR mRNA concentration varied
7-fold (data not shown).

To compare changes in PR and 16S rRNA ratios,
the data from all 3 cruises were combined and aver-
ages (±SE) were calculated for day and night (Fig. 4).
During the 3 cruises, SAR11 PR mRNA:DNA ratios
differed between day and night, but the ratio for
SAR11 16S rRNA genes (16S rRNA:rDNA) did not
(Fig. 4). The SAR11 PR mRNA:DNA ratio was 2.5-
fold higher during the day (1.30 ± 0.30) than at night
(0.46 ± 0.05). The difference was statistically signifi-
cant (Student’s t-test, p < 0.05). In contrast, the
SAR11 16S rRNA:rDNA ratio did not change signifi-
cantly between day (54 ± 15) and night (52 ± 8). The
total bacterial 16S rRNA:rDNA ratio also did not vary
significantly between day and night (Fig. 4).

Correlations between transcript to gene ratios and
environmental parameters

The transcript to gene ratio for SAR11 PR and
SAR11 16S rRNA varied about 30-fold and 20-fold,

189

Sep 2008 cruise                             Day 1             Day 1             Day 1             Day 1             Day 2           Average             SD
                                                        07:00             11:00             19:00             23:00             07:00

SAR11                                              33.8                31.8                23.5                37.4                27.2                31.6                 5.9
Other Alphaproteobacteria           16.2                16.6                17.2                16.4                13.9                16.6                 0.4
SAR86                                              11.0                13.0                12.1                 8.8                  8.3                 11.2                 1.8
Other Gammaproteobacteria         2.6                  2.8                  2.5                  1.7                  5.2                  2.4                  0.5
Bacteroidetes                                   14.9                14.4                14.9                18.3                10.4                15.6                 1.8
Cyanobacteria                                 6.8                  8.7                 12.1                 5.7                 13.0                 8.3                  2.8
Actinobacteria                                 2.1                  1.4                  2.2                  1.5                  8.6                  1.8                  0.4
Other groups                                   12.6                11.3                15.5                10.2                13.4                12.6                 2.3

Table 2 (continued)
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respectively, but we did not find any significant cor-
relation between the 2 ratios (Pearson’s correlation
coefficient, r = 0.3, p > 0.05, n = 24) (Fig. 5A). The
relationship between SAR11 PR genes and total bac-
terial 16S rRNA genes was also not significant (r =
0.2, p > 0.05, n = 24, data not shown). However, there
was a significant relationship between SAR11 16S
rRNA:rDNA and the total bacterial 16S rRNA:rDNA
ratio (r = 0.89, p < 0.01, n = 24) (Fig. 5B).

There was also a significant relationship between
PAR and the mRNA:DNA ratio for SAR11 PR, exclud-
ing the night data (r = 0.66, p < 0.05 n = 15). In con-
trast, no significant correlation was found between
the measured environmental parameters and the
SAR11 PR mRNA:DNA ratios (r = 0.1 to 0.4, p > 0.05,
n = 24; data not shown).

190

Fig. 3. SAR11 proteorhodopsins (PR) mRNA:DNA ratio (±SE
from technical triplicates) over time in (A) May 2007, (B)
September 2007 and (C) September 2008. Samples collected 

during the night are indicated with a gray background
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DISCUSSION

In this study, we examined patterns of PR expres-
sion by the widespread SAR11 bacterial clade during
3 cruises in Delaware coastal waters. We found that
the relative expression of SAR11 PR was about 2.5-
fold higher during the day than at night and that the
relative PR expression was modulated by the amount
of PAR. Our experiment supports the existence of a
tight relationship between light and relative PR
expression in marine SAR11 bacteria, but there was
no relationship between PR expression and 16S
rRNA: rDNA ratios.

These field data are consistent with previous stud-
ies demonstrating higher PR expression with light in
microcosm experiments with natural bacterial com-
munities (Lami et al. 2009a) and pure culture experi-
ments with the flavobacterial strain Dokdonia (Gómez-

Consarnau et al. 2007, Kimura et al. 2011). In contrast,
expression of PR by Candidatus Pelagibacter ubique
HTCC1062, a cultivated representative member of
the SAR11 clade, is higher in the dark than in the
light (Steindler et al. 2011). This Candidatus P.
ubique strain may not be representative of SAR11
strains found in Delaware coastal waters; it is well
known that the SAR11 clade is phylogenetically and
functionally diverse (Wilhelm et al. 2007). This diver-
sity may explain the differences observed be tween
PR expression by the Candidatus Pelagibacter strain
in culture and by SAR11 cells in Delaware coastal
waters. It also highlights the need for experiments
with natural communities, such as those discussed
here, and to integrate results from those experiments
with appropriate data from lab experiments with
model organisms.

Tides and coastal currents potentially complicate
our interpretation of the temporal patterns in genes
and transcription described in this study. However,
several observations lead us to conclude that tides
and currents do not explain the diel variation in the
relative PR expression we observed. Physical and
chemical data showed that variations between
cruises were much larger than variations within a
cruise. In spite of this variation, the influence of light
on SAR11 PR and SAR11 16S rRNA transcription was
similar during all 3 cruises in all 3 seasons. Clustering
of total 16S rRNA gene sequences indicated that the
bacterial community composition was highly similar
in the water masses sampled during a single cruise.
Even if communities varied among the water masses
we sampled during a cruise, they appeared to re -
spond similarly to daylight variations. We suspect
that a similar physiological response to light occurred
in all the SAR11 communities we sampled in Dela -
ware coastal waters.

A key question addressed in this work is whether
the expression of PR fuels growth-related activity of
SAR11 bacteria in coastal waters. In this study, we
used the relative expression level of 16S rRNA genes
as a measure of this aspect of bacterial activity, an
approach based on the relationship between rRNA
levels per cell and growth rates and between rRNA
synthesis and protein synthesis in pure cultures
(see review by Blazewicz et al. 2013). Several previ-
ous studies have used this relationship to explore
growth-based activity in natural communities (Blaze -
wicz et al. 2013). In particular, Campbell et al. (2012)
used 16S rRNA:rDNA ratios to monitor SAR11 growth-
related activity as a function of several environmental
variables at the same Delaware site as this study. We
did not see a significant relationship be tween 16S
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rRNA:rDNA and PR mRNA:DNA for SAR11, suggest-
ing that energy from PR did not substantially affect
SAR11 growth-related activity.

The lack of an obvious coupling between PR ex -
pression and the 16S rRNA:rDNA ratio for SAR11 is
consistent with the theoretical calculations of Kirch-
man & Hanson (2013), who suggested that the amount
of energy provided by PR is small compared with the
energy required for bacterial growth. It would be dif-
ficult to detect a small contribution, especially with
natural microbial communities. Light appears to
enhance uptake of methionine and ATP by SAR11
cells in the North Atlantic Ocean by about 30% on
average (Gómez-Pereira et al. 2013), which is more
than predicted by theoretical calculations (Kirchman
& Hanson 2013), but still near the detection limits of
many methods. This level of enhancement may be
too small to detect with 16S rRNA:rRNA ratios, espe-
cially if there is uncoupling between 16S rRNA syn-
thesis and growth. Levels of 16S rRNA would also
likely not capture any enhanced survival of bacteria
due to PR, as observed for Candidatus P. ubique
(Steindler et al. 2011). Light-enhanced survival of
bacteria probably does not depend on en hanced pro-
tein synthesis and thus would not likely be detectable
with 16S rRNA data.

Other environmental conditions have recently
been shown to upregulate PR expression, but some of
these conditions are likely not found in coastal waters,
while others lead to a prediction opposite from the
observed results. These conditions include the transi-
tion from the exponential to stationary phase and
energy limitation caused by respiratory stress, both
of which lead to higher PR expression in various cul-
tivated bacteria (Gómez-Consarnau et al. 2010,
Akram et al. 2013). In contrast to the laboratory stud-
ies, we sampled well oxygenated, mesotrophic coastal
waters where bacteria likely grow continuously with-
out respiratory stress. While bacterial growth is likely
limited by organic carbon in these waters, the labora-
tory experiments showing higher PR expression dur-
ing energy limitation would lead us to expect PR
expression to be lower, not higher during the day,
when release of labile organic material from phyto-
plankton is thought to be highest (Nagata 2000).
Thus, an indirect effect of light on SAR11 PR expres-
sion appears unlikely.

The complicated relationships among PR, bacterial
growth and light have implications for understanding
diel patterns in heterotrophic bacterial properties.
Although diel patterns in cyanobacteria are well
known (Vaulot et al. 1995), they are less clear cut for
other members of the bacterioplanktonic community.

Some studies have not found diel patterns in the
incorporation of thymidine, leucine or bromode oxy -
uridine (Riemann & Søndergaard 1984, Torreton &
Dufour 1996, Gasol et al. 1998, Pernthaler & Pern-
thaler 2005). Other studies, however, have shown an
effect of solar radiation on diel cycles of thymidine
and leucine incorporation (Jeffrey et al. 1996, Ruiz-
González et al. 2012a), bacterial division deduced
from ftsZ expression (Yao et al. 2011) and recA gene
expression (Booth et al. 2001) by natural bacterial
communities. The inconsistency in diel patterns for
bacterial communities may in part result from varia-
tion in bacterial community composition and in how
different PR-bearing bacteria respond to light. Com-
munities with a large number of Flavobacteria may
be more responsive to light than those dominated by
SAR11, based on the documented light effects on PR-
bearing Flavobacteria versus cultured representative
members of the SAR11 group.

Our field data indicate light-dependent expression
of PR genes by SAR11 bacteria in natural microbial
communities. These in situ data contribute to the
debate about the relationship between light, activity
and PR expression, which has been examined so far
with microcosm or culture-based experiments. These
results highlight the need to better understand and
characterize the role of PR in microbial physiology
and oceanography.
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