C. T. Jan, A. Eijkel, . Van-den, and . Berg, Nanofluidics: What is it and what can we expect from it? Microfluid Nanofluid, vol.1, pp.249-267, 2005.

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, issue.3, pp.1073-1095, 2010.

B. Reto, J. Schoch, P. Han, and . Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys, vol.80, issue.3, pp.839-883, 2008.

W. Sparreboom, A. Van-den, J. C. Berg, and . Eijkel, Transport in nanofluidic systems: A review of theory and applications, New J. Phys, vol.12, issue.1, p.15004, 2010.

B. Rotenberg and I. Pagonabarraga, Electrokinetics: Insights from simulation on the microscopic scale, Molecular Physics, vol.111, issue.7, pp.827-842, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01916530

S. Marbach, H. Yoshida, and L. Bocquet, Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches, The Journal of Chemical Physics, vol.146, issue.19, p.194701, 2017.

C. Lee, C. Cottin-bizonne, R. Fulcrand, L. Joly, and C. Ybert, Nanoscale Dynamics versus Surface Interactions: What Dictates Osmotic Transport?, J. Phys. Chem. Lett, vol.8, issue.2, pp.478-483, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01628790

L. Fu, S. Merabia, and L. Joly, What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics, Phys. Rev. Lett, vol.119, issue.21, p.214501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01623902

C. Lee, C. Cottin-bizonne, A. Biance, P. Joseph, L. Bocquet et al., Osmotic Flow through Fully Permeable Nanochannels, Phys. Rev. Lett, vol.112, issue.24, p.244501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01628783

S. Marbach and L. Bocquet, Osmosis, from molecular insights to large-scale applications, Chem. Soc. Rev, vol.48, issue.11, pp.3102-3144, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02320715

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, issue.7438, pp.455-458, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

G. E. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation. Interdisciplinary Applied Mathematics, 2005.

K. P. Travis, B. D. Todd, and D. J. Evans, Departure from Navier-Stokes hydrodynamics in confined liquids, Phys. Rev. E, vol.55, issue.4, pp.4288-4295, 1997.

A. Bo?an, B. Rotenberg, V. Marry, P. Turq, and B. Noetinger, Hydrodynamics in Clay Nanopores, J. Phys. Chem. C, vol.115, issue.32, pp.16109-16115, 2011.

H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, and J. Barrat, Generic transport coefficients of a confined electrolyte solution, Physical Review E, vol.90, issue.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067859

H. Yoshida, S. Marbach, and L. Bocquet, Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations, The Journal of Chemical Physics, vol.146, issue.19, p.194702, 2017.

Y. Liu, R. Ganti, and D. Frenkel, Pressure gradients fail to predict diffusio-osmosis, J. Phys.: Condens. Matter, vol.30, issue.20, p.205002, 2018.

L. Bocquet and J. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids, Physical Review E, vol.49, issue.4, pp.3079-3092, 1994.

L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, J. Chem. Phys, vol.125, issue.20, p.204716, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118872

A. Bo?an, B. Rotenberg, V. Marry, P. Turq, and B. Noetinger, Hydrodynamics in Clay Nanopores, The Journal of Physical Chemistry C, vol.115, issue.32, pp.16109-16115, 2011.

D. Ameur and G. Galliero, Slippage of binary fluid mixtures in a nanopore, Microfluidics and Nanofluidics, vol.15, issue.2, pp.183-189, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853823

A. Bo?an, V. Marry, B. Rotenberg, P. Turq, and B. Noetinger, How Electrostatics Influences Hydrodynamic Boundary Conditions: Poiseuille and Electro-osmostic Flows in Clay Nanopores, The Journal of Physical Chemistry C, vol.117, issue.2, pp.978-985, 2013.

R. Ganti, Y. Liu, and D. Frenkel, Molecular Simulation of Thermo-osmotic Slip, Physical Review Letters, vol.119, issue.3, 2017.

P. Simonnin, V. Marry, B. Noetinger, C. Nieto-draghi, and B. Rotenberg, Mineral-and Ion-Specific Effects at Clay?ÄìWater Interfaces: Structure, Diffusion, and Hydrodynamics, The Journal of Physical Chemistry C, vol.122, issue.32, pp.18484-18492, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01872554

L. Fu, S. Merabia, and L. Joly, What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics, Physical Review Letters, vol.119, issue.21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01623902

L. Fu, L. Joly, and S. Merabia, Giant Thermoelectric Response of Nanofluidic Systems Driven by Water Excess Enthalpy, Physical Review Letters, vol.123, issue.13, p.138001, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02367967

X. Yong and L. T. Zhang, Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics, The Journal of Chemical Physics, vol.138, issue.8, p.84503, 2013.

A. Sam, R. Sridhar-kumar-kannam, S. P. Hartkamp, and . Sathian, Water flow in carbon nanotubes: The effect of tube flexibility and thermostat, The Journal of Chemical Physics, vol.146, issue.23, p.234701, 2017.

J. Ruiz-franco, L. Rovigatti, and E. Zaccarelli, On the effect of the thermostat in non-equilibrium molecular dynamics simulations, The European Physical Journal E, vol.41, issue.7, p.80, 2018.

H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, and J. Barrat, Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels, The Journal of Chemical Physics, vol.140, issue.21, p.214701, 2014.

V. Marry, J. Dufrêche, M. Jardat, and P. Turq, Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: Electro-osmosis in montmorillonite, Molecular Physics, vol.101, issue.20, pp.3111-3119, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00143676

J. F. Dufrêche, V. Marry, N. Malikova, and P. Turq, Molecular hydrodynamics for electro-osmosis in clays: from Kubo to Smoluchowski, Journal of molecular liquids, vol.118, issue.1, pp.145-153, 2005.

V. Mithila, S. Agnihotri, C. Chen, S. J. Beck, and . Singer, Displacements, Mean-Squared Displacements, and Codisplacements for the Calculation of Nonequilibrium Properties, J. Phys. Chem. B, vol.118, issue.28, pp.8170-8178, 2014.

D. Borgis, R. Assaraf, B. Rotenberg, and R. Vuilleumier, Computation of pair distribution functions and threedimensional densities with a reduced variance principle, Molecular Physics, pp.3486-3492, 2013.

A. J. Schultz, G. Sabry, W. Moustafa, S. J. Lin, D. A. Weinstein et al., Reformulation of Ensemble Averages via Coordinate Mapping, J. Chem. Theory Comput, vol.12, issue.4, pp.1491-1498, 2016.

L. Daniel-de, M. Heras, and . Schmidt, Better Than Counting: Density Profiles from Force Sampling, Phys. Rev. Lett, vol.120, issue.21, p.218001, 2018.

W. Samuel, D. Coles, R. Borgis, B. Vuilleumier, and . Rotenberg, Computing three-dimensional densities from force densities improves statistical efficiency, J. Chem. Phys, vol.151, issue.6, p.64124, 2019.

J. Andrew, D. A. Schultz, and . Kofke, Alternatives to conventional ensemble averages for thermodynamic properties, Current Opinion in Chemical Engineering, vol.23, pp.70-76, 2019.

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids. Elsevier, 2006.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2001.

L. Ercole, A. Marcolongo, and S. Baroni, Accurate thermal conductivities from optimally short molecular dynamics simulations, Scientific Reports, vol.7, issue.1, pp.1-11, 2017.

S. Baroni, R. Bertossa, L. Ercole, F. Grasselli, and A. Marcolongo, Heat Transport in Insulators from Ab Initio Green-Kubo Theory, Handbook of Materials Modeling: Applications: Current and Emerging Materials, pp.1-36, 2018.

J. Ramírez, K. Sathish, B. Sukumaran, A. E. Vorselaars, and . Likhtman, Efficient on the fly calculation of time correlation functions in computer simulations, J. Chem. Phys, vol.133, issue.15, p.154103, 2010.

R. Assaraf and M. Caffarel, Zero-variance principle for monte carlo algorithms, Physical review letters, vol.83, issue.23, p.4682, 1999.

R. Assaraf, M. Caffarel, and A. Scemama, Improved Monte Carlo estimators for the one-body density, Phys. Rev. E, vol.75, issue.3, p.35701, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00875613

J. Toulouse, R. Assaraf, and C. J. Umrigar, Zero-variance zerobias quantum Monte Carlo estimators of the spherically and systemaveraged pair density, The Journal of Chemical Physics, vol.126, issue.24, p.244112, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00979441

A. Purohit, A. J. Schultz, and D. A. Kofke, Forcesampling methods for density distributions as instances of mapped averaging, Molecular Physics, vol.117, issue.0, pp.1-8, 2019.

S. Viscardy, J. Servantie, and P. Gaspard, Transport and helfand moments in the lennard-jones fluid. i. shear viscosity, The Journal of Chemical Physics, vol.126, issue.18, p.184512, 2007.

A. Trokhymchuk and J. Alejandre, Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers, The Journal of Chemical Physics, vol.111, issue.18, pp.8510-8523, 1999.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol.117, issue.1, pp.1-19, 1995.

P. Peterson, F2py: a tool for connecting fortran and python programs, Int. J. Computational Science and Engineering, vol.4, issue.4, pp.295-306, 2009.

K. Meier, A. Laesecke, and S. Kabelac, Transport coefficients of the Lennard-Jones model fluid. I. Viscosity, J. Chem. Phys, vol.121, issue.8, pp.3671-3687, 2004.

S. R. De-groot and P. Mazur, Non-Equilibrium Thermodynamics, 1984.

T. Mouterde, A. Keerthi, A. R. Poggioli, S. A. Dar, A. Siria et al., Molecular streaming and its voltage control in ångström-scale channels, Nature, vol.567, issue.7746, pp.87-90, 2019.

K. Proesmans and D. Frenkel, Comparing theory and simulation for thermo-osmosis, The Journal of Chemical Physics, vol.151, issue.12, p.124109, 2019.