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Sampling mobility profiles of confined fluids with equilibrium molecular
dynamics simulations

Etienne Mangaud1 and Benjamin Rotenberg1, a)

Sorbonne Université, CNRS, Physicochimie des électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris,
France

(Dated: July 1, 2020)

We show how to evaluate mobility profiles, characterizing the transport of confined fluids under a perturbation, from
equilibrium molecular simulations. The correlation functions derived with the Green-Kubo formalism are difficult to
sample accurately and we consider two complementary strategies: improving the spatial sampling thanks to a new
estimator of the local fluxes involving the forces acting on the particles in addition to their positions and velocities, and
improving temporal sampling thanks to the Einstein-Helfand approach instead of the Green-Kubo one. We illustrate
this method on the case of a binary mixture confined between parallel walls, under a pressure or chemical potential
gradient. All equilibrium methods are compared to standard non-equilibrium molecular dynamics (NEMD) and provide
the correct mobility profiles. We recover quantitatively fluid viscosity and diffusio-osmotic mobility in the bulk part of
the pore. Interestingly, the matrix of mobility profiles for local fluxes is not symmetric, unlike the Onsager matrix for the
total fluxes. Even the most computationally efficient equilibrium method (Einstein-Helfand combined with the force-
based estimator) remains less efficient than NEMD to determine a specific mobility profile. However, the equilibrium
approach provides all responses to all perturbations simultaneously, whereas NEMD requires the simulation of several
types of perturbations to determine the various responses, each with different magnitudes to check the validity of the
linear regime. While NEMD seems more competitive for the present example, the balance should be different for more
complex systems, in particular for electrolyte solutions for the responses to pressure, salt concentration and electric
potential gradients.

INTRODUCTION

Transport in nanochannels has been an ever-growing topic
of interest in the past decades1. Technological advances have
enabled the design and setup of smaller devices, and em-
phasized the role of the channel surface and its interplay
with the fluid on the transport properties2–4. Importantly,
surface-driven flows can be generated by an electric poten-
tial, concentration or temperature gradient, which correspond
to electro-5, diffusio-6,7 and thermo-osmosis8, respectively.
As an example, diffusio-osmosis, which originates from a
force imbalance at the interface9, could be exploited for many
applications10, notably harvesting blue energy11.

The potential of these phenomena to manipulate fluids on
the nanoscale has stimulated the development of theoreti-
cal and numerical tools to clarify how the interactions be-
tween the fluid and the surface on the molecular scale re-
sult in the observed mass or charge transport on larger scales.
While the validity of continuum hydrodynamics has proven
to hold down to remarkably small scales (a few molecular
diameters2), surface effects modify the boundary conditions,
e.g. via a slip velocity. A microscopic approach is necessary
to investigate and predict the local response of the interfacial
fluid to various perturbations, which in turn controls the flow
far from the interface.

Here we consider specifically the linear response of a con-
fined binary mixture (solute A in solvent B) to a small pres-
sure gradient −∇P and/or chemical potential gradient −∇µ ,
but the present work can be straightforwardly generalized to

a)Electronic mail: benjamin.rotenberg@sorbonne-universite.fr

any kind of (small) perturbation, in particular to the response
of electrolytes under pressure, salt concentration and electric
potential gradients. For sufficiently small perturbations, the
system responds linearly and the various fluxes are written in
Onsager’s framework for the thermodynamics of irreversible
processes by introducing a symmetric matrix L of transport
coefficients10: (

Q
JA− c∗AQ

)
= L

(
−∇P
−∇µ

)
(1)

where Q is the volume flux, JA the solute flux, and JA− c∗AQ
the excess flux of solute, with c∗A a reference solute concen-
tration discussed in more detail below. The elements of the
Onsager matrix of transport coefficients L :

L =

(
L11 L12
L21 L22

)
(2)

quantify the permeability (L11), diffusio-osmosis (L12), ex-
cess solute flux under pressure (L21) and Maxwell-Stefan dif-
fusion (L22), respectively and Onsager’s time-reversal sym-
metry relationship implies L12 = L21.

While the average fluxes are sufficient to characterize the
macroscopic response of the system, they do not underline the
importance of the local response of the interface on the latter.
Indeed, depending on the nature of the perturbation the bal-
ance between the various fluxes differ and subtle differences
in the interaction of all components of the fluid with the walls
result in qualitatively different flow profiles. In the case of a
fluid confined between two parallel walls (slit pore), to which
we will restrict our discussion in the present work, a pressure
gradient along the walls results in the well-known parabolic,
Hagen-Poiseuille velocity profile, while the diffusio-osmotic
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2

flow induced by a chemical potential gradient along the walls,
when the components of the fluid have different affinity for
the walls, is plug-like (i.e. uniform beyond the interfacial re-
gion) and the bulk pressure remains constant. In turn, the dis-
tribution of the species through the pore combined with the
different shapes of the flow profiles yield different solute and
solvent fluxes for each type of perturbation.

Therefore, in order to understand the role of molecular in-
teractions at the interface, it is relevant to also consider the
local fluxes induced by macroscopic perturbations, defined in
this slit geometry as a function of their position z in the direc-
tion perpendicular to the walls. In the linear response regime,
the local responses are governed by the following matrix of
local transport coefficients, or mobilities, Mi j(z), defined by(

q(z)
jA(z)− c∗Aq(z)

)
= M (z)

(
−∇P
−∇µ

)
(3)

where q and jA are the local counterparts of the total fluxes
Q and JA in Eq. 1. These mobilities fully characterize the
flow and excess solute flux profiles in response to the various
perturbations. Unlike L , this local mobility matrix is not, in
general, symmetric – i.e. M21(z) 6= M12(z). However the
macroscopic transport coefficients in Eq. 2 are obtained as the
average of the local mobilities

Li j =
1
H

∫ H

0
dzMi j(z) , (4)

with H the width of the slit pore (distance between the walls
confining the fluid), and should obey the symmetry relation.

Molecular dynamics (MD) simulations have now become
a standard tool to investigate the properties of matter, includ-
ing transport, on the microscopic scale. In non-equilibrium
molecular dynamics (NEMD) simulations, the system is sub-
mitted to an external perturbation and the local solute and sol-
vent fluxes are sampled at steady-state. This approach has
long been exploited to predict the response of confined flu-
ids to an applied pressure gradient or an electric field, by in-
cluding an external force or electric field in the equations of
motion.12–14 It was also more recently extended to the case of
diffusio-osmotic flows using forces related to the chemical na-
ture of the various species15,16, which avoid some difficulties
of other mechanical approaches to mimic the effect of concen-
tration gradients17.

In practice, one applies one type of perturbation and sam-
ples the fluxes of all species as a function of the position with
respect to the surfaces; this is then repeated for each type of
perturbation.5,15,18–26 While natural and efficient, the NEMD
approach brings the system out of equilibrium and requires
appropriate thermostatting strategies, on which the resulting
fluxes should not depend.27–29 In addition, the mobilities are
only defined in the linear response regime, and several sim-
ulations need to be performed to find the good compromise
between the validity of the linear response regime (implying
small perturbation) and signal-to-noise ratio (larger for large
perturbation).

Equilibrium molecular dynamics (EMD) simulations pro-
vide in principle an attractive alternative to predict the trans-

port properties. Using linear response theory, it is indeed pos-
sible to derive Green-Kubo expressions for all the responses
to various types of perturbations, in which transport coeffi-
cients are expressed as time integrals of equilibrium correla-
tion functions. All the latter can therefore be computed simul-
taneously from the same equilibrium trajectories. In addition,
the system evolves without the need to dissipate the power
introduced by the external perturbation. This approach has al-
ready been used to determine the components of the Onsager
matrix L (see Eq. 1) for fluid confined in slit pores or as a liq-
uid film on a substrate.16,30 Its application to determine their
local counterparts, i.e. the components local mobility matrix
M (z), remains however very challenging because it requires
computing time correlation functions over long timescales,
which are evaluated for a large number of bins correspond-
ing to each position z. As a result, only a handful of studies
have adopted this approach to determine the electro-osmotic
flow profile induced by an electric field31,32, or the Poiseuille
flow induced by a pressure gradient33.

Inspired by the recent development of improved estimators
for the computation of local properties such as number, charge
or polarization densities34–38, we explore in this work the pos-
sibility to compute the local mobility matrix M (z) from equi-
librium MD simulations. We develop the theoretical frame-
work to compute the profiles for all transport coefficients, in
the case of a binary mixture confined in a slit pore, using
the Green-Kubo formalism. The resulting expressions involve
the integral of cross-correlation functions between local and
global fluxes. We then introduce two improvements to com-
pute them efficiently: firstly, we introduce a new estimator
of these cross-correlation functions, which makes use of the
instantaneous force acting on the atoms in addition to their
position and velocity; secondly, we avoid the sampling of the
time-correlation functions by deriving the “Einstein” counter-
parts of the Green-Kubo expressions, i.e. using the displace-
ments instead of the velocities, as proposed for the case of
Poiseuille flow in Ref. 33. The results obtained by this equi-
librium route are compared to NEMD simulations, which we
use as a reference to validate the proposed method.

The theoretical basis to compute the mobility matrix from
equilibrium MD simulations is presented in Section I. Sec-
tion III then introduces the simulation details, with an em-
phasis on the case of the diffusio-osmotic response, which is
the most difficult element of the mobility matrix to evaluate.
The strategies to improve the sampling of the cross-correlation
functions between local and global fluxes are introduced in
Section II and the results presented in Section IV.

I. TRANSPORT COEFFICIENTS PROFILES FROM
EQUILIBRIUM SIMULATIONS

A. Fluxes

We consider a binary mixture (solute A in solvent B) con-
fined between two planar solid surfaces separated by a dis-
tance H (see Fig. 1a). The response of the fluid is investigated
for two kinds of perturbations, namely a pressure gradient or
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a chemical potential gradient, both applied in the direction x
parallel to the surface. Each of these perturbations induces a
flow parallel to the plane but with different profiles in the di-
rection z normal to the surface, typically parabolic and plug-
like velocity profiles for pressure-driven and diffusio-osmotic
flow, respectively. These responses are intimately related to
the equilibrium local structure and composition of the fluid
inside the pore. The latter are characterized by the solute, sol-
vent and total densities ρA, ρB and ρ , defined as

ρ(z) = ρA(z)+ρB(z) (5)

ρν(z) =
1
S

〈
Nν

∑
i=1

δ (zi− z)

〉
(6)

where S is the surface area, Nν is the number of particles of
type ν = A,B, δ is the Dirac delta function, zi is the position
of particle i in the direction perpendicular to the surfaces, and
the brackets denote averages in the canonical ensemble (fixed
volume V , system composition and temperature T ).

The microscopic observables corresponding to the local
fluxes in Eq. 3 can be defined from the instantaneous posi-
tions and velocities of the fluid particles: the local volume
flux involves all the N = NA +NB particles,

q(z, t) =
H
N

N

∑
i=1

vx,i(t)δ (zi(t)− z) , (7)

with vx,i the x-component of the velocity of particle i, while
the local solute particle fluxes are defined for each species as

jν(z, t) =
1
S

Nν

∑
i=1

vx,i(t)δ (zi(t)− z) . (8)

The volume flux is related to the total particle flux, j(z, t) =

jA(z, t)+ jB(z, t), as q(z, t) =
V
N

j(z, t). The fluxes Q and JA

entering in Eq. 1 are obtained from the local ones as:

Q(t) =
1
H

∫ H

0
dzq(z, t) =

1
N

N

∑
i=1

vx,i(t) (9)

and

Jν(t) =
1
H

∫ H

0
dz jν(z, t) =

1
V

Nν

∑
i=1

vx,i(t) (10)

Finally, the reference concentration c∗A used in the definition
of the excess solute flux (see Eq. 1) is defined as16

c∗A =
Nb

A

Nb
A +Nb

B

N
V

=
α

1+α

N
V

, (11)

with α = ρb
A/ρb

B = Nb
A/Nb

B, where ρb
A and ρb

B are the solute
and solvent densities in the bulk region, and Nb

A and Nb
B the

corresponding numbers of particles (see Section I C for more
details).

The transport coefficients defined by Eqs. 1 and 3 can be
computed from the steady-state averages of the above instan-
taneous fluxes in NEMD simulations. Such an approach, al-
ready used in the references cited in the Introduction, pro-
vides a reference methodology. However, it requires several
simulations for various strengths of each perturbation, in or-
der to check the linear response of the system. In the next
subsection, we introduce the mechanical perturbations associ-
ated with pressure and chemical potential gradients, as well
as the corresponding Green-Kubo expressions of the trans-
port coefficients for the linear response to these perturba-
tions. These expressions feature correlation functions, com-
puted from equilibrium MD simulations, i.e. in the absence
of mechanical perturbation. This method not only determines
all transport coefficients simultaneously, it also allows it with-
out the need to perform several non-equilibrium simulations
to verify the validity of the response regime.

B. Pressure gradient: Permeability and excess flux under
pressure

A uniform and constant pressure gradient ∇P in the direc-
tion x parallel to the walls can be simulated by applying a
force fP

i = − 1
ρ0

∇P, with ρ0 = N/V the fluid density, on all
particles. This perturbation corresponds to the Hamiltonian

HP =−
N

∑
i=1

f P
x,ixi =

(
V
N

∇xP
) N

∑
i=1

xi , (12)

with xi the x coordinate of particle i. Following the standard
derivations of linear response theory39, one obtains the fol-
lowing Green-Kubo expression for the steady-state local vol-
ume flux:

〈q(z)〉=− 1
kBT

∫ +∞

0
dt
〈
q(z, t)ḢP(0)

〉
= (−∇xP)× V

kBT

∫ +∞

0
dt 〈q(z, t)Q(0)〉 , (13)

where we used Eq. 12 and the definition 9 to express ḢP(0).
This allows the identification of the corresponding mobility
entering in Eq. 3 as

M GK
11 (z) =

V
kBT

∫ +∞

0
dt C11(t,z) (14)

with

C11(t,z) =CqQ(t,z) = 〈q(z, t)Q(0)〉 (15)

the cross-correlation between the local and average volume
fluxes. Similarly, under the same perturbation, the mobility
profile for the excess solute flux can be expressed as

M GK
21 (z) =

V
kBT

∫ +∞

0
dt C21(t,z) (16)

with

C21(t,z) =C jAQ(t,z)− c∗ACqQ(t,z) , (17)
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where C jAQ(t,z) is the cross-correlation between the local so-
lute flux jA and average volume flux Q, and c∗A is defined by
Eq. 11.

C. Chemical potential gradient: Diffusio-osmotic flow and
Maxwell-Stefan diffusion

The mechanical description of the effect of a chemical po-
tential gradient is not as straightforward as that of a pressure
gradient. It is nevertheless possible and we follow here the ap-
proach of Ref. 16 where a constant force fµ is applied to each
solute particle and a force −αfµ to each solvent particle, with
α such that there is no net force on the fluid in the bulk region
far from the walls, where the fluid is homogeneous. This im-
plies α = ρb

A/ρb
B = Nb

A/Nb
B, as introduced below Eq. 11. This

perturbation corresponds to a Hamiltonian

Hµ =−
N

∑
i=1

f µ

x,ixi =− f µ
x

[
NA

∑
i=1

xi−α

NB

∑
i=1

xi

]
(18)

As shown in Ref. 16, the effect of these applied forces corre-

sponds to a chemical potential gradient −∇xµ =
Nb

A+Nb
B

Nb
B

f µ
x =

(1 + α) f µ
x . Therefore, linear response theory provides the

analog of Eq. 13 for the steady-state local volume flux as

〈q(z)〉=− 1
kBT

∫ +∞

0
dt
〈
q(z, t)Ḣµ(0)

〉
=
−∇xµ

1+α
× V

kBT

∫ +∞

0
dt 〈q(z, t) [JA(0)−αJB(0)]〉 .

(19)

Using JB = N
V Q−JA, this result can be rewritten to express the

diffusio-osmotic mobility

M GK
12 (z) =

V
kBT

∫ +∞

0
dt C12(t,z) (20)

with

C12(t,z) =CqJA(t,z)− c∗ACqQ(t,z) , (21)

where CqJA is the cross-correlation between the local volume
flux q and the average solute flux JA, and c∗A is defined by
Eq. 11. Similarly, the same derivation for the excess solute
flux jA(z)− c∗Aq(z) with the perturbating Hamlitonian Hµ re-
sults in the mobility:

M GK
22 (z) =

V
kBT

∫ +∞

0
dt C22(t,z) (22)

with

C22(t,z) =C jAJA − c∗A(C jAQ +CqJA)+(c∗A)
2CqQ (23)

with the cross-correlations between local and average fluxes
are defined as above. This element of the mobility matrix
characterizes the relative transport of solute and solvent in the
presence of a chemical potential gradient and corresponds, up

to differences in the definition of the transport coefficients, to
the so-called Maxwell-Stefan diffusion.

Far from the walls, a chemical potential gradient results in
opposite fluxes of solute and solvent but in no local net force
on the bulk region of the fluid. The above mechanical de-
scription clarifies the role of the differential affinity of the so-
lute and solvent for the walls in inducing the diffusio-osmotic
flow: it is the different composition of the interfacial region
(compared to the bulk), which result in a local net force accel-
erating the fluid; viscous momentum diffusion away from the
interface then results in a non-zero fluid velocity even far from
the interface. The role of the force balance also underlines the
importance of finding a suitable “bulk” region in the confined
system to define the corresponding bulk densities and ratio α

(and corresponding reference concentration c∗A) to predict the
responses to a chemical potential gradient. This choice will be
discussed in more detail in Section III. Finally, we note that
all the mobility profiles, i.e. the two types of responses to the
two types of perturbations, can be computed from the same
equilibrium simulations, by sampling the various correlation
functions between local and average fluxes.

II. HOW TO IMPROVE THE SAMPLING OF
TRANSPORT COEFFICIENTS ?

The correlation functions Ckl(t,z) provide in principle a di-
rect route to the elements of the local mobility matrix M (z)
in Eq. 3 from equilibrium MD via Eqs 14-15, 20-21, 16-17
and 22-23, which are all of the form:

M GK
kl (z) =

V
kBT

lim
t→∞

Ikl(t,z) , (24)

where

Ikl(t,z) =
∫ t

0
dt ′Ckl(t ′,z) . (25)

Computing these correlation functions remains however a
great computational challenge, since it requires both (a) a fine
sampling along the z axis to obtain the mobility profiles and
(b) a good convergence of their integral Ikl(t,z) at long times.
The former aspect renders the sampling with histograms of
small bin width (∆z) difficult due to the small number of par-
ticles in each bin (with a variance diverging as 1/∆z), while
the latter is an even stronger requirement than a good conver-
gence of the correlation functions themselves. In addition, the
combination of both constraints result in a large memory re-
quirements to store the correlation functions as a function of
position and time with fine sampling (small bin width and time
interval), and in a long simulation time to reach convergence.

Here we address both issues. Firstly, we introduce an
improved estimator of the local/global correlation functions,
which makes use not only of the positions and velocities of the
particles, but also of the forces acting on them. Secondly, the
way of computing the correlation function might be improved
by using averaging algorithms such as adjustable frequency
sampling40, cepstral analysis41,42 or multiple-τ correlator43.
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We have followed a different route, namely to avoid the sam-
pling of the time-correlation functions by deriving the “Ein-
stein” counterparts of the Green-Kubo expressions, i.e. using
the time-integrated currents instead of the current themselves,
as proposed for the case of Poiseuille flow in Ref. 33. The
improved sampling in space and time are described in Sec-
tions II A and II B, respectively.

A. Sampling space: force-based estimators

The sampling of correlation functions between local and
global fluxes is most naturally performed by introducing bins
of finite width ∆z, which amounts to replacing the Dirac delta
functions in the instantaneous fluxes defined by Eqs. 7 and 8
by rectangular functions of width ∆z around the position z.
As mentioned above, this strategy is plagued by a diverging
variance as the bin width vanishes (fine sampling) because
the estimates fluctuate between 0 (for empty bins) and occa-
sional large values. Inspired by the recent development of
improved estimators for the computation of local properties
such as number, charge or polarization densities34–38 (some
of these methods based on earlier developments for Quantum
Monte Carlo44–46), we introduce here an alternative sampling
scheme which does not involve bins (even though the compu-
tation for various positions also results in a discretization of
space), but makes use of the force acting on the particles, in
addition to their positions and velocities. To the best of our
knowledge, such an approach has never been considered pre-
viously to sample time-correlation functions involving local
fluxes (and in turn, local mobilities as discussed in the previ-
ous section).

1. Force sampling and mixed estimators: Density

In order to introduce the force sampling approach, we first
consider a simpler quantity, namely the local density (see
Eqs. 5 and 6). The canonical average of an observable O
involves an integral over phase space with the Boltzmann
weight:

〈O〉= 1
Z

∫
O(rN ,pN)e−βH (rN ,pN) drNdpN (26)

where β = 1/kBT , rN and pN are the position and momenta
of the N particles, H = U (rN)+K (pN) is the Hamiltonian
of the system (sum of potential energy U and kinetic energy
K ), and the normalization factor Z is the partition function.
With the specific choice O(z) = 1

S ∑
N
i=1 δ (zi− z), and noting

that the gradient of the Boltzmann weight with respect to zi
is β fz,ie−βH with fz,i the z-component of the force acting on
particle i, one obtains that the gradient of the density with
respect to z is given by:

dρ(z)
dz

=
β

S

〈
N

∑
i=1

fz,iδ (zi− z)

〉
= β fz(z) . (27)

This means that, up to a factor β , the number density can be
obtained as the integral (with respect to z) of the force density
fz(z). However, straightforward integration of the right-hand
side, resulting in Heaviside functions instead of Dirac deltas,
may lead to a spurious non-zero density in regions where no
particles are present (inside the solid walls)36,47.

As an improvement with respect to simple integration of
Eq. 27, which we will later use in the following extension to
correlation functions, we propose a combination of estimators
involving both the force and number densities (further details
can be found in Appendix A). To that end, we introduce a
weight function wN , discussed below, and define the following
estimator:

ρ̃(z) =
1
S

〈
N

∑
i=1

wN(zi− z)

〉
− β

S

〈
N

∑
i=1

fz,iw f (zi− z)

〉
, (28)

where the weight function of the force density is related to that
of the number density as:

w f (z) = Θ(z)−WN(z) (29)

with Θ the Heaviside function and WN an antiderivative of wN
such that w f vanishes when |z| is large. This sets some con-
straints on the choice of the weight wN , which can be seen as
a coarse-graining kernel for the contribution of each particle
to the number density. This function should therefore vanish
beyond a coarse-graining length ξ . The constraint on w f fur-
ther imposes that the integral of wN is equal to 1. While others
are possible, we make here the simple choice of a triangular
kernel:

wN(z) =
{

(ξ −|z|)/ξ 2 for z ∈ [−ξ ,ξ ]
0 otherwise (30)

with dimension of a reciprocal length, from which w f , which
is dimensionless, is easily determined. We have also consid-
ered rectangular or trigonometric kernels, with similar results.
A more important point is the choice of the length ξ , on which
the final estimate depends: For ξ → 0 the only contribution to
ρ̃ is that of the number density, since in this limit wN(z)∼ δ (z)
and w f (z)∼ 0, while for ξ → ∞ only the integral of the force
density (corresponding to Eq. 27) contributes, since wN(z)∼ 0
and w f (z) ∼ Θ(z). We have found that a value of ξ = 0.1σ ,
with σ the molecular diameter, provides a good compromise
between the two estimates, with the benefit of reduced vari-
ance of force sampling, while mitigating the artefact of non-
vanishing density in regions where no particles are present. In
practice, the estimator introduced in Eq. 28 can be computed
efficiently by convoluting (a posteriori) the histogram-based
estimators of the number and force densities with their corre-
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6

sponding weight functions (Eqs. 29 and 30), as:

ρ̃(z) =
∫ H

0
dz′
[

wN(z′− z)
1
S

〈
N

∑
i=1

δ (zi− z′)

〉

−w f (z′− z)
β

S

〈
N

∑
i=1

fz,iδ (zi− z′)

〉]

=
∫ H

0
dz′
[
wN(z′− z)ρ(z′)−w f (z′− z)β fz(z′)

]
=(wN ∗ρ)(z)+β (w f ∗ fz)(z) , (31)

where in the last line ∗ denotes the convolution product. We
finally note that, even though the main novelty of the present
work is to apply this force sampling strategy to local trans-
port properties, as described in the next section, the proposed
combination of estimators is, to the best of our knowledge,
also new for the density.

2. Time correlation functions

Since the time-correlation Ckl(t,z) are also defined as
canonical averages of observables involving Dirac delta func-
tions, we propose to apply the same strategy to obtain esti-
mators with reduced variance as the one above for the num-
ber density. We illustrate this idea on the particular case
of C11(t,z) = CqQ(t,z), but the extension to other correla-
tion functions is straightforward. Starting from the definitions
Eqs. 15, 7 and 9, this correlation function is the ensemble av-
erage:

CqQ(t,z) =

〈
Q(0)

H
N

N

∑
i=1

vx,i(t)δ (zi(t)− z)

〉
. (32)

The procedure leading to the mixed estimator for the density
presented in the previous section can be followed, introducing
the same weight functions wN and w f , as well as a new force-
weighted observable namely:

FqQ(t,z) =

〈
Q(0)

H
N

N

∑
i=1

vx,i(t) fz,i(t)δ (zi(t)− z)

〉
, (33)

and form the mixed estimator:

C̃qQ(t,z) =
∫ H

0
dz′
[
wN(z′− z)CqQ(t,z′)−w f (z′− z)βFqQ(t,z′)

]
=(wN ∗CqQ)(t,z)+β (w f ∗FqQ)(t,z) , (34)

where the convolution products are in space only, not time.
Note that the average defining CqQ(t,z) is taken over the
canonical distribution of initial conditions, i.e. with a Boltz-
mann weight corresponding to the point of phase space at time
0, while some observables are considered at the subsequent
time t. The derivation leading to the exact result for the den-
sity (where all microscopic observables are considered at the
same time), which involves an integration by parts over the
initial positions zi(0), introduces an additional term, namely

〈
Q(0)H

N ∑
N
i=1

∂vx,i(t)
∂ zi(0)

w f (zi− z)
〉

, which involves the derivative
of the x component of the velocity at time t with respect to the
initial position in the z direction. Although this term might
not vanish in principle (we were not able to derive that it
does), it would be very difficult to evaluate from the trajec-
tories. However, we observe numerically that the estimator
defined by Eq. 34, which neglects it, provides the same result
as histograms based on Eq. 32, with a lower variance. Such
a cancellation of this term (which may not be exact) probably
arises from the symmetry of the system and the considered
observables, and does not hold a priori for arbitrary time cor-
relation functions. To the best of our knowledge, the present
work is the first to extend the idea of using force-based esti-
mators to time-correlation functions (hence local mobilities).
For the other correlation functions Ckl(t,z), the same weights
are used in Eq. 34, with the analogs of Eq. 33 for the corre-
sponding force-based estimators.

B. Sampling time: integrated fluxes

As mentioned above, the second challenge is to converge,
for each position z, the integral of the time correlation func-
tions Ckl(t,z), which is even more difficult than to converge
the Ckl(t,z) themselves. The direct approach requires both a
fine sampling of short times, where the function varies signifi-
cantly, possibly with cancellations between positive and nega-
tive contributions, and accurate estimates of the decay at long
times, because even small values may lead to a non-negligible
contribution to the integral. We therefore follow another route,
which is to consider the Einstein-Helfand counterpart of the
relevant Green-Kubo expressions Eqs 14, 20, 16 and 23, i.e.
using the displacements instead of the velocities, as proposed
for the case of Poiseuille flow in Ref. 33.

In the well-known case of the diffusion of a particle, the dif-
fusion can be expressed either as the integral of the velocity
auto-correlation function (Green-Kubo) or as the slope of the
mean-square displacement at long timescales, i.e. the prod-
uct of the time integral of the velocity with itself (Einstein)39.
Similarly, in the present case one can derive the following al-
ternative expression for the integral of any cross-correlation
function CxY (t,z) of a local flux x ∈ {q, jν} and global flux
Y ∈ {Q,Jν}:

+∞∫
0

dt CxY (t,z) = lim
t→+∞

KxY (t,z)
2t

, (35)

where

KxY (t,z) =
〈∫ t

0
dt ′′ x(z, t ′′)

∫ t

0
dt ′Y (t ′)

〉
. (36)

The relevant combination Kkl(t,z) of these terms can be
used to compute the integrals of the corresponding correla-
tion functions Ckl(t,z), with {k, l} ∈ {1,2}, as previously, as
well as the mobility coefficients, computed via this Einstein-
Helfand route

M EH
kl (z) =

V
kBT

lim
t→+∞

Kkl(t,z)
2t

. (37)
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This formulation of the mobility is more efficient computa-
tionally than integrating the time correlation functions. In-
deed, both methods require evaluating quantities (currents or
their running time integrals) at discrete times t = ntsampl , but
the sampling time tsampl can be much longer than with the cor-
relation functions because one only needs the linear behaviour
of Kkl(t,z) at long timescales and not to resolve the variations
at all time to compute the integrals. This in turn allows to
significantly decrease the computational cost and the memory
footprint of the corresponding arrays – which becomes a lim-
iting factor for fine sampling of space (large number of z val-

ues). In practice, the terms in Eq. 36 of the form
t∫

0
dt ′′x(z, t ′′)

are computed on the fly by integrating numerically the local

currents, while the
t∫

0
dt ′Y (t ′) can be computed with the atom

displacements. This last contribution requires to properly take
periodic boundary conditions into account by “unfolding” tra-
jectories, as emphasized in Ref. 48 for the computation of
viscosity using the Helfand-Einstein approach. Finally, we
also use the same approach for the mixed estimator involving
the forces, introduced in the previous section (see Eq. 34) to
obtain the corresponding expressions for the Kkl(t,z), noted
K̃kl(t,z).

III. SIMULATION DETAILS

A. System

We consider a binary fluid of solute A and solvent B, con-
fined between two walls described by explicit particles W on
a square lattice. All particles interact via the Lennard-Jones
(LJ) potential

Vi j(r) = 4εi j

[(
σi j

r

)12
−
(

σi j

r

)6
]
, (38)

where εi j is the interaction strength, σi j is the particle diam-
eter and r the distance between two particles of types i and
j. In order to keep the system as simple as possible, while
keeping the differential affinity of the solute and solvent for
the wall necessary to induce diffusio-osmotic flows, we take
all diameters to be equal (σi j = σ for {i, j} ∈ {A,B,W}) and
all interaction strengths except that between the solute and the
wall to be equal: εi j = ε , except εAW = 1.2ε , i.e. a stronger
affinity of the solute for the wall compared to the solvent. In
addition, we consider equal masses m for solute and solvent.
In the following, we will express all quantities in L.J. units,
i.e. taking ε = 1, σ = 1 and m = 1.

Each wall is described by a single plane of 288 fixed W
particles on a square lattice, with a unit cell comprising two
particles and a lattice parameter of

√
2σ (hence a distance σ

between particles). The box dimensions in the x and y direc-
tions are S = 12

√
2σ×12

√
2σ , i.e. 12×12 unit cells for each

wall. The walls are separated by a distance H + 2σ , where
H = 25 (in L.J. units) is the distance between the first layers
of fluid adsorbed on each wall (see Figure 1). Periodic bound-
ary conditions are used in the x and y directions only. The fluid

consists of 1440 solute and 2880 solvent particles. Together
with the dimensions of the box in the x and y directions, this
corresponds to a total fluid density ρ0 = N/V = 0.6 (and a re-
duced solute concentration NA/V = 0.2). At this bulk density
and the chosen reduced temperature T ∗ = kBT/ε = 1.3, this
binary mixture is fluid49. Initial configurations are generated
by placing randomly the particles on a face cubic centered lat-
tice and assigning random velocities drawn from a Gaussian
distribution corresponding to the reduced temperature T ∗. De-
tails of the equilibration procedure are given below.

a) 

b) 

x 

z 

H 

S S 

Figure 1. (a) Snapshot of the simulated system, a binary fluid con-
fined between walls separated by a distance H (and a lateral surface
area S of the simulation box, even though periodic boundary con-
ditions result in infinite walls). (b) Density profiles (see Eq. 6) for
solute A and solvent B.

Molecular dynamics simulations are all carried out using
the LAMMPS package50, with a time step ∆t = 10−3 t∗ (with
t∗ = σ

√
m/ε the LJ time unit). Simulations are performed in

the NV T ensemble using a Nosé-Hoover thermostat (applied
only along the y and z directions for the non-equilibrium sim-
ulation, in which a perturbation is applied along the x direc-
tion), with a relaxation time of 0.1t∗. More details for equilib-
rium and non-equilibrium simulations are given in the follow-
ing sections. In order to sample all densities and local fluxes,
we consider bins along the z direction of width ∆z = 0.014
and sample the data every 100 steps, i.e. 0.1t∗. As illustrated
in Figure 1, the considered interactions, geometry and ther-
modynamic conditions result in a typical structure of a fluid
confined between hard walls, with a bulk-like region in which

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
13

95
2



8

the density and composition is homogeneous and a layering
of the fluid at the interface with the walls. In addition, the dif-
ference between the solute-wall and solvent-wall interactions
results in a local enrichment in solute near the wall, which
opens the possibility to induce a diffusio-osmotic flow.

B. Non-equilibrium simulations

For Poiseuille (pressure-driven) flows, an external force
fP = f Pex in the x direction is applied to each fluid
particle12–14. The validity of the linear response is tested by
considering two forces f P = 5.10−4 and 10−3 (in L.J. units).
Since the results converge faster with the larger force, we only
report the results for this case. After an equilibration for 5.105

steps (500t∗), the properties of the steady-state system are
sampled for 16000t∗.

0 2000 4000 6000 8000 10000
t/t ∗

0.45

0.46

0.47

0.48

0.49

0.50

0.51

ᾱ
(t
)

a)
Traj. 1

Traj. 2

Traj. 3

0 2000 4000 6000 8000 10000
t/t ∗

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

ᾱ
(t
)

b)
z∈ [4, 21]

z∈ [6, 19]

z∈ [8, 17]

z∈ [10, 15]

z∈ [12, 13]

Figure 2. (a) Composition of the bulk region α (see Eq. 39) as a
function of time for three different trajectories, with a bulk region
defined between z = 8 and 17 L.J. units (see Fig. 1 for the geometry).
(b) α(t) for a single trajectory and five definitions of the bulk region,
indicated in the panel (in L.J. units).

For diffusio-osmotic flows, we use the protocol of Ref. 16,

with a force f µ ex applied on solute particles A and a force
−α f µ ex applied on solvent particles. The parameter α there-
fore needs to be determined from prior equilibrium simula-
tions. Figure 2a shows the evolution of the time dependent
estimate of the average ratio:

α(t) =
1
t

∫ t

0
dt ′

Nb
A(t
′)

Nb
B(t ′)

, (39)

with Nb
A and Nb

B introduced in Section I A, for three different
initial conditions. It illustrates the fact that an accurate esti-
mate of α = limt→+∞ α(t) requires a long simulation time to
converge. In addition, this quantity depends on the definition
of the “bulk” region in this confined system. Figure 2b shows
the evolution of the time-dependent estimate α(t) for a single
trajectory with different boundaries (z values) defining the re-
gion in which the numbers of A and B particles are sampled.
A compromise needs to be found between too large slabs, in-
fluenced by the inhomogeneities induced by the walls, and too
small ones, in which the smaller number of particles results in
larger fluctuations.

Based on these results, we choose in the following to define
the bulk region as comprised between z = 8 and 17 L.J. units,
and use a sampling time of 7500t∗ (after an equilibration time
of 500t∗) without applied force to estimate α . This first step is
carried out for every initial condition, and the corresponding
value of α is then used for the non-equilibrium simulations on
the same system. While one could in principle determine this
parameter only once, and then use it for the NEMD simula-
tions for several initial conditions, proceeding like this allows
to have a single workflow. The chosen simulation times to
converge the value of α for each trajectory result in a good
consistency between them, with α = 0.4733±0.0002 among
Ntra j = 150 trajectories. We then apply the perturbation de-
scribed above and sample the properties of the steady-state
system during 16000t∗ (after a further equilibration time of
500t∗ in the presence of the perturbation). As in the pressure-
driven case, the validity of the linear response is tested by
considering two forces f µ = 5.10−3 and 10−2 (in L.J. units).
Since the results converge faster with the larger force, we only
report the results for this case.

C. Equilibrium simulations

The mobility coefficients are determined from equilibrium
simulations (i.e. in the absence of external perturbation) us-
ing Eqs. 14, 16, 20 and 22, or their extensions described in
Section II. The cross-correlation functions entering in these
equations are sampled from 16000t∗-long trajectories (after
500t∗ of equilibration), and integrated numerically over time.
The density profile ρ(z) and bulk density ratio α are com-
puted simultaneously. In practice, the correlation functions
are computed on-the-fly using a LAMMPS-Python interface,
and a Fortran code embedded in Python via F2Py51. The re-
sults for each trajectory are then averaged over the whole set
of equilibrium trajectories. In addition, since in the absence of
external perturbation the two directions along the surface are
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equivalent in the considered system, we further average the
results for the cross-correlation functions computed for the x
and y components of the fluxes.

For the Green-Kubo route, the correlation functions
Ckl(t,z) and Fkl(t,z) are computed with a sampling time
tsampl = 100∆t = 0.1t∗ up to a correlation time tGK

corr = 800t∗,
while for the Einstein-Helfand approach Kkl(t,z) and cor-
responding force-weighted quantity entering in K̃kl(t,z) are
computed with a sampling time tsampl = 1000∆t = t∗ up to
a correlation time tEH

corr = 1000t∗. In all cases, the calcula-
tions are done simultaneously for 2000 z values, separated by
∆z = 0.014.

IV. RESULTS

We now compare the various strategies detailed above to
predict the mobility profiles. We first illustrate the results
obtained with a fixed number of trajectories for M11(z) and
M12(z), which correspond to Poiseuille flow and diffusio-
osmosis, in Sections IV A and IV B, respectively. We then
analyze in more detail the efficiency by considering, for these
two cases, the scaling of the standard error with the number
of trajectories used to estimate the profile in Section IV C. We
finally summarize all the mobility profiles corresponding to
the matrix M (z) (see Eq. 3) in Section IV D.

For an observable A (correlation function or transport co-
efficient as a function of time and/or position), the reported
error bars correspond to the standard errors computed from
independent trajectories (obtained with the same protocol but
modifying the random number seed for the initial positions
and initial velocities) as:

σA =
1√

Ntra j(Ntra j−1)

√√√√Ntra j

∑
i=1

(Ai−〈A〉)2 (40)

where Ntra j is the number of trajectories, Ai is the value for

the ith trajectory, 〈A〉 = 1
Ntra j

Ntra j

∑
i=1

Ai is the average of A over

trajectories. When necessary, propagation of uncertainties is
carried out with the usual formulas between independent vari-
ables (for instance when averaging in the x and y direction).

A. Mobility coefficients from equilibrium MD: Poiseuille flow

We first consider the mobility profile M11(z), which corre-
sponds to the response of the whole fluid to a pressure gradi-
ent, i.e a Poiseuille flow, as obtained by equilibrium and non-
equilibrium simulations. In all cases, we use here the same
number of independent trajectories for all methods, namely
Ntra j = 150.

The Green-Kubo approach is illustrated on Figure 3a,
which shows the running integral I11 of the correlation func-
tion C11 (see Eqs. 25 and 15) for three positions z across the
pore, corresponding approximately to the density maxima cor-
responding to the first and second adsorbed layers on one wall,
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0

100

200

M
11
(z
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ρ
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)
Figure 3. Total flux induced by a pressure gradient (Poiseuille
flow) from equilibrium MD (a) Running integral I11 of the cor-
relation function C11 (see Eqs. 25 and 15), which leads to the
Green-Kubo (GK) estimate of the corresponding mobility profile (see
Eq. 24), for three positions z = 0, 1 and 12.5 (in L.J. units). Results
are shown both for the standard binning approach (B label), or using
the mixed estimator involving the forces described in section II A 2
(F label). (b) Correlation function K11 of the integrated currents (see
Eqs. 36, with x = q and Y = Q), which leads to the Einstein-Helfand
(EH) estimate of the corresponding mobility profile (see Eq. 37),
for the same positions. (c) Mobility profile M11(z) obtained with
the GK and EH routes, both with the mixed estimator involving the
forces; results of non-equilibrium MD (NEMD) for an external force
f p = 10−3 (in L.J. units) is also indicated as a reference. The inset
shows that M11(z)/ρ(z) exhibits the parabolic shape expected from
continuum hydrodynamics for the velocity profile (see Eq. 41). All
results are shown for the same number of independent trajectories
(Ntra j = 150).
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10

and to the center of the pore. The mobility is obtained from
the plateau using Eq. 24, which is relatively well converged
despite the increase in variance at longer times (expected for
an integral of a correlation function). This panel also reports
the results obtained using the mixed estimator involving the
force in addition to the velocities of the particles, given by
Eq. 34. The latter is seen to result in a flatter plateau and a
(slightly) lower variance on I11(t), which indicates that it pro-
vides the mobility with a better accuracy for the same number
of trajectories (this will be discussed in more detailed in Sec-
tion IV C). Based on the results of Figure 3a and the corre-
sponding results for the other transport coefficients (in partic-
ular Figure 4a below), in order to compute the mobility profile
M GK

11 (z) we evaluate the plateau value of I11(t) at t = 400t∗,
which provides a good compromise between the limit con-
verged to at larger timescales and the increasing uncertainty
on the estimate as t increases.

Figure 3b then illustrates the Einstein-Helfand, for the same
positions, by showing the correlation function K11 of the in-
tegrated currents (see Eqs. 36, with x = q and Y = Q). In
all cases one observes a linear regime after a few 100t∗ and
the slope allows to compute the mobility via Eq. 37. As for
the Green-Kubo case, the mixed estimator involving the force,
also shown on this panel, provides a slightly smaller vari-
ance on K11(t) for the same number of trajectories than the
straightforward binning, but the benefit seems smaller than in
the Green-Kubo case. Based on the results of Figure 3b and
the corresponding results for the other transport coefficients
(in particular Figure 4b below), in order to compute the mo-
bility profile M EH

11 (z) we evaluate the slope of K11(t) between
t = 250t∗ and 600t∗.

Finally, Figure 3c shows the whole mobility profile across
the slit pore, obtained by the non-equilibrium, Green-Kubo
and Einstein-Helfand routes. For the two equilibrium ap-
proaches, only the results with the mixed estimators using the
forces are indicated. Note that for EH the reported standard
errors correspond to that on the slope, computed for each tra-
jectory from K11(t), and not by estimating the slope on the
average K11(t) reported in panel b. It is clear from this fig-
ure that both equilibrium approaches (GK and EH) are able
to reproduce the NEMD results, including the parabolic flow
profile expected far from the walls and the deviations from this
profile near the latter, due to the layering of the fluid (see the
inset of panel 3c, which shows that M11(z)/ρ(z) exhibits a
parabolic shape, and Eq. 41 below). One can further note that
the EH approach is more accurate than the GK one: Not only
are the standard errors smaller with the former than the latter,
but the profile also coincides better with the reference NEMD
results. This could be due to the fact that we have neglected a
term in the derivation of Eq. 34, as explained in Section II A 2,
but since it is very difficult to estimate this (small) term such
a hypothesis is difficult to test directly.

While it is not the purpose of the present work to analyse
this profile in detail, we can note that the profile is roughly
consistent with no-slip boundary conditions (vanishing veloc-
ity corresponding to the parabolic profile near the wall). This
is consistent with the high density of solute particles strongly
interacting with the walls. In addition, the curvature of the

parabola then provides a measure of the viscosity η of the
fluid in the central region. Indeed, the steady-state solution
of the Stokes equation in the case of a Poiseuille flow for a
homogenous fluid with density ρ and no-slip boundary con-
ditions at the walls placed at z = 0 and z = H, corresponds to
the following mobility:

M P,ns
11 (z) =

ρ

2η

[(
H
2

)2

−
(

z− H
2

)2
]
. (41)

The viscosities estimated from the curvature of the parabolic
fits (in a central fluid slab of width 9σ , corresponding to the
bulk region where density is homogeneous, see Section III) of
the mobility profiles obtained by the various MD approaches
are summarized in Table I. All estimates are in excellent
agreement with the bulk viscosity of the same fluid (which is
in fact a one-component fluid since the interactions between
solvent and solute particles are identical) at the same density
(measured in the central region of the pore) and temperature,
reported in Ref. 52.

Viscosity η

(L.J. units)
Non-equilibrium 0.69±0.01
Green-Kubo bin 0.70±0.01

Green-Kubo force 0.70±0.01
Einstein-Helfand bin 0.69±0.01

Einstein-Helfand force 0.69±0.01
Bulk52 0.69±0.02

Table I. Dynamic viscosity η obtained from the curvature of the
MD mobility profiles M11(z) in the central region of the pore (see
Eq. 41), for the various methods. Results for the bulk viscosity of the
same fluid at the same reduced temperature (T ∗ = 1.3) and density
(in the central region of the pore, ρ∗ ≈ 0.566) are taken from Ref. 52.

B. Mobility coefficients from equilibrium MD:
diffusio-osmosis

We now turn to M12(z), which corresponds to the response
of the whole fluid to a chemical potential gradient, i.e diffusio-
osmosis, as obtained by equilibrium and non-equilibrium sim-
ulations. As in the previous case, we use the same number of
independent trajectories (Ntra j = 150) for all methods. Fig-
ure 4 provides the same analysis as Figure 3 but for I12 (panel
a), K12 (panel b) and the diffusio-osmotic mobility coefficient
M12(z) (panel c). As in the previous case, we compute the
mobility profile M GK

12 (z) by evaluating the plateau value of
I12(t) at t = 200t∗, and M EH

12 (z) by evaluating the slope of
K12(t) between t = 250t∗ and 600t∗.

The conclusions drawn from Figure 4 for diffusio-osmosis
are similar to that for Poiseuille flow: The Einstein-Helfand
approach is more accurate than Green-Kubo, and using the
mixed estimator involving the forces in addition to the veloc-
ities reduces (slightly) the standard error on the results. An
important difference with the previous case, however, is that
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Figure 4. Total flux induced by a chemical potential gradient
(diffusio-osmosis) from equilibrium MD (a) Running integral I12
of the correlation function C12 (see Eqs. 25 and 21), which leads to
the Green-Kubo (GK) estimate of the corresponding mobility pro-
file (see Eq. 24), for three positions z = 0, 1 and 12.5 (in L.J. units).
Results are shown both for the standard binning approach (B label),
or using the mixed estimator involving the forces described in sec-
tion II A 2 (F label). (b) Correlation function K12 of the integrated
currents (see Eqs. 36, with x = jA or q and Y = Q), which leads
to the Einstein-Helfand (EH) estimate of the corresponding mobil-
ity profile (see Eq. 37), for the same positions. (c) Mobility profile
M12(z) obtained with the GK and EH routes, both with the mixed es-
timator involving the forces; results of non-equilibrium MD (NEMD)
for an external force f µ = 10−2 (in L.J. units) is also indicated as a
reference. The inset shows the same data in the range [−0.5,2]. All
results are shown for the same number of independent trajectories
(Ntra j = 150).

the absolute value of the diffusio-osmotic mobility is much
smaller and the relative error is much larger. This renders the
convergence of the results much more difficult, i.e. requiring
a larger number of trajectories, regardless of the method used.

Another striking difference with the response to a pressure
gradient, is the fact that the diffusio-osmotic mobility profile
is flat beyond a few molecular layers from the wall. This con-
stant fluid velocity is due to the fact that there is no net force
applied in the central region for this thermodynamic force.
This is obvious from its microscopic mechanical analogue,
which consists in applying separate forces on solvent and so-
lutes with opposite directions and magnitudes such that they
cancel in the bulk (see Section I C).

Such a plateau of the velocity usually leads to define a
diffusio-osmotic mobility KDO from the fluid velocity “far”
from the walls as v∞ = KDOc∞∇µ , with c∞ the solute con-
centration in the bulk region10. From the Stokes equation for
a homogeneous fluid with viscosity η , and assuming no-slip
boundary conditions, one can derive the following analytical
expression, using the known solute concentration profile c(z)
from a wall located at z = 0:16

KDO =− 1
η

∫
∞

0
dz z

(
c(z)
c∞

−1
)

, (42)

where the integral can be cut in practice at a finite distance
where the concentration reaches its bulk value. This quantity
is also intimately linked to the adsorption10

Γ =
∫

∞

0
dz
(

c(z)
c∞

−1
)

, (43)

which characterizes the excess concentration of the solute
near the wall compared to the bulk. In the case of a surface ex-
cess of solutes (Γ > 0), one should observe a diffusio-osmotic
velocity v∞ in the direction opposite to ∇µ (i.e. KDO < 0).

Diffusio-osmotic mobility KDO
(L.J. units)

Non-equilibrium −0.21±0.01
Green-Kubo bin −0.21±0.01

Green-Kubo force −0.21±0.01
Einstein-Helfand bin −0.19±0.01

Einstein-Helfand force −0.19±0.01
Eq. 42 −0.19±0.02

Table II. Diffusio-osmotic mobility KDO, ratio between the plateau
velocity and the driving chemical potential gradient, or equivalently
the plateau of the mobility M12(z) and the density ρ(z) in the cen-
ter of the pore. Results of the various methods are compared to
the analytical prediction Eq. 42 for fluid with uniform density and
viscosity16, using the solute density profile shown in Figure 1.

Table II summarizes the values of KDO obtained by the var-
ious simulation methods, where the value of the plateau was
determined as the average in the bulk region, defined as pre-
viously between z = 8 and 17, and with Eq. 42. One can ob-
serve an excellent agreement between the various estimates
from MD, which are also consistent with the analytical pre-
diction Eq. 42 (which neglects the layering of the fluid at the
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interface and assumes a uniform viscosity). In particular, the
sign of KDO is negative, as expected for the present case of
positive adsorption (Γ =+0.36 L.J. units), due to the stronger
attraction of the wall with the solute compared to the solvent.
While the discussion of this particular case is not the objective
of the present work, it illustrates the ability of the equilibrium
methods to compute the mobility profile corresponding to this
subtle transport phenomenon.

C. Efficiency of the various strategies

In order to compare the various methods, we need to con-
sider separately how their accuracy scales with the number
of independent trajectories and the computer time needed to
estimate the relevant properties for each trajectory. The lat-
ter are summarized in Table III. Each method corresponds
to a specific workflow, described in Section III. The NEMD
approaches require two separate sets of simulations: (1) ap-
plying −∇xP to obtain M11(z) and M12(z) and (2) apply-
ing −∇xµ to obtain M21(z) and M22(z). In contrast, the
equilibrium routes (Green-Kubo and Einstein-Helfand) pro-
vide the full mobility matrix M (z) simultaneously. In addi-
tion, there is virtually no additional cost to use the improved
estimators using the forces. Furthermore, in the case of the
applied chemical potential gradient, the NEMD approach re-
quires prior knowledge of the bulk composition ᾱ from sep-
arate equilibrium simulations (see Section III B), while such
additional simulations are not necessary in the equilibrium
routes. This entails a non-negligible computational cost (44
of the 142 hours in Table III). As a result, one should in prin-
ciple compare the total cost 98+ 142 = 240 h of NEMD per
trajectory to compute the 4 profiles with the cost of the two
equilibrium approaches.

Method CPU time / trajectory (h)
Non-equilibrium −∇xP 98
Non-equilibrium −∇xµ 142

Green-Kubo 184
Einstein-Helfand 124

Table III. Computational time per trajectory (obtained on the same
computer using 4 cores), for the various approaches considered in
the present work. Each method corresponds to a specific workflow,
described in Section III, for each trajectory. NEMD results are given
for a single magnitude of the perturbation, even though several need
to be considered to check the validity of the linear response regime.
The additional cost related to the improved estimators using the force
with the Green-Kubo and Einstein-Helfand approaches is negligible
so that a single value is reported.

We now turn to the number of trajectory Ntra j required to
achieve a given accuracy for one of the mobility profiles Mkl ,
which also depends on the method. As a measure of this accu-
racy, we consider the average standard error over the profiles:

σkl =
1
Nz

Nz

∑
j=1

σMkl(z j) (44)

with the standard error on the mobility Mkl computed for each
position z j from the ensemble of trajectories via Eq. 40. Its
scaling with the number of trajectories is illustrated in Fig-
ures 5a for M11 and 5b for M12.
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Figure 5. Standard error on the mobility averaged over all positions z
(see Eq. 44, as a function of the number of trajectories, with the vari-
ous approaches (Green-Kubo, Einstein-Helfand, non-equilibrium) in
the case of Poiseuille flow (a) and diffusio-osmosis (b). Results for
the equilibrium routes are shown both for the standard binning ap-
proach (B label), or using the mixed estimator involving the forces
described in section II A 2 (F label). The NEMD results are shown
for two sets of forces, f p = 5.10−4 and 10−3 and f µ = 5.10−3 and
10−3 (L.J. units), respectively.

Despite quantitative differences for these two transport
properties, due in particular to the different order of magni-
tude of these quantities (see Sections IV A and IV B), one can
observe some consistent trends on the scaling of the error with
the number of trajectories. Firstly, the linear behaviour with
a slope of -1/2 on a log-log scale indicates that the error de-
creases as 1/

√
Ntra j for sufficiently large Ntra j, as expected

for independent trajectories, for all methods. Secondly, for
NEMD a smaller error is obtained with a larger applied force
(σkl scales as the inverse of the applied force), even though
one should use sufficiently small forces to remain in the lin-
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ear response regime. Then, for both the GK and EH methods,
the estimators involving the force introduced in the present
work result in a smaller uncertainty compared to standard bin-
ning. Note that the benefit of such a force-based estimator
increases with decreasing bin width ∆z (not shown), as dis-
cussed in more detail for structural properties34,37. Finally,
the EH approach has a smaller uncertainty compared to GK.

Based on the above findings for both the scaling with the
number of trajectories and the computational time per trajec-
tory, we can conclude that the best equilibrium method to
compute mobility profiles is the Einstein-Helfand approach,
combined with the force-based estimator. Even this method,
however, remains less efficient than NEMD for a good choice
of applied perturbation, in order to determine a single mobil-
ity profile Mkl . One should keep in mind, however, that the
NEMD approach requires considering several perturbations to
find a compromise between a small variance (requiring a large
perturbation) and remaining in the linear response regime (i.e.
sufficiently small perturbation). In addition, several pertur-
bations must be applied to determine all the mobility profiles
(each perturbation only provides a row of the mobility ma-
trix), while the equilibrium routes provides them simultane-
ously. While NEMD seems to be more competitive for the
present case of a 2x2 matrix for a binary mixture, the balance
should be different for more complex systems. This might
already be true for the important case of electrolyte solutions,
with at least water, cations and anions and a 3x3 matrix for the
responses to pressure, salt concentration and electric potential
gradients15.

D. Mobility matrix

Figure 6 shows the remaining two mobility profiles, cor-
responding to the excess solute flux in response to a pres-
sure gradient, M21(z) and to a chemical potential gradient,
M22(z). As for the diffusio-osmotic response M12(z), both
profiles are flat in the bulk region of the fluid even in the case
of the parabolic pressure-induced flow profile (see M11(z) in
Figure 3c). This confirms in particular that the mobility pro-
file matrix M is not symmetric, unlike the Onsager matrix L
for the total fluxes, discussed below.

Even though it is known that the symmetry of a response
matrix depends on the choice of conjugate variables even for
global fluxes53, we show here using molecular simulations
that even when the symmetry is satisfied for the global re-
sponse, this is not necessarily the case for the local one. The
difference between the mobility profiles M21(z) and M12(z)
can be understood by comparing the definitions of C jAQ(t,z)
and CqJA(t,z) in Eqs. 17 and 21:

C jAQ(t,z) =
1

NS
〈

NA

∑
i=1

N

∑
j=1

vx,i(t)vx, j(0)δ (z− zi(t))〉 (45)

6=

CqJA(t,z) =
1

NS
〈

N

∑
i=1

NA

∑
j=1

vx,i(t)vx, j(0)δ (z− zi(t))〉 (46)

From these expressions, one can also note that their integrals
over z ∈ [0,H] are equal, so that L21 = L12 in the Onsager
matrix.
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Figure 6. Mobility profiles for the excess solute flux in response to
(a) a pressure gradient, M21, and (b) a chemical potential gradient,
M22. For each profile, we show the results obtained by the Einstein-
Helfand approach using the mixed estimator involving the forces de-
scribed in section II A 2 (blue lines); results of non-equilibrium MD
(NEMD) for an external force f p = 10−3 and f µ = 10−2 (both in
L.J. units) are also indicated as a reference (red lines). The insets
show the same data in the range [−0.5,2]. All results are shown for
the same number of independent trajectories (Ntra j = 150).

We also note that the plateau value in the bulk vanishes for
M21(z) but not for M22(z). This can be understood by noting
that the excess solute flux in the bulk region, where the solute
and solvent densities are uniform, can be rewritten using the
definitions Eqs. 7, 8 and 11 as〈

jb
A(z)− c∗Aqb(z)

〉
=

ρb
Aρb

B

ρb
A +ρb

B

(〈
vb

A(z)
〉
−
〈

vb
B(z)

〉)
(47)

where the brakets denote a time average, i.e. for a non-
equilibrium steady-state, and the superscript b refers to ob-
servables considered in the bulk region. The excess flux there-
fore depends on the relative average velocities of the solute
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and solvent. In the present case where A and B particles are
identical (they only differ in their interactions with the wall),
the relative velocity vanishes for a pressure gradient (where
the perturbation acts identically on both species) but not for
a chemical potential gradient (where the perturbation acts in
opposite directions for solute and solvent).

Method Onsager matrix L
(L.J. units)

Non-equilibrium
(

75.3±0.2 0.060±0.008
0.062±0.003 0.0226±0.0001

)
Einstein-Helfand bin

(
75.4±1.8 0.062±0.019

0.062±0.019 0.0231±0.0005

)
Einstein-Helfand force

(
75.6±1.8 0.062±0.019

0.062±0.019 0.0232±0.0005

)

Table IV. Coefficients of the Onsager matrix for the total fluxes, ob-
tained by averaging the mobility profiles Mkl(z) over the slit pore
(see Eqs. 1, 2 and 4), for the NEMD and with the Einstein-Helfand
approach with Ntra j = 150 trajectories. All results are in L.J. units.

Finally, Table IV reports the Onsager matrix L for the to-
tal fluxes, obtained by averaging the mobility profiles Mkl(z)
over the slit pore (see Eqs. 1, 2 and 4). The averages and
standard error are computed from the averages of the profiles
for each trajectory. Of course, there is no need to compute
the whole profiles to compute the total fluxes, but we con-
sider the integrals as a final test of consistency for the various
methods to determine the mobility profiles. In particular, the
number of trajectories necessary to converge the coefficients
of the Onsager matrix is smaller than that required to converge
the mobility profiles, but we report the results of Ntra j = 150
to correspond to the results presented in the previous sec-
tions. The results for the NEMD and both Einstein-Helfand
methods are fully consistent, as expected from the profiles
discussed above. A further important observation is that the
off-diagonal terms L12 and L21 are equal, as expected, even
though the profiles M12(z) and M21(z) are different (see Fig-
ures 4c and 6a).

V. CONCLUSIONS

We have shown how to evaluate mobility profiles for the
transport of confined fluids in response to a perturbation from
equilibrium molecular simulations, illustrated on the particu-
lar case of a binary mixture confined between parallel walls,
under pressure or chemical potential gradients. Using linear
response theory, we derived the relevant Green-Kubo expres-
sions, which involve time correlation functions between local
(solvent and solute) fluxes and global ones. Such correlation
functions are difficult to sample accurately, especially for a
fine spatial sampling of the mobility profile, and we propose
to combine two complementary strategies: on the one hand,
we improve the spatial sampling by proposing a mixed esti-
mator of the local fluxes involving not only the positions and
velocities of the particles, but also the forces acting on them;
on the other hand using the Einstein-Helfand approach (slope

of the product of integrated fluxes at long times) instead of the
Green-Kubo one (integral of the time correlation function).

We have analyzed in detail the volume flux in response
to pressure or chemical potential gradients (Poiseuille and
diffusio-osmotic flows, respectively) and compared the per-
formance of all equilibrium methods to the more standard
non-equilibrium ones. We recover quantitatively the fluid vis-
cosity and diffusio-osmostic mobility from the mobility pro-
files in the bulk part of the pore. Completing the analysis with
the excess solute fluxes under the same perturbations, we find
in particular that the mobility profile matrix is not symmet-
ric, unlike the Onsager matrix for the total fluxes. Such an
observation is not unexpected, but doesn’t seem to be widely
appreciated.

All equilibrium and non-equilibrium methods provide the
same mobility profiles, but with different statistical uncertain-
ties. The latter all scale as the inverse square root of the num-
ber of independent trajectories, but with different prefactors
(which also depend on the considered response). Considering
also the computational time per trajectory for each method,
we can conclude that the best equilibrium method to com-
pute mobility profiles is the Einstein-Helfand approach, com-
bined with the force-based estimator. This remains less effi-
cient than NEMD for a specific mobility profile Mkl , but the
NEMD approach requires considering several perturbations to
find a compromise between a small uncertainty and remaining
in the linear response regime. In addition, several perturba-
tions must be applied in NEMD to determine all the mobility
profiles, while the equilibrium routes provide them simultane-
ously.

While NEMD seems to be more competitive for the present
case of a 2x2 matrix for a binary mixture, the balance should
be different for more complex systems. This might already
be true for the important case of electrolyte solutions, with
at least solvent, cations and anions and a 3x3 matrix for the
responses to pressure, salt concentration and electric poten-
tial gradients15. This would allow in particular to investigate
aqueous electrolytes in the pores of charged materials such as
clay minerals, as well as through carbon or boron nitride nan-
otubes, or ultra-narrow slit pores54. The benefit of the equilib-
rium approach to compute all the responses should in principle
be even larger if one also considers thermal gradient (for in-
stance, following strategies of Ref. 55) in addition to the ones
discussed above, even though dealing with such perturbations
in molecular simulations can be challenging.
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Appendix A: Derivation of eq. (28)

In this appendix, we provide the derivation of new estima-
tor involving the force for the one-dimensional density intro-
duced in Section II A 1. We first rewrite Eq. 6 by adding and
subtracting to each term of the sum a coarse-graining function
wN(zi− z), defined in Section II A 1:

ρ(z) =
1
S

[〈
N

∑
i=1

wN(zi− z)

〉
+

〈
N

∑
i=1

w′f (zi− z)

〉]
(A1)

where we have introduced the function w f defined by its
derivative w′f (z) = δ (z)−wN(z). Specifically, we consider the
antiderivative of δ (z)−wN(z), given by Eq. 29, which van-
ishes for |z| > ξ (this is possible with our choice of wN , see
Eq. 30). For completeness, we also provide the explicit form
of w f (z) for the particular choice of wN(z) given by Eq. 30:

w f (z) =

 −(ξ + z)2/2ξ 2 for z ∈ [−ξ ,0[
(ξ − z)2/2ξ 2 for z ∈]0,ξ ]
0 otherwise

, (A2)

but the present derivation is not specific to this choice, pro-
vided that wN satisfies the constraints indicated in the main
text. Recalling the definition Eq 26 of the ensemble average,
one can for each term i separate in the integral over phase
space that over the coordinate zi from all others (coordinates
xi and yi of particles, positions rN−1

j 6=i of particles j 6= i and all
momenta pN) and integrate by parts. For each of these terms,
we obtain:∫ +∞

−∞

dzi e−βH (rN ,pN)w′f (zi− z) =
[
e−βH (rN ,pN)w f (zi− z)

]zi=+∞

zi=−∞

−
∫ +∞

−∞

dzi β fz,ie−βH (rN ,pN)w f (zi− z) (A3)

where fz,i = − ∂H
∂ zi

is the z component of the force acting on
particle i. The first term vanishes from our choice of function
w f (note that even if we consider±∞ to integrate over the full
phase space, in practice the walls prevent the particles from
leaving the region between 0 and H). Integration over all the
remaining degrees of freedom then leads to:〈

N

∑
i=1

w′f (zi− z)

〉
=−β

〈
N

∑
i=1

fz,iw f (zi− z)

〉
(A4)

Introducing this result in Eq. A1 completes the derivation
Eq. 28. A similar strategy can be carried out for the equilib-
rium cross-correlation functions considered in Section II A 2,
bearing in mind that an additional term arises from the inte-
gration by parts described above (see the main text).
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