S. E. Ashbrook and M. E. Smith, Solid State 17 O NMR -An Introduction to the Background Principles and Applications to Inorganic Materials, Chem. Soc. Rev, vol.35, issue.8, pp.718-735, 2006.

N. J. Brownbill, D. Gajan, A. Lesage, L. Emsley, and F. Blanc, Oxygen-17 Dynamic Nuclear Polarisation Enhanced Solid-State NMR Spectroscopy at 18.8 T, Chem. Commun, vol.53, pp.2563-2566, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01546471

G. Wu, Solid-State 17 O NMR Studies of Organic and Biological Molecules, Prog. Nucl. Magn. Reson. Spectrosc, vol.52, issue.2-3, pp.118-169, 2008.

K. Yamada, Chapter 3 -Recent Applications of Solid-State 17 O NMR, Annu. Rep. NMR Spectrosc, vol.70, pp.115-158, 2010.

I. P. Gerothanassis, Oxygen-17 NMR Spectroscopy: Basic Principles and Applications (Part II), Prog. Nucl. Magn. Reson. Spectrosc, vol.57, issue.1, pp.1-110, 2010.

F. Castiglione, A. Mele, and G. Raos, Chapter Four -17 O NMR: A "Rare and Sensitive" Probe of Molecular Interactions and Dynamics, Annu. Rep. NMR Spectrosc, vol.85, pp.143-193, 2015.

C. A. Ohlin and W. H. Casey, Chapter Five -17 O NMR as a Tool in Discrete Metal Oxide Cluster Chemistry, Annu. Rep. NMR Spectrosc, vol.94, pp.187-248, 2018.

G. Wu, 17 O NMR Studies of Organic and Biological Molecules in Aqueous Solution and in the Solid State, Prog. Nucl. Magn. Reson. Spectrosc, pp.135-191, 2019.

L. Buannic, F. Blanc, D. S. Middlemiss, and C. P. Grey, Probing Cation and Vacancy Ordering in the Dry and Hydrated Yttrium-Substituted BaSnO 3 Perovskite by NMR Spectroscopy and First Principles Calculations: Implications for Proton Mobility, J. Am. Chem. Soc, vol.2012, issue.35, pp.14483-14498

W. D. Wang, B. E. Lucier, V. V. Terskikh, W. Wang, and Y. Huang, Wobbling and Hopping: Studying Dynamics of CO 2 Adsorbed in Metal-Organic Frameworks via 17 O Solid-State NMR, J. Phys. Chem. Lett, vol.5, issue.19, pp.3360-3365, 2014.

S. T. Holmes and R. W. Schurko, Refining Crystal Structures with Quadrupolar NMR and Dispersion-Corrected Density Functional Theory, J. Phys. Chem. C, vol.2017, issue.3, pp.1809-1820

T. M. Alam, M. Nyman, B. R. Cherry, J. M. Segall, and L. E. Lybarger, Multinuclear NMR Investigations of the Oxygen, Water, and Hydroxyl Environments in Sodium Hexaniobate, J. Am. Chem. Soc, vol.126, issue.17, pp.5610-5620, 2004.

A. Pedone, E. Gambuzzi, and M. C. Menziani, Unambiguous Description of the Oxygen Environment in Multicomponent Aluminosilicate Glasses from 17 O Solid State NMR Computational Spectroscopy, J. Phys. Chem. C, vol.2012, issue.27, pp.14599-14609

C. P. Romao, F. A. Perras, U. Werner-zwanziger, J. A. Lussier, K. J. Miller et al., Zero Thermal Expansion in ZrMgMo 3 O 12 : NMR Crystallography Reveals Origins of Thermoelastic Properties, Chem. Mater, vol.27, issue.7, pp.2633-2646, 2015.

X. Kong, V. V. Terskikh, R. L. Khade, L. Yang, A. Rorick et al., Solid-State 17 O NMR Spectroscopy of Paramagnetic Coordination Compounds, Angew. Chem. Int. Ed, vol.54, issue.16, pp.4753-4757, 2015.

P. He, J. Xu, V. V. Terskikh, A. Sutrisno, H. Nie et al., Identification of Nonequivalent Framework Oxygen Species in Metal-Organic Frameworks by 17 O Solid-State NMR, J. Phys. Chem. C, vol.2013, issue.33, pp.16953-16960

G. P. Bignami, Z. H. Davis, D. M. Dawson, S. A. Morris, S. E. Russell et al., Cost-Effective 17 O Enrichment and NMR Spectroscopy of Mixed-Metal Terephthalate Metal-Organic Frameworks, Chem. Sci, vol.9, pp.850-859, 2018.

C. Chen, E. Gaillard, F. Mentink-vigier, K. Chen, Z. Gan et al., Direct 17 O Isotopic Labeling of Oxides Using Mechanochemistry, Inorg. Chem, vol.2020
URL : https://hal.archives-ouvertes.fr/hal-02504692

Y. Champouret, Y. Coppel, and M. L. Kahn, Evidence for Core Oxygen Dynamics and Exchange in Metal Oxide Nanocrystals from In Situ 17 O MAS NMR, J. Am. Chem. Soc, vol.138, issue.50, pp.16322-16328, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01936040

M. Wang, X. Wu, S. Zheng, L. Zhao, L. Li et al., Identification of Different Oxygen Species in Oxide Nanostructures with 17 O Solid-State NMR, Spectroscopy. Sci. Adv, vol.2015, issue.1, p.1400133

T. Métro, C. Gervais, A. Martinez, C. Bonhomme, and D. Laurencin, Unleashing the Potential of 17 O NMR Spectroscopy Using Mechanochemistry, Angew. Chem. Int. Ed, vol.56, issue.24, pp.6803-6807, 2017.

J. M. Griffin, L. Clark, V. R. Seymour, D. W. Aldous, D. M. Dawson et al., Ionothermal 17 O Enrichment of Oxides Using Microlitre Quantities of Labelled Water, Chem. Sci, vol.2012, issue.7, pp.2293-2300

N. M. Trease, T. M. Clark, P. J. Grandinetti, J. F. Stebbins, and S. Sen, Bond Length-Bond Angle Correlation in Densified Silica-Results from 17 O NMR Spectroscopy, J. Chem. Phys, vol.2017, issue.18, p.184505

E. Pavón, F. J. Osuna, M. D. Alba, and L. Delevoye, Natural Abundance 17 O MAS NMR and DFT Simulations: New Insights into the Atomic Structure of Designed Micas, Solid State Nucl. Magn. Reson, vol.100, pp.45-51, 2019.

A. Pustogow, Y. Luo, A. Chronister, Y. S. Su, D. A. Sokolov et al., Constraints on the Superconducting Order Parameter in Sr 2 RuO 4 from Oxygen-17 Nuclear Magnetic Resonance, Nature, vol.2019, issue.7776, pp.72-75

L. Peng, Y. Liu, N. Kim, J. E. Readman, and C. P. Grey, Detection of Bronsted Acid Sites in Zeolite HY with High-Field 17 O-MAS-NMR Techniques, Nat. Mater, vol.4, issue.3, pp.216-219, 2005.

I. Hung, A. Uldry, J. Becker-baldus, A. L. Webber, A. Wong et al., Probing Heteronuclear 15 N? 17 O and 13 C? 17 O Connectivities and Proximities by Solid-State NMR Spectroscopy, J. Am. Chem. Soc, vol.131, issue.5, pp.1820-1834, 2009.

L. Chen, X. Lu, Q. Wang, O. Lafon, J. Trébosc et al., Distance Measurement between A Spin-1/2 and A Half-Integer Quadrupolar Nuclei by Solid-State NMR Using Exact Analytical Expressions, J. Magn. Reson, issue.2, pp.269-273, 2010.

S. L. Carnahan, B. J. Lampkin, P. Naik, M. P. Hanrahan, I. I. Slowing et al., Probing O-H Bonding through Proton Detected 1 H-17 O Double Resonance Solid-State NMR Spectroscopy, J. Am. Chem. Soc, vol.141, issue.1, pp.441-450, 2019.

H. J. Jakobsen, H. Bildsøe, M. Brorson, G. Wu, P. L. Gor'kov et al., High-Field 17 O MAS NMR Reveals 1 J( 17 O-127 I) with its Sign and the NMR Crystallography of the Scheelite Structures for NaIO 4 and KIO 4, J. Phys. Chem. C, issue.25, pp.14434-14442, 2015.

F. A. Perras, T. Kobayashi, and M. Pruski, Natural Abundance 17 O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy, J. Am. Chem. Soc, vol.137, issue.26, pp.8336-8339, 2015.

R. K. Harris, E. D. Becker, S. M. Cabral-de-menezes, R. Goodfellow, P. Granger et al., Nuclear Spin Properties and Conventions for Chemical Shifts (IUPAC Recommendations, Pure Appl. Chem, issue.11, pp.1795-1818, 2001.

Z. Gan, I. Hung, X. Wang, J. Paulino, G. Wu et al., NMR Spectroscopy up to 35.2 T Using A Series-Connected Hybrid Magnet, J. Magn. Reson, vol.284, pp.125-136, 2017.

E. G. Keeler, V. K. Michaelis, M. T. Colvin, I. Hung, P. L. Gor'kov et al., 17 O MAS NMR Correlation Spectroscopy at High Magnetic Fields, J. Am. Chem. Soc, vol.2017, issue.49, pp.17953-17963

E. G. Keeler, V. K. Michaelis, C. B. Wilson, I. Hung, X. Wang et al., High-Resolution 17 O NMR Spectroscopy of Structural Water, J. Phys. Chem. B, vol.2019, issue.14, pp.3061-3067

H. Zhou, J. R. Long, and O. M. Yaghi, Introduction to Metal-Organic Frameworks, Chem. Rev, vol.2012, issue.2, pp.673-674

H. Furukawa, K. E. Cordova, M. O'keeffe, and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science, vol.341, issue.6149, p.1230444, 2013.

H. C. Hoffmann, M. Debowski, P. Mueller, S. Paasch, I. Senkovska et al., Solid-State NMR Spectroscopy of Metal-Organic Framework Compounds (MOFs), Materials, vol.5, pp.2537-2572, 2012.

A. Sutrisno and Y. Huang, Solid-State NMR: A Powerful Tool for Characterization of Metal-Organic Frameworks, Solid State Nucl. Magn. Reson, pp.1-11, 2013.

B. E. Lucier, S. Chen, and Y. Huang, Characterization of Metal-Organic Frameworks: Unlocking the Potential of Solid-State NMR, Acc. Chem. Res, vol.51, issue.2, pp.319-330, 2018.

V. J. Witherspoon, J. Xu, and J. A. Reimer, Solid-State NMR Investigations of Carbon Dioxide Gas in Metal-Organic Frameworks: Insights into Molecular Motion and Adsorptive Behavior, Chem. Rev, vol.118, issue.20, pp.10033-10048, 2018.

Y. T. Wong, V. Martins, B. E. Lucier, and Y. Huang, Solid-State NMR Spectroscopy: A Powerful Technique to Directly Study Small Gas Molecules Adsorbed in Metal-Organic Frameworks, Chem. -Eur. J, vol.25, issue.8, pp.1848-1853, 2019.

B. E. Lucier, Y. Zhang, and Y. Huang, Complete Multinuclear Solid-State NMR of Metal-Organic Frameworks: The Case of ?-Mg-formate, Concept. Magnetic Res. A, vol.2016, issue.6, p.21410

B. E. Lucier, Y. Zhang, K. J. Lee, Y. Lu, and Y. Huang, Grasping Hydrogen Adsorption and Dynamics in Metal-Organic Frameworks Using 2 H Solid-State NMR, Chem. Commun, vol.52, issue.48, pp.7541-7544, 2016.

Y. Lu, B. Lucier, Y. Zhang, P. Ren, A. Zheng et al., Sizable Dynamics in Small Pores: CO 2 Location and Motion in the ?-Mg Formate Metal-Organic Framework, Phys. Chem. Chem. Phys, vol.19, pp.6130-6141, 2017.

Y. Zhang, B. E. Lucier, M. Fischer, Z. Gan, P. D. Boyle et al., A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques, Chem. -Eur. J, vol.24, issue.31, pp.7866-7881, 2018.

T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle et al., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) upon Hydration, Chem. -Eur. J, vol.10, issue.6, pp.1373-1382, 2004.

S. Kitagawa and K. Uemura, Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds, Chem. Soc. Rev, vol.34, issue.2, pp.109-119, 2005.

A. C. Mckinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref et al., BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications, Angew. Chem. Int. Ed, issue.36, pp.6260-6266, 2010.

H. Cai, Y. Huang, and D. Li, Biological Metal-Organic Frameworks: Structures, Host-Guest Chemistry and Bio-Applications, Coord. Chem. Rev, vol.378, pp.207-221, 2019.

M. Wu and Y. Yang, Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy, Adv. Mater, vol.29, issue.23, p.1606134, 2017.

H. Li, M. Eddaoudi, M. O'keeffe, and M. Yaghi, Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework, Nature, vol.402, issue.6759, pp.276-279, 1999.

F. Millange, C. Serre, and G. Férey, Synthesis, Structure Determination and Properties of MIL-53as and MIL-53ht: The First Cr III Hybrid Inorganic-Organic Microporous Solids, Chem. Commun, issue.8, pp.822-823, 2002.

J. Hafizovic-cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc, vol.130, issue.42, pp.13850-13851, 2008.

N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'keeffe et al., Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc, vol.127, issue.5, pp.1504-1518, 2005.

S. S. Chui, .. Lo, S. M. , .. Charmant, J. P. Orpen et al., A Chemically Functionalizable Nanoporous Material, vol.283, pp.1148-1150, 1999.

I. Ahmed and S. H. Jhung, Applications of Metal-Organic Frameworks in

, Adsorption/Separation Processes via Hydrogen Bonding Interactions, Chem. Eng. J, vol.310, pp.197-215, 2017.

J. M. Roberts, B. M. Fini, A. A. Sarjeant, O. K. Farha, J. T. Hupp et al., Urea Metal-Organic Frameworks as Effective and Size-Selective Hydrogen-Bond Catalysts, J. Am. Chem. Soc, vol.2012, issue.7, pp.3334-3337

X. Meng, H. Wang, S. Song, and H. Zhang, Proton-Conducting Crystalline Porous Materials, Chem. Soc. Rev, vol.46, issue.2, pp.464-480, 2017.

J. A. Rood, B. C. Noll, and K. W. Henderson, Synthesis, Structural Characterization, Gas Sorption and Guest-Exchange Studies of the Lightweight, Porous Metal-Organic Framework ?

, Inorg. Chem, issue.14, pp.5521-5528, 2006.

M. Fischer, F. Hoffmann, and M. Froeba, New Microporous Materials for Acetylene Storage and C 2 H 2 /CO 2 Separation: Insights from Molecular Simulations, ChemPhysChem, vol.2010, issue.10, pp.2220-2229

X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li et al., Enzyme-MOF (Metal-Organic Framework) Composites, Chem. Soc. Rev, vol.2017, issue.11, pp.3386-3401

F. Novio, J. Simmchen, N. Vázquez-mera, L. Amorín-ferré, and D. Ruiz-molina, Coordination Polymer Nanoparticles in Medicine, Coord. Chem. Rev, vol.257, issue.19, pp.2839-2847, 2013.

J. Xu, V. V. Terskikh, Y. Chu, A. Zheng, and Y. Huang, Mapping Out Chemically Similar, Crystallographically Nonequivalent Hydrogen Sites in Metal-Organic Frameworks by 1 H Solid-State NMR Spectroscopy, Chem. Mater, vol.27, issue.9, pp.3306-3316, 2015.

J. Hu, T. Sun, X. Ren, and S. Wang, HF-Assisted Synthesis of Ultra-Microporous [Mg 3 (OOCH) 6 ] Frameworks for Selective Adsorption of CH 4 over N 2, Microporous Mesoporous Mater, vol.204, pp.73-80, 2015.

J. Xu, V. V. Terskikh, and Y. Huang, Resolving Multiple Non-equivalent Metal Sites in Magnesium-Containing Metal-Organic Frameworks by Natural Abundance 25 Mg Solid-State NMR Spectroscopy, Chem. -Eur. J, vol.19, issue.14, pp.4432-4436, 2013.

H. Mao, J. Xu, Y. Hu, Y. Huang, and Y. Song, The Effect of High External Pressure on Structure and Stability of MOF ?-Mg 3 (HCOO) 6 Probed by in Situ Raman and FT-IR Spectroscopy, J. Mater. Chem. A, vol.3, pp.11976-11984, 2015.

J. Xu, V. V. Terskikh, Y. Chu, A. Zheng, and Y. Huang, 13 C Chemical Shift Tensors in MOF ?-Mg 3 (HCOO) 6 : Which Component is More Sensitive to Host-Guest Interaction?, Magn. Reson. Chem, vol.2020

B. H. Toby and R. B. Von-dreele, GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package, J. Appl. Crystallogr, vol.46, issue.2, pp.544-549, 2013.

J. A. Rood and K. W. Henderson, Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory, J. Chem. Educ, vol.90, issue.3, pp.379-382, 2013.

D. Massiot, B. Touzo, D. Trumeau, J. P. Coutures, J. Virlet et al., Two-Dimensional Magic-Angle Spinning Isotropic Reconstruction Sequences for Quadrupolar Nuclei, Solid State Nucl. Magn. Reson, vol.6, issue.1, pp.73-83, 1996.

I. Hung, J. Trébosc, G. L. Hoatson, R. L. Vold, J. Amoureux et al., Q-Shear Transformation for MQMAS and STMAS NMR Spectra, J. Magn. Reson, vol.201, issue.1, pp.81-86, 2009.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calve et al., Modeling One-and Two-Dimensional Solid-State NMR Spectra, Magn. Reson. Chem, vol.40, issue.1, pp.70-76, 2002.

G. Kresse and J. Hafner, Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal--Amorphous-Semiconductor Transition in Germanium, Phys. Rev. B, issue.20, pp.14251-14269, 1994.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys.: Condens. Matter, vol.21, issue.39, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, issue.18, pp.3865-3868, 1996.

N. Troullier and J. L. Martins, Efficient Pseudopotentials for Plane-Wave Calculations, Phys. Rev. B, issue.3, pp.1993-2006, 1991.

L. Kleinman and D. M. Bylander, Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett, vol.1982, issue.20, pp.1425-1428

T. Charpentier, The PAW/GIPAW Approach for Computing NMR Parameters: A New Dimension Added to NMR Study of Solids, Solid State Nucl. Magn. Reson, vol.40, issue.1, pp.1-20, 2011.

C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint et al., First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist's Point of View, Chem. Rev, vol.2012, issue.11, pp.5733-5779
URL : https://hal.archives-ouvertes.fr/hal-01468419

C. J. Pickard and F. Mauri, All-Electron Magnetic Response with Pseudopotentials: NMR Chemical Shifts, Phys. Rev. B, issue.24, p.245101, 2001.

L. Frydman and J. S. Harwood, Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR, J. Am. Chem. Soc, vol.117, issue.19, pp.5367-5368, 1995.

J. Amoureux, C. Huguenard, F. Engelke, and F. Taulelle, Unified Representation of MQMAS and STMAS NMR of Half-Integer Quadrupolar Nuclei, Chem. Phys. Lett, issue.5, pp.497-504, 2002.

I. P. Gerothanassis and C. Vakka, 17 O NMR Chemical Shifts as a Tool to Study Specific Hydration Sites of Amides and Peptides: Correlation with the IR Amide I Stretching Vibration, J. Org. Chem, vol.59, issue.9, pp.2341-2348, 1994.

V. K. Michaelis, E. G. Keeler, T. Ong, K. N. Craigen, S. Penzel et al., Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical 17 O NMR, J. Phys. Chem. B, issue.25, pp.8024-8036, 2015.

K. J. Hallock, D. K. Lee, and A. Ramamoorthy, The Effects of Librations on the 13 C Chemical Shift and 2 H Electric Field Gradient Tensors in ?-Calcium Formate, J. Chem. Phys, vol.113, issue.24, pp.11187-11193, 2000.

G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, 1999.

A. Bondi, van der Waals Volumes and Radii, J. Phys. Chem, vol.68, issue.3, pp.441-451, 1964.

T. K. Trung, P. Trens, N. Tanchoux, S. Bourrelly, P. L. Llewellyn et al., Hydrocarbon Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr), J. Am. Chem. Soc, vol.130, issue.50, pp.16926-16932, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00351084

Y. Zhang, B. E. Lucier, and Y. Huang, Deducing CO 2 Motion, Adsorption Locations and Binding Strengths in a Flexible Metal-Organic Framework without Open Metal Sites, Phys. Chem. Chem. Phys, vol.2016, issue.12

, Powder X-ray diffraction measurements. Powder XRD (PXRD) patterns of 17

, Reflections were collected at 2q values between 5 and 120° with a step size of 0.02°. To thoroughly characterize the MOF, additional a-Mg 3 (HCOO) 6 samples were prepared under identical synthetic conditions using ordinary water rather than 17 O-enriched H 2 O. The PXRD patterns of these samples, Mg 3 (HCOO) 6 (Figure S1) were acquired using an Inel CPS powder diffractometer operating with Cu Ka radiation (l = 1.5406 Å)

, Unit cell parameters of the as-made and activated samples were refined by the Le Bail method (Figure S2) using the GSAS-II software package. 1 The powder patterns acquired on the Rigaku diffractometer were used for the refinement, as the signal-to-noise ratio (S/N) was significantly better. The unit cell parameters obtained via the Le Bail method are, Samples were scanned at 5° ? 2q ? 50° at a scan rate of 10 °/min with a step size of 0.02°

B. H. Toby and R. B. Von-dreele, GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package, J. Appl. Crystallogr, vol.46, issue.2, pp.544-549, 2013.

J. A. Rood, B. C. Noll, and K. W. Henderson, Synthesis, Structural Characterization, Gas Sorption and Guest-Exchange Studies of the Lightweight, Porous Metal-Organic Framework ?

, Inorg. Chem, issue.14, pp.5521-5528, 2006.

C. R. Morcombe and K. W. Zilm, Chemical Shift Referencing in MAS Solid State NMR, J. Magn. Reson, vol.162, issue.2, pp.479-486, 2003.

P. He, J. Xu, V. V. Terskikh, A. Sutrisno, H. Nie et al., Identification of Nonequivalent Framework Oxygen Species in Metal-Organic Frameworks by 17 O Solid-State NMR, J. Phys. Chem. C, vol.2013, issue.33, pp.16953-16960

T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle et al., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) upon Hydration, Chem. -Eur. J, vol.10, issue.6, pp.1373-1382, 2004.

G. P. Bignami, Z. H. Davis, D. M. Dawson, S. A. Morris, S. E. Russell et al., Cost-Effective 17 O Enrichment and NMR Spectroscopy of Mixed-Metal Terephthalate Metal-Organic Frameworks, Chem. Sci, vol.9, pp.850-859, 2018.