, Global Report on Traditional and Complimentary Medicine; World Health Organization, 2019.

K. Prochazkova, I. Bou?ová, and N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia, vol.82, pp.513-523, 2011.

M. Salami, M. Rahimmalek, and M. H. Ehtemam, Inhibitory effect of different fennel (Foeniculum vulgare) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities, Food Chem, vol.213, pp.196-205, 2016.

B. Shan, Y. Z. Cai, M. Sun, and H. Corke, Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents, J. Agric. Food Chem, vol.53, pp.7749-7759, 2005.

M. S. Swallah, H. Sun, R. Affoh, H. Fu, and H. Yu, Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits, Int. J. Food Sci, vol.2020, pp.1-8

, Int. J. Mol. Sci, vol.2020, p.4948

H. P. Kim, K. H. Son, H. W. Chang, and S. S. Kang, Anti-inflammatory plant flavonoids and cellular action mechanisms, J. Pharmacol. Sci, vol.96, pp.229-245, 2004.

T. Magrone, M. Magrone, M. A. Russo, and E. Jirillo, Recent Advances on the Anti-inflammatory and Antioxidant properties of Red Grape Polyphenols: In Vitro and in Vivo Studies, Antioxidants, vol.2020, p.35

L. Bouarab-chibane, V. Forquet, P. Lantéri, Y. Clément, L. Léonard-akkari et al., Antibacterial Properties of Polyphenols: Characterization and QSAR, Quantitative Structure-Activity Relationship) Models. Front. Microbiol, vol.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02187837

P. Mlad?nka, K. Macáková, T. Filipský, L. Zatloukalova, L. Jahodá? et al., In vitro analysis of iron chelating activity of flavonoids, J. Inorg. Biochem, vol.105, pp.693-701, 2011.

M. ?íha, J. Karlí?ková, T. Filipský, K. Macakova, L. Rocha et al., In vitro evaluation of copper-chelating properties of flavonoids, RSC Adv, vol.4, pp.32628-32638, 2014.

R. Ravichandran, M. Rajendran, and D. Devapiriam, Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method, Food Chem, vol.146, pp.472-478, 2014.

Y. Liu and M. Guo, Studies on Transition Metal-Quercetin Complexes Using Electrospray Ionization Tandem Mass Spectrometry. Molecules, vol.20, pp.8583-8594, 2015.

J. M. Markovi?, Z. Markovic, T. Brdaric, V. M. Pavelki?, and M. B. Jadranin, Iron complexes of dietary flavonoids: Combined spectroscopic and mechanistic study of their free radical scavenging activity, Food Chem, vol.129, pp.1567-1577, 2011.

C. A. Perez, Y. Wei, and M. Guo, Iron-binding and anti-Fenton properties of baicalein and baicalin, J. Inorg. Biochem, vol.103, pp.326-332, 2009.

N. N. Trofimova, E. V. Stolpovskaya, V. A. Babkin, S. V. Fedorov, G. A. Kalabin et al., The structure and electrochemical properties of metal complexes with dihydroquercetin, Russ. J. Bioorg. Chem, vol.41, pp.745-752, 2015.

J. Yang, Y. Xu, H. Liu, R. Han, J. Zhang et al., Genistein Binding to Copper (II)-Solvent Dependence and Effects on Radical Scavenging, vol.22, 1757.

Q. K. Panhwar, S. Memon, and M. Bhanger, Synthesis, characterization, spectroscopic and antioxidation studies of Cu (II)-Morin complex, J. Mol. Struct, vol.967, pp.47-53, 2010.

M. Samsonowicz and E. Regulska, Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.173, pp.757-771, 2017.

M. N. Clifford, Chlorogenic acids and other cinnamates-Nature, occurrence, and dietary burden, J. Sci. Food Agric, vol.79, pp.362-372, 1999.

L. Pollini, R. Rocchi, L. Cossignani, J. Mañes, D. Compagnone et al., Phenol Profiling and Nutraceutical Potential of Lycium spp. Leaf Extracts Obtained with Ultrasound and Microwave Assisted Techniques, Antioxidants, vol.8, 2019.

M. Kalinowska, E. Bajko, M. Matejczyk, P. Kaczynski, B. ?ozowicka et al., The Study of Anti-/Pro-Oxidant, Lipophilic, Microbial and Spectroscopic Properties of New Alkali Metal Salts of 5-O-Caffeoylquinic Acid, Int. J. Mol. Sci, vol.19, p.463, 2018.

B. Badhani, N. Sharma, and R. Kakkar, Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications, RSC Adv, vol.5, pp.27540-27557, 2015.

M. Nadeem, M. Imran, T. A. Gondal, A. Imran, M. Shahbaz et al., Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci, vol.9, p.3139, 2019.

H. Kikuzaki, M. Hisamoto, K. Hirose, K. Akiyama, and H. Taniguchi, Antioxidant Properties of Ferulic Acid, and Its Related Compounds, J. Agric. Food Chem, vol.50, pp.2161-2168, 2002.

V. B. Rahimi, M. Ghadiri, M. Ramezani, and V. R. Askari, Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies, Phytother. Res, vol.34, pp.685-720, 2020.

, Int. J. Mol. Sci, vol.2020, p.4948

S. Z. Mili?, N. Potkonjak, S. ?. Gorjanovi?, S. V. Jovanovic, F. T. Pastor et al., A Polarographic Study of Chlorogenic Acid and Its Interaction with Some Heavy Metal Ions, vol.23, pp.2935-2940, 2011.

A. Beneduci, E. Furia, N. Russo, and T. Marino, Complexation behaviour of caffeic, ferulic and p-coumaric acids towards aluminium cations: A combined experimental and theoretical approach, New J. Chem, vol.41, pp.5182-5190, 2017.

S. Chan, S. Kantham, V. M. Rao, M. K. Palanivelu, H. L. Pham et al., Metal chelation, radical scavenging, and inhibition of A?42 fibrillation by food constituents in relation to Alzheimer's disease, Food Chem, vol.199, pp.185-194, 2016.

B. Kutus, D. Ozsvár, N. Varga, I. Pálinkó, and P. Sipos, ML and ML 2 complex formation between Ca (II) and d -glucose derivatives in aqueous solutions, Dalton Trans, vol.46, pp.1065-1074, 2017.

L. Gao, H. Wang, X. Song, and W. Cao, Research on the chelation between luteolin and Cr (III)-ion through infrared spectroscopy, UV-vis spectrum and theoretical calculations, J. Mol. Struct, vol.1034, pp.386-391, 2013.

M. Samsonowicz, E. Regulska, and M. Kalinowska, Hydroxyflavone metal complexes-Molecular structure, antioxidant activity and biological effects, Chem. Interact, vol.273, pp.245-256, 2017.

J. Cornard, C. Lapouge, and L. Dangleterre, Allet-Bodelot, C. Complexation of Lead (II) by Chlorogenic Acid: Experimental and Theoretical Study, J. Phys. Chem. A, vol.112, pp.12475-12484, 2008.

Z. Fu and R. Chen, Study of Complexes of Tannic Acid with Fe (III) and Fe (II), J. Anal. Methods Chem, vol.2019, pp.1-6

N. Al-danaf, R. A. Melhem, K. I. Assaf, W. M. Nau, and D. Patra, Photophysical properties of neutral and dissociated forms of rosmarinic acid, J. Lumin, vol.175, pp.50-56, 2016.

R. Q. Paulpandi, S. Ramasamy, M. S. Paulraj, F. G. Baños, G. Víllora et al., Enhanced Zn2+ion-sensing behavior of a benzothiazole derivative on encapsulation by ?-cyclodextrin, vol.6, pp.15670-15677, 2016.

C. J. Kelley, R. C. Harruff, and M. Carmack, Polyphenolic acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids, J. Org. Chem, vol.41, pp.449-455, 1976.

J. M. Zapata, T. López-arnaldos, M. López-serrano, A. R. Barceló, and A. Calderón, Spectrophotometric determination of rosmarinic acid in plant cell cultures by complexation with Fe2+ ions, Anal. Bioanal. Chem, vol.351, pp.311-314, 1995.

S. E. Castillo-blum and N. Barba-behrens, Coordination chemistry of some biologically active ligands. Co-Ord, Chem. Rev, vol.196, pp.3-30, 2000.

Z. Gao, K. Huang, X. Yang, and H. Xu, Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi, Biochim. Biophys. Acta Bioenerg, pp.643-650, 1472.

V. Cheynier, F. A. Tomás-barberán, and K. Yoshida, Polyphenols: From Plants to a Variety of Food and Nonfood Uses, J. Agric. Food Chem, vol.63, pp.7589-7594, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837747

J. Quero, I. Marmol, E. Cerrada, and M. J. Rodriguez-yoldi, Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management, Food Funct, vol.11, pp.2805-2825, 2020.

M. A. Olszewka, A. Gedas, and M. Simões, Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry, Food Res. Int, vol.134, 2020.

M. Kasprzak, J. Ochocki, and A. Erxleben, Properties and applications of flavonoid metal complexes, RSC Adv, vol.5, pp.45853-45877, 2015.

P. Dandawate, S. Padhye, R. Schobert, and B. Biersack, Discovery of natural products with metal-binding properties as promising antibacterial agents, Expert Opin. Drug Discov, vol.14, pp.563-576, 2019.

A. Scalbert, I. Mila, D. Expert, F. Marmolle, A. Albrecht et al., Polyphenols, metal ion complexation and biological consequences, In Basic Life Sciences
URL : https://hal.archives-ouvertes.fr/hal-02770722

S. Science and L. Business-media, , vol.66, pp.545-554, 1999.

K. Murakami, M. Haneda, S. Qiao, M. Naruse, and M. Yoshino, Prooxidant action of rosmarinic acid: Transition metal-dependent generation of reactive oxygen species, Toxicol. Vitr, vol.21, pp.613-617, 2007.

, Int. J. Mol. Sci, vol.2020, p.4948

N. R. Perron and J. L. Brumaghim, A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding, Cell Biophys, vol.53, pp.75-100, 2009.

S. A. Cherrak, N. Mokhtari-soulimane, F. Berroukeche, B. Bensenane, A. Cherbonnel et al., Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation, vol.11, 2016.

H. H. Westervelt, W. Frederick, E. W. Malcolm, and D. B. Easty, The determination and temperature-dependence of the stability constant of the calcium-catechol-4-sulfonate complex in alkaline aqueous media, Anal. Chim. Acta, vol.138, pp.237-243, 1982.

R. ?wis?ocka, E. Regulska, J. Karpinska, G. ?widerski, and W. Lewandowski, Molecular Structure and Antioxidant Properties of Alkali Metal Salts of Rosmarinic Acid. Experimental and DFT Studies, Molecules, vol.24, 2019.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

-. Arrayexpress, Database of Functional Genomics Experiments, p.12, 2012.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, vol.132, 2010.

C. J. Pickard and F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts, Phys. Rev. B, vol.63, p.245101, 2001.

J. R. Yates, C. J. Pickard, and F. Mauri, Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials, Phys. Rev. B, p.24401, 2007.

M. S. Blois, Antioxidant Determinations using a Stable Free Radical, Licensee MDPI, vol.181, pp.1199-1200, 1958.