X. Liu, N. Fechler, and M. Antonietti, Salt Melt Synthesis of Ceramics, Semiconductors and Carbon Nanostructures, Chem. Soc. Rev, vol.42, issue.21, pp.8237-8265, 2013.

,

D. Portehault, S. Delacroix, G. Gouget, R. Grosjean, and T. Chan-chang, Beyond the Compositional Threshold of Nanoparticle-Based Materials, Acc. Chem
URL : https://hal.archives-ouvertes.fr/hal-01883831

. Res, , vol.51, pp.930-939, 2018.

S. Carenco, D. Portehault, C. Boissière, N. Mézailles, and C. Sanchez, Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives, Chem. Rev, vol.113, pp.7981-8065, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289771

H. Thi-n'goc and . Le,

L. D. Mouafo, C. Etrillard, A. Torres-pardo, J. Dayen, S. Rano et al., Surface-Driven Magnetotransport in Perovskite Nanocrystals, Adv. Mater, vol.29, p.1604745, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01427294

L. Li, J. Deng, J. Chen, and X. Xing, Topochemical Molten Salt Synthesis for Functional Perovskite Compounds, Chem. Sci, vol.2016, issue.2, pp.855-865

,

H. Liu, C. Hu, and Z. L. Wang, Composite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides, Nano Lett, vol.6, issue.7, pp.1535-1540, 2006.

D. Portehault, S. Devi, P. Beaunier, C. Gervais, C. Giordano et al., A General Solution Route toward Metal Boride Nanocrystals
URL : https://hal.archives-ouvertes.fr/hal-02923117

, , vol.50, pp.3262-3265, 2011.

G. Gouget, P. Beaunier, D. Portehault, and C. Sanchez, New Route toward Nanosized Crystalline Metal Borides with Tunable Stoichiometry and Variable Morphologies, Faraday Discuss, vol.191, pp.511-525, 2016.

G. Gouget, D. P. Debecker, A. Kim, G. Olivieri, J. Gallet et al., Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis, vol.56, pp.9225-9234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01739853

X. Liu, M. Antonietti, and C. Giordano, Manipulation of Phase and Microstructure at Nanoscale for SiC in Molten Salt Synthesis, Chem. Mater, vol.25, issue.10, pp.2021-2027, 2013.

X. Liu, C. Giordano, and M. Antonietti, A Molten-Salt Route for Synthesis of Si and Ge Nanoparticles: Chemical Reduction of Oxides by Electrons Solvated in Salt Melt

. Mater and . Chem, , vol.22, p.5454, 2012.

M. Konstantakou and T. Stergiopoulos, A Critical Review on Tin Halide Perovskite Solar Cells, J. Mater. Chem. A, vol.2017, issue.23, pp.11518-11549

,

S. S. Hashim, M. R. Somalu, K. S. Loh, S. Liu, W. Zhou et al., Perovskite-Based Proton Conducting Membranes for Hydrogen Separation: A Review, Int. J. Hydrogen Energy Reactor: A Review. Prog. Energy Combust. Sci, vol.61, pp.57-77, 2017.

,

M. I. Ansari, A. Qurashi, and M. K. Nazeeruddin, Frontiers, Opportunities, and Challenges in Perovskite Solar Cells: A Critical Review, J. Photochem. Photobiol. C Photochem. Rev

,

J. Suntivich and H. Gasteiger,

N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-horn, Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries, Nat. Chem, vol.2011, issue.7, pp.546-550

J. Yu, J. Sunarso, Y. Zhu, X. Xu, R. Ran et al., Activity and Stability of Ruddlesden-Popper-Type Lan+1Nin O3n +1( n =1, 2, 3, and ?) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media

J. , , vol.22, pp.1-10, 2016.

J. Zhang, Y. Zhao, X. Zhao, Z. Liu, and W. Chen, Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential

. Sci and . Rep, , vol.4, 2015.

Z. Wei, Y. Cui, K. Huang, J. Ouyang, J. Wu et al., Fabrication of La 2 NiO 4 Nanoparticles as an Efficient Bifunctional Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries, RSC Adv, vol.6, issue.21, pp.17430-17437, 2016.

E. Y. Pikalova, N. M. Bogdanovich, A. A. Kolchugin, D. A. Osinkin, and D. I. Bronin, Electrical and Electrochemical Properties of La2NiO4+?-Based Cathodes in, Contact with Ce0.8Sm0.2O2-? Electrolyte. Procedia Eng, vol.98, pp.105-110, 2014.

,

R. J. Woolley and S. J. Skinner, Functionally Graded Composite La 2 NiO 4+? and La 4 Ni 3 O 10?? Solid Oxide Fuel Cell Cathodes, Solid State Ionics, vol.255, pp.1-5, 2014.

,

E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier et al., Oxygen Diffusion and Transport Properties in Non-Stoichiometric LnNiO Oxides, Solid State Ionics, 2005.

F. Gonell, N. Alem, P. Dunne, G. Crochet, P. Beaunier et al., Versatile Molten Salt Synthesis of Manganite Perovskite Oxide Nanocrystals and Their Magnetic Properties, vol.5, pp.358-363, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02168943

A. Raihani, H. Durand, B. Chassagneux, F. Kerridge, D. H. Inman et al., Zirconia Formation by Reaction of Zirconium Sulfate in Molten Alkali-Metal Nitrates or Nitrites, J. Mater. Chem, vol.4, issue.8, p.1331, 1994.

Y. Du and D. Inman, Reactions of Zr(SO4)2 in Molten Nitrite and Nitrate Systems, J. Mater. Chem, vol.5, issue.11, 1927.

Y. Du and D. Inman, The Acidic/Basic Effects on Preparation of Zirconia Powders from Molten Salts, J. Mater. Sci, 1996.

R. Deshmukh and M. Niederberger, Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. Chem. -A Eur

P. Afanasiev and C. Geantet, Synthesis of Solid Materials in Molten Nitrates, Coord. Chem. Rev, issue.2, pp.154-158, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00006742

Z. Cui, S. Wang, Y. Zhang, and M. Cao, Engineering Hybrid between Nickel Oxide and Nickel Cobaltate to Achieve Exceptionally High Activity for Oxygen Reduction Reaction, J. Power Sources, vol.272, pp.808-815, 2014.

,

K. A. Stoerzinger, W. Lü, C. Li, and . Ariando,

T. Venkatesan and Y. Shao-horn, Highly Active Epitaxial La(1-x)SrxMnO3 Surfaces for the Oxygen Reduction Reaction: Role of Charge Transfer, J. Phys. Chem. Lett, vol.6, pp.1435-1440, 2015.

,

M. Retuerto, A. G. Pereira, F. J. Pérez-alonso, M. A. Peña, J. L. Fierro et al., Structural Effects of LaNiO3 as Electrocatalyst for the Oxygen Reduction Reaction, Appl. Catal. B Environ, vol.203, pp.363-371, 2017.

Q. Ji, L. Bi, J. Zhang, H. Cao, and X. S. Zhao, The Role of Oxygen Vacancies of ABO

, Perovskite Oxides in the Oxygen Reduction Reaction, Energy Environ. Sci, vol.2020, issue.5, pp.1408-1428