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ABSTRACT 

We have numerically investigated the transmission of an antisymmetric Lamb wave through a line of 

silicon pillars erected onto a homogeneous silicon plate when the frequency is tuned to a resonant 

frequency of the pillars. For either a bending mode or a compressional mode, the resonators emit in the 

plate a wave 180° out-of-phase with the exciting Lamb wave, resulting in dips in the transmission 

spectrum. We show that the transmission at resonance can be actively controlled by applying an external 

force, either tangential (bending eigenmode) or axial (compressional eigenmode), on top of the pillars. 

The transmission coefficient can be precisely controlled by finely tuning either the phase or the 

amplitude of the external force. For specific dimensions of the structure, both resonant modes arise at 

the same frequency. This geometry has the advantage of offering an additional degree of freedom for 

the direction of the external force but is less favorable from an energy point of view. 

I. INTRODUCTION 

Elastic metamaterials are dynamic structures 

made up of local resonators with lateral sizes 

much smaller than the wavelength of the elastic 

wave, embedded in a background or arranged on a 

free surface. The interest of the scientific 

community for these systems has known a 

continuous growth since they were proposed 

twenty years ago1 and the great deal of research 

that ensued,2-7 have significantly contributed to the 

possibility of controlling the propagation and the 

dispersion of acoustic/elastic waves. The 

abnormal effective properties of these artificial 

structures, namely the mass density and the 

compressibility that both may turn negative in 

certain frequency bands, have been successfully 

exploited in exotic phenomena including the sub-

wavelength focusing of elastic energy,8,9 super 

airborne absorption in the audible spectrum,10,11 

and wave guiding.12 Although the periodicity is 

not a requirement for achieving either of these 

negative properties, the resonators are generally 

regularly arranged.1,13-17 Bragg diffraction may 

therefore occur when the wavelength is of the 

order of the spacing between the inclusions, giving 

rise to frequency bands where the elastic wave 

propagation is prohibited. However, in the context 

of waves manipulation the most interesting 
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property of these artificial structures is the 

occurrence of flat bands in their dispersion curves 

at much lower frequencies as compared to the 

Bragg band gaps. These relate to internal 

resonances and correspond to mechanical 

vibrations localized therein and in the immediate 

vicinity of the inclusions. Actually, immediately 

after investigations on elastic metamaterials have 

emerged it has been shown that the effective 

compressibility (resp. the effective mass density) 

becomes negative when the resonators are in a 

monopolar (resp. dipolar) motion, out-of-phase 

with respect to the waves in the background.1,2,18 

Therefore, optimal control over the propagation of 

the acoustic/elastic waves must necessary include 

the control over both the vibration amplitude and 

the phase with respect to the motion in the 

background. From a practical point of view, such 

a control requires geometries allowing for the easy 

tuning of the motion of the resonators through an 

external field. Several solutions have been 

proposed in that respect. They are generally based 

onto the use of piezoelectric elements,19-21 static 

electric field,22 or electromagnets23 to tune the 

effective material parameters. They are effective 

at low or moderate frequencies and concern 

acoustic waves in a fluid as well as elastic waves 

in entirely solid metamaterials and metasurfaces. 

These structures are very promising for many 
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applications including control of elastic rays,24 

sub-wavelength or adaptive focusing,8,25,26 energy 

harvesting,27 abnormal refraction of sound,28 

topological phase transition and guiding,29-32 and 

structural health monitoring.33 Different structures 

have been proposed among which pillar-type 

acoustic metasurfaces have proven to be 

particularly interesting. Basically, these are 

periodic arrays of cylindrical pillars erected on one 

side or on both sides of a thin and homogeneous 

slab. This geometry is particularly attractive for 

tailoring the propagation of elastic waves in the 

plate since a pillar exhibits compressional and 

bending resonances that have respectively 

monopolar and dipolar symmetries. Both resonant 

frequencies can be independently tuned through a 

proper choice of the height and/or the diameter of 

the pillar that generally remains much less than the 

wavelength of the wave in the plate at resonance. 

Single-negative behavior can thus be obtained on 

purpose by a smart choice of the dimensions. 

Interestingly, both a compressional and a bending 

mode may arise at the same frequency for specific 

geometries of the pillars and the plate,34 and 

therefore these structures can potentially exhibit a 

double-negative behavior as well. In the linear 

regime, the displacement field behind a line of 

resonating pillars impinged by a Lamb wave can 

be regarded as the sum of the incident wave and a 

wave emitted by the set of resonators. It is 

expected that the transmission spectrum is 

different if the bending and the compression occur 

at the same frequency or not. When these two 

modes occur at different frequencies, the total 

transmitted amplitude is almost null for both. This 

can be ascribed to the interferences between 

incident and  shifted emitted waves, both having 

comparable amplitudes. In contrast, the amplitude 

of the emitted wave significantly increases when 

the geometry of the structure is such that both 

bending and compressional modes occur at the 

same frequency. In that case, even though there is 

still a  phase shift between incident and emitted 

waves, transmission of a substantial part of the 

elastic energy becomes possible. 

We go a step further with the present work. Using 

numerical simulations based on a finite element 

method (FEM), we have investigated the 

transmission of the zero order antisymmetric 

Lamb wave through a line of pillars at resonance 

when an external force is applied on their top. We 

show that the transmission can be controlled at 

will by tuning both the amplitude and the phase of 

the applied force. When both the compressional 

and the bending modes of the resonator occur at 

the same frequency, an additional degree of 

freedom comes from the direction of the applied 

force that can be either parallel or normal to the 

pillar axis. We discuss the most appropriate choice 

in terms of the ratio energy cost/efficiency. 

II. EIGENMODES OF THE PILLARS AND 

EMITTED WAVES 

A finite element method was used to calculate the 

eigenmodes of a pillar on a plate. The method is 

based on the computing of the amplitude of the 

transmitted zero-order antisymmetric Lamb mode 

in the far field as a function of the frequency after 

the wave have traversed an infinite line of 

cylindrical pillars evenly spaced on a plate. The 

results were then normalized to the amplitude of 

the incident wave generated by a line-shaped 

harmonic source, parallel to the line of resonators 

and located a few hundred micrometers in front of 

it. Both the pillars and the plate were made of 

silicon and their dimensions were set in such a way 

that the mechanical resonances occur in the MHz 

range. The thickness of the plate, the height, and 

the diameter of the pillars were t=145, h=245 and 

d=50 µm respectively. The pillars were separated 

from each other by the period a=200µm, large 

enough to ensure that the coupling between the 

vibrations of neighboring pillars through the plate 

is weak and does not significantly alter the 

eigenfrequencies of the isolated resonator. In the 

frequency range of interest for this work, two 

sharp dips appear in the amplitude spectrum drawn 

as a black line in Fig. 1. At these frequencies, the 

amplitude of the transmitted wave is 0.38 and 0.08 

respectively. 

 

FIG. 1. Transmission through a line of pillars for which 

the first order compressional mode C1 and second order 

bending mode B2 arise at different frequencies 

(d = 50 µm – black line) or at the same frequency 

(d = 112 µm – red line). The insets show the 

corresponding displacement fields. 

They both correspond to a resonant mode which 

can be identified by the associated displacement 
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field, also shown in Fig. 1, namely the second 

order bending mode, referred to hereafter as B2 

and the first order compressional resonance 

denoted C1 that occur at 66.4
2B   and 

MHz24.7
1C  , respectively. In contrast to the 

mode C1 that arises at almost the same frequency 

upon a change in the diameter, the resonant 

frequency 
2B  is very sensitive to this parameter 

and increases as d increases.34,35 Interestingly, for 

specific values of the diameter d, the modes B2 and 

C1 arise at the same frequency (see the red line in 

Fig. 1) giving rise to complex motions of the 

pillar. This behavior is observed at 

1 2C /B 7.57MHz   when d=112 µm and all other 

dimensions kept unchanged. However, this 

motion can still be decomposed into compression 

and bending which can be independently 

monitored by calculating respectively the half-

sum and the half-difference of the out-of-plane 

displacements measured at two diametrically 

opposite points on top of the pillar. Furthermore, 

the pillars and the plate being all made of the same 

material, it is expected that the vibrations of the 

formers strongly couple to the motion of the latter 

giving rise to a complex displacement field when 

a Lamb wave at a resonance frequency of the 

pillars passes through the structure. 

When vibrating at resonance, each pillar in the line 

reemits a wave having the same symmetry as the 

exciting Lamb mode.16,34 In the linear regime 

where only small amplitudes are involved the 

superposition principle applies and the 

displacement field downstream of the line of 

pillars can be regarded as the sum of the incident 

and emitted waves. Therefore, subtracting the 

former from the total transmitted wave allows to 

thoroughly analyze the complex amplitude of the 

latter. The result is shown in Fig. 2(a) as a red line. 

This plot, computed at a point located 500µm 

behind the line of pillars, reveals the main features 

of the waves emitted around the two resonances C1 

and B2 when they occur at distinct frequencies. It 

corresponds to the complex amplitude of the 

emitted wave as a function of frequency of the 

wave emitted by an infinite line of pillars after 

they have been impinged at normal incidence by a 

zero order antisymmetric Lamb mode. In this 

computation, the origin of the phases is taken on 

the line source. In addition, it can be deduced from 

the variation of the real part of the wave emitted 

as a function of the frequency [blue line in Figure 

2 (a)] that the modulus takes the values of 0.92 at 

the resonance frequency MHz24.7
1C   and 

0.62 at MHz66.4
2B  , which in both cases is the 

complementary value to 1 of the total transmitted 

amplitude [(see the black line in Fig. 1(a)]. This 

unambiguously shows that the transmission at 

resonance must be viewed as the superposition of 

two waves out-of-phase with each other. 

 

FIG. 2. (a) Complex amplitude of the antisymmetric 

Lamb wave emitted by a line of pillars as a function of 

the frequency when both resonances arise at different 

frequencies (red line). The dimensions are (in µm) 

t=145, h=245, d=50, and a=200. The black lines 

correspond to the projection of the previous curve in the 

complex plane (Nyquist plot). The blue line is the real 

part of the emitted wave as a function of the frequency. 

(b) Same meaning as in (a) when both resonances arise 

at a single frequency. The diameter of the pillars is then 

d=112 µm and other dimensions kept unchanged.  

Similar behavior is observed when the dimensions 

of the pillars are set so that the compression and 

the bending resonances occur at the shared 

frequency value MHz57.7
21 B/C  , with 

nevertheless a difference in the maximum value of 

the amplitude of the complex emitted Lamb wave 

which goes to 1.5 in that case [blue and black lines 

in Fig. 2(b)]. This shows that the line of pillars is 

now partially transparent to the incident wave. It 

should be noted that in this work, we do not take 

into account the dissipative effects which only 

become important at high frequency since, in the 
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linear regime, the damping is proportional to the 

frequency squared. The elastic energy which is not 

transmitted is therefore reflected. 

III. EXTERNAL CONTROL OF THE 

TRANSMISSION 

The transmission of the Lamb wave through the 

line of resonating pillars results from an 

interference mechanism between incident and 

emitted waves. Therefore, one should be able to 

tune as needed the transmission level by acting on 

either the amplitude or the phase of the interfering 

waves. The most suitable way of doing this, is to 

apply an external harmonic force on top of the 

pillars to force the out-coming wave to have the 

desired features. The layout we have considered 

for that is shown in Fig. 3(a). It consists of an 

infinite line of pillars aligned along the x direction 

on a plate, as described in the preceding section. 

Antisymmetric Lamb waves excited by a source 

located 1000 µm upstream of the line of pillars 

propagate in the plate. Perfect match layers (PML) 

are set on both ends of the unit cell to avoid any 

reflection from the edges. Depending on the 

symmetry of the resonant mode to be controlled, 

either a traction force along the y direction at the 

frequency 
2B , or an axial force along the z 

direction at 
1C , is applied on top of the pillars. In 

the following, we consider successively the cases 

where the two resonances arise at different 

frequencies and where they are simultaneously 

excited at a single frequency, i.e. 
2 1B C  .  

A. Bending and compressional modes at 

distinct frequencies 

A.1. Transmission at the frequency of the 

bending mode B2 

We define the transmission coefficient of A0 Lamb 

mode 
0AT  as the ratio of the out-of-plane 

displacement amplitude measured on the plate at a 

distance of 500 µm downstream of the line of 

pillars, denoted “Detection” in Fig. 3(a) to the one 

measured at the same distance from the source, but 

on the plate free of pillars. The digital experiment 

consists in applying on top of each pillar in the line 

the harmonic traction force    tFF
2B0 2sin , 

where F0 and  are the amplitude per unit area and 

the phase respectively, and measuring the 

transmission coefficient as a function of both the 

independent parameters F0 and . We set the 

maximum value of F0 at 1 MPa, which 

corresponds to a load less than one gram for the 

pillars with the dimensions we consider here. This 

is a realistic value, easily achievable with several 

experimental techniques, including piezoelectric, 

magnetic, and even optical methods. As for the 

phase, it varies in between 0 and 2. 
  

 

 
FIG. 3. (a) Finite elements model used to compute the 

transmission through an infinite line of pillars spaced 

200 µm along the x direction. The source and detection 

are located at 1000 µm and 500 µm from the pillars 

respectively. (b) Transmission coefficient of zero order 

antisymmetric Lamb mode against the amplitude and 

the phase of a tangential harmonic force directed along 

the y direction. The frequency is tuned to the bending 

resonance MHz66.4
2B  . The white area corresponds 

to values of the transmission coefficient greater than 1. 

The transmission coefficient of A0 Lamb mode 

through the line of pillars against both parameters 

is displayed as a color-fill map in Fig. 3(b). The 

system being not isolated, 
0AT  can take values 

greater than one; however only the values less than 

unity are shown in this figure. The main point to 

note in this result is that any value in between 0 

and 1 is achievable for 
0AT , showing that the 

structure allows to tune the transmission as needed 

or even to serve as a switch between the states 

“on” and “off”. Although the condition to have 

zero transmission remains limited to a narrow 

range around F0=0.11 MPa and π62.1 , there is 

a large domain where 
0A 1T   since this value can 

be obtained for any value of . The minimum 

force per unit area necessary for transmission 



 

 

5 

 

equal to 1 is as small as 0.17 MPa; the required 

phase is then π62.0 . As expected from the 

data in Fig. 1, the transmission coefficient is 0.38 

if F0=0. Another point to be noticed is that 
0AT  

varies linearly as a function of the phase and the 

force per unit area up to ~0.5 MPa, as evidenced 

both in Fig. 4(a) where we have drawn  ,1.0
0AT  

as a black line and in Fig. 4(b) where 

 62.1,0A0
FT  is shown.  

 

 
 

FIG. 4. (a) Transmission coefficient of A0 Lamb mode 

as a function of the phase of the tangential external 

force with an amplitude of 0.1 MPa (black line) or 

0.05 MPa (red line) and (b) as a function of the 

amplitude when the phase is locked at 1.62. 

We show also in Fig. 4(a) as a red line the 

transmission coefficient when an external force of 

0.05 MPa is applied. As in the previous case, the 

maximum and minimum transmission arises when 

the phase is set to  = 0.62 and  = 1.62 

respectively, suggesting that the displacement 

field downstream of the line of pillars should be 

interpreted in terms of interferences between the 

waves emitted by the source and by the pillars. 

Considering the phase relationship between both 

waves allows to further confirm this statement. 

Actually, if the origin of all phases being set at the 

source, the wave transmitted through the pillars 

and the one emitted by the pillars read at the 

detection point  sBA 20
2cos  tT  and 

 PB0 2
2cos  tF  respectively. Their 

respective phase at the detection point are s and 

+p, where s (resp. p) relates to the delay time 

between the source (resp. the pillars) and the 

detection. The phase difference   SP  

against , computed in between – and + using 

the geometrical parameters summarized in 

Fig. 3(a) and displayed in Fig. 5, confirms that 

both waves are in-phase when =0.62, giving 

rise to constructive interferences, and out-of-phase 

when  = 1.62 where a minimum of transmission 

occurs. 

 

FIG. 5. Phase difference between the Lamb mode 

transmitted through the line of pillars and the wave 

emitted by the pillars upon excitation by an external 

tangential force. 

It should be noticed that the displacement field 

associated to the bending resonance also features 

a component along the central axis of the pillars 

and therefore the external excitation of B2 could 

also be achieved owing to a harmonic force 

parallel to the z-direction. However, the amplitude 

F0 necessary to observe the total transmission 

through the line of pillars would be as high as 

6 MPa, instead of 0.17 MPa with a tangential 

excitation, and almost 4 MPa instead of 0.11 MPa 

when the desired outcome is zero transmission. 

The energy cost is then too high and this approach 

is not suitable for controlling the propagation of 

the waves at the frequency of the bending 

resonance. Nonetheless, we show in the next 

section that applying a harmonic force along the 

axis of the pillars allows to finely tune the 

transmission at the frequency of the compressional 

resonance. 

A.2. Transmission at the frequency of the 

compressional mode C1 

We consider again the layout shown in Fig. 3(a) 

but now a force at the frequency of the 
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compressional mode MHz24.7
1C   is applied 

normally on top of each pillar. Figure 6 where is 

displayed the transmission coefficient as a 

function of both the amplitude and the phase of the 

applied force, shows that even an amplitude less 

than 0.6 MPa is sufficient to have the transmission 

coefficient continuously varying in between 0 and 

1. The phase must then be locked at 1.17. As 

previously, for any value of the phase there is an 

amplitude of the applied force allowing for total 

transmission of the antisymmetric Lamb mode, 

whereas the zero transmission remains restricted 

to a small domain around F0=0.04 MPa and 

=1.17. 
 

 
FIG. 6. Transmission coefficient of zero order 

antisymmetric Lamb mode against the amplitude and 

the phase of a compressional harmonic force directed 

along the z direction. The frequency is tuned to a 

frequency close to the compressional resonance of the 

pillars MHz24.7
1C  . 

The dependence of the transmission through the 

line of resonators against the phase  of the 

applied force reflects its interferential origin. 

Actually, at any amplitude F0, the transmission 

coefficient changes from minimum to maximum if 

an angle of  is added to the phase . This is 

illustrated in Fig. 7 where we show in the upper 

panel the transmission coefficient as a function of 

 when F0 = 0.4 MPa: the minimum 65.0
0A T

and maximum 81.0
0A T  transmission are for 

=1.17 and =0.17 respectively. In the lower 

panel in Fig. 7 we show the phase difference at the 

detection point, between the waves emitted by the 

source and by the resonating pillars, as a function 

of . When the transmission is minimum, both 

waves are out-of-phase giving rise to destructive 

interferences. The measured amplitude is then 

entirely due to the source and varies linearly with 

its amplitude. Similarly, maximum transmission 

occurs when both waves are in phase and 

constructively interfere. 

 

B. Bending and compressional modes at a 

single frequency 

The flexural modes of a pillar attached to a plate 

strongly depend on its diameter but are less 

sensitive to its height or to the thickness of the 

plate, in contrast to the compressional mode that 

can be slightly tuned through the value of the 

height but keeps almost the same frequency upon 

a change in the diameter or the thickness of the 

plate.34 

 

FIG. 7. Upper panel: Transmission coefficient for A0 

mode against the phase of the applied force 

(F0 = 0.4 MPa). Lower panel: Phase difference 

between the Lamb mode transmitted through the line of 

pillars and the wave emitted by the pillars upon 

excitation. 

Thanks to these properties, it is possible to 

independently adjust the flexural and 

compressional resonances by the appropriate 

choice of geometric parameters and to make them 

appear both at the same frequency. A line of 

silicon pillars on a silicon plate having dimensions 

leading to the transmission spectrum represented 

by a red line in Fig.1 (d=112 µm, h=245 µm, and 

t= 145 µm) fulfils this requirement. This 

composite resonance results in a dip rather than a 

peak in the transmission spectrum and does not 

allow zero transmission at the common frequency 

MHz57.7
12 C/B  . We investigate in this section 

the effects of an external excitation at this 

frequency and we show that this type of resonance 

is nevertheless useful for controlling the 

transmission coefficient. This geometry has the 

advantage of offering an additional degree of 

freedom to control the transmission of the Lamb 

wave since the external excitation can be either 
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tangential or axial, with however an efficiency that 

cannot be predicted a priori. The effect of a 

compressional excitation on the transmission at 

7.57 MHz is summarized in Fig. 8 (a). It is clear 

from this figure that a relatively low axial force 

makes it possible to finely control the transmission 

between 0 and 1. The necessary amplitude to turn 

off the transmission of the wave is F0 = 0.28 MPa; 

the phase must then be adjusted to  = 1.98, 

whereas total transmission is achievable whatever 

is the phase, with a minimum amplitude of 0.21 

MPa; the phase must then be locked at 0.98. We 

show for comparison the transmission coefficient 

map in Fig. 8(b) when a traction force is applied. 

Apart from the position on the phase axis of the 

null transmission that occurs now at  = 1.42, the 

dependences on  or F0 are roughly the same. In 

particular, the minimum required amplitude of the 

applied tangential force to achieve total 

transmission is F0 = 0.18 MPa, i.e. ~10% less than 

what is required with the external compressional 

force. 

 

 

FIG. 8. (a) Transmission coefficient of zero order 

antisymmetric Lamb mode against the amplitude and 

the phase of a compressional harmonic force directed 

along the z direction and (b) a traction force directed 

along the x direction. In both cases, the frequency is 

tuned to a frequency close to the common frequency of 

the compressional and bending resonances of the pillars

MHz57.7
12 C/B  . 

The phase relation between the wave emitted by 

the source and then transmitted behind the line of 

pillars and the wave resulting from the external 

excitation, computed at the detection point [see 

Fig. 3(a)], gives further evidence of the 

interferential nature of the displacement field 

downstream of the pillars. The phase difference 

between these waves, as a function of the 

amplitude of the applied traction force F0, 

computed when the phase is set to  = 1.42, is 

drawn in the lower panel of Fig. 9; the 

transmission coefficient is shown in the upper 

panel. As long as F0 is less than 0.25 MPa, 

increasing the amplitude of the applied force 

results in a decrease in the transmission 

coefficient, which is perfectly explained by the 

phase opposition between the waves generated by 

the source and emitted by the pillars, measured in 

this interval. Perfect cancellation accompanied by 

a phase jump occurs when F0 = 0.25 MPa. The 

linear increase in the transmission coefficient 

when F0 is greater than 0.25 MPa confirms that the 

two waves are then in phase and constructively 

interfere. Moreover, the phase difference being 

constant on both sides of the phase jump, the 

transmitted amplitude only depends on F0. 

 

FIG. 9. Upper panel: Transmission coefficient for A0 

mode against the amplitude of the applied traction force 

at MHz57.7
12 C/B   (=1.42). Lower panel: Phase 

difference between the antisymmetric Lamb wave 

transmitted through the line of pillars and the wave 

emitted by the pillars. 

IV. CONCLUSION 

With this work, we propose a method to adjust at 

will the transmission coefficient of an 

antisymmetric Lamb wave propagating through an 

infinite line of pillars. The method can be extended 
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without difficulty to the case of the symmetric 

Lamb wave which also involves both in-plane and 

out-of-plane components, respectively sensitive to 

the bending and the compressional eigenmode of 

the pillars. Whether the eigenfrequencies are the 

same or distinct, the adjustment of the 

transmission coefficient in between 0 and 1 

remains achievable by tuning, at constant phase, 

the amplitude of the external force; in all cases, the 

forces involved are weak and easy to implement. 

However, the necessary energy cost differs from 

one situation to another. Actually, when the 

eigenfrequencies are distinct, zero transmission is 

achieved at MHz24.7
1C   with an external 

compressional force per unit area of ~0.04 MPa, 

which given the diameter of the pillar, corresponds 

to a force of ~78 µN only. More than three times 

higher traction force is required to achieve the 

same effect at the frequency of the bending mode 

MHz66.4
2B  . It is the opposite situation to get 

0A 1T   since the minimum necessary tangential 

force is then three times weaker than the minimum 

axial force (330 µN and 980 µN respectively). 

The implementation of a structure comprising 

pillars whose both normal modes occur at a single 

frequency has the advantage of offering an 

additional degree of freedom but is less favorable 

from an energy point of view. Indeed, a 

compressional force of about 2.8 mN is then  

necessary to obtain 0
0A T . It is slightly less if 

using a bending force (~2.4mN) but this remains 

thirty times higher than what must be used in the 

case of pillars with eigenmodes at distinct 

frequencies. Currently we are studying the 

extension of this work to the individual control of 

the pillars in the line in order to explore the 

functionalities of such a metasurface for various 

anomalous refraction phenomena and focusing 

effects. Indeed, by individually controlling each 

resonator, we can dynamically form a phase 

gradient distribution downstream of the line of 

pillars, in a similar way to what has been achieved 

recently statically using elastic phased diffraction 

gratings.36 By adjusting the phase of the force 

applied to each resonator, such a one-dimensional 

device would allow an incident wave to be 

redirected along any direction or to be focused at 

any point within a large area behind the pillars, in 

contrast to gradient index phononic lenses which, 

in general, only allow focusing along their median 

axis.8,25,27 

Finally, we briefly discuss the experimental 

techniques that could be used to coherently control 

the resonators motions. Basically, this can be done 

in different ways, including piezoelectric, 

magnetic, and optical excitation of the pillars. 

Piezoelectric techniques allow for high strengths, 

high tunability, and operating frequencies in the 

GHz range, making such pillared structures 

compatible with silicon based MEMS if piezo 

transducers and electrodes are bounded both on 

top of the pillars and on the plate, but at the price 

of relatively delicate elaboration processes. To 

coherently control the vibration of the resonators 

and manipulate the propagation of waves at lower 

frequencies, the whole structure can be made of a 

piezoelectric material, as demonstrated recently 

with a lithium niobate platform.37 In that case, the 

FEM model must account for the coupling 

between elastic and electromagnetic waves, which 

entails simultaneously solving the equation of 

motion and Maxwell’s equations. In the linear 

regime, this amounts to considering hardened 

elastic constants of the material, which may alter 

the phase relationship between transmitted and 

emitted waves. However, the general approach is 

unchanged and the main conclusions remains 

valid. On the other hand, when frequencies in the 

range of kHz and below are required, magnetic 

materials can be an easier alternative. They offer 

the additional advantage of being contactless 

allowing the application of the external force in 

any direction. Finally, all-optical techniques such 

as laser ultrasonics38 or picosecond time-domain 

thermoreflectance,39 could establish the proof of 

concept of the active control of the transmission of 

Lamb waves with pillars based metasurfaces. 
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