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Robots, computer algebra and
eight connected components

Jose Capco*, Mohab Safey El Din†, Josef Schicho‡

August 29, 2020

Abstract

Answering connectivity queries in semi-algebraic sets is a long-standing and chal-
lenging computational issue with applications in robotics, in particular for the analysis
of kinematic singularities. One task there is to compute the number of connected
components of the complementary of the singularities of the kinematic map. Another
task is to design a continuous path joining two given points lying in the same connected
component of such a set. In this paper, we push forward the current capabilities of
computer algebra to obtain computer-aided proofs of the analysis of the kinematic
singularities of various robots used in industry.

We first show how to combine mathematical reasoning with easy symbolic com-
putations to study the kinematic singularities of an infinite family (depending on
paramaters) modelled by the UR-series produced by the company “Universal Robots”.
Next, we compute roadmaps (which are curves used to answer connectivity queries)
for this family of robots. We design an algorithm for “solving” positive dimensional
polynomial system depending on parameters. The meaning of solving here means
partitioning the parameter’s space into semi-algebraic components over which the
number of connected components of the semi-algebraic set defined by the input system
is invariant. Practical experiments confirm our computer-aided proof and show that
such an algorithm can already be used to analyze the kinematic singularities of the
UR-series family. The number of connected components of the complementary of the
kinematic singularities of generic robots in this family is 8.

1 Introduction
The individual parts of a serial robot, called links, are moved by controlling the angle of
each joint connecting two links. The inverse kinematics problem asks for the values of
all angles producing a desired position of the end effector, where “position” includes not
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just the location of the end effector in 3-space but also the orientation. In a sense, this
means inverting a function which is called the forward kinematics map in robotics, which
determines the position of the end effector for given angles by a well-known formula (see
Section 2). In robot controlling, the inverse kinematics problem is often solved incrementally:
starting from some known initial angle configuration and its corresponding end effector
position, we want to compute the change of the angles required to achieve a desired small
change in the end effector position.
Kinematic singularities are defined as critical points of the forward map, i.e. angle config-
urations where the Jacobian matrix of the forward map is rank deficient. There are two
known facts that make rather difficulty to control a robot in a singular or near a singular
configuration. First, if an end effector velocity or force outside the image of the singular
Jacobian is desired, then the necessary joint velocity or torque is either not defined or
very large (see [23] §4.3 and [31] §5.9). The second reason is that industrial controllers are
based on Newton’s method for the incremental solution of the inverse problem, and this
method is not guaranteed to converge if it is used with a starting point close to the singular
set. For these reasons, engineers prefer to plan the robot movements avoiding kinematic
singularities.
For a general serial robot with six joints, the singular set is a hypersurface defined locally
by the Jacobian determinant of the forward map. Its complementary, a real manifold, is not
connected. Counting the number of connected components of this manifold and answering
connectivity queries in this set is then of crucial importance in this application domain.
Answering connectivity queries in semi-algebraic sets is a classical problem of algorithmic
semi-algebraic geometry which has attracted a lot of attention through the development
of the so-called ROADMAP algorithms (see e.g. [12, 11, 9, 6, 8, 27, 28, 21]). Up to our
knowledge, such algorithms had never been developed enough and implemented efficiently
to tackle real-life applications.
In this paper, we push forward the capabilities of computer algebra in this application
domain by solving connectivity queries for the non singular configuration sets of industrial
robots from the UR series of the company “Universal Robots”. For a particular robot in
this series, the UR5, the number of components of the non singular configuration set is
8 (see Section 3). For two points in the same component, we show how to construct a
connecting path, in two ways: either by an ad hoc way (which has its own algorithmic
interest) taking advantage of the specialty of the geometric parameters of UR5, and by
using the ROADMAP algorithm (see Section 5). Next, we go further and extend our
analysis of UR5 to the whole UR series and prove that outside a proper Zariski closed set
(UR5 is outside this closed set) the number of connected components of the non singular
configuration set is constant. These are computer-aided mathematical proofs involving
«easy» symbolic computations
The next contribution is based on the fact that the family of UR robots is determined by a
finite list of real parameters. Hence, an algorithmic way of tackling the problem of analyzing
kinematic singularities of the whole UR family is to «solve» a positive dimensional system
depending on parameters (i.e. after specialization of the parameters, the specialized system
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is positive dimensional). We design an algorithm that decomposes the parameter’s space
into semi-algebraic subsets, such that the number of connected components of the non
singular configurations is constant in each of these subsets. As far as we know, this is the
first algorithm of that type which is designed.
We also implemented this algorithm and used it for the analysis of the kinematic singularities
of the UR series. Computations are heavy but already doable (on a standard laptop) within
10 hours. This is a computational way to retrieve the same results as our computer-
aided mathematical proofs. These computations show that computer algebra today is
efficient enough to solve connectivity queries that are of practical interest in industrial
robot applications.

2 Robotics problem formulation
We define a manipulator or robot as follows: we have finite ordered rigid bodies called links
which are connected by 𝑛 revolute joints that are also ordered. To each joint we associate a
coordinate system or a frame. The links are connected in a serial manner i.e. if we consider
the robot as a graph such that the vertices are joints and the edges are links then this graph
is a path (the first and last joint has degree 1 and all other joints have degree 2) and the
joints allow rotation about its axes, so that if a joint rotates then all other subsequent links
rotate about the axes of this joint. A reference coordinate system is chosen for the final
joint which is called the end-effector 1.
In theoretical kinematics one may forget that the links are rigid bodies so that collision
between links are disregarded. In this case we may as well think of a robot as a differentiable
map 𝐹 : SO(2)𝑛 −→ SE(3) where SO(2) is the one-dimensional group of rotations around
a fixed line, parameterised by the rotation angle, and SE(3) is the six-dimensional group of
Euclidean congruence transformations. This map is defined in the following way:

∙ The 𝑖-th coordinate of an element in SO(2)𝑛 is associated to the 𝑖-th (revolute) joint
parameter.

∙ For joint values 𝜃 := (𝜃1, . . . , 𝜃𝑛) in SO(2)𝑛, the image 𝐹 (𝜃) is the transformation of
the end-effector from the initial position corresponding to all angles being zero to the
final position obtained by composing the 𝑛 rotations.

The map 𝐹 itself is called the kinematic map (of the robot). Its domain is called the
configuration space, while its image is called the work-space or the kinematic image.
We use the Denavit-Hartenberg (DH) convention when describing relations between two
joint frames. It is standard in robotics ; its advantages are discussed in e.g. [31, §3.2], [1,
§4.2]. The transformation between the frames is given by the following rule:

∙ The 𝑧-axis of the reference frame will be the axis of rotation of the joint.
1this is usually another frame, but this is just an additional fixed transformation in SE(3) and w.l.o.g.

we assume that the final offset, distance and twist is 0
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∙ To obtain the next frame, one starts with a rotation about the 𝑧-axis of the reference
frame, called the rotation, followed by

∙ a translation along the 𝑧-axis of the reference frame, called the offset, followed by

∙ a translation along the 𝑥-axis, called the distance, followed by

∙ a rotation about the 𝑥-axis, called the twist.

The transformation between frame 𝑖 to frame 𝑖 + 1 is

𝑅𝑧(𝜃𝑖)𝑇𝑧(𝑑𝑖)𝑇𝑥(𝑎𝑖)𝑅𝑥(𝛼𝑖)

where 𝑅𝑧, 𝑇𝑧, 𝑇𝑥, 𝑅𝑥 are rotations or translations with respect to 𝑧- or 𝑥-axis parameterised
by the angle of rotation 𝜃𝑖 (the 𝑖-th joint parameter), the offset 𝑑𝑖, the distance 𝑎𝑖 and the
angle of twist 𝛼𝑖 of the 𝑖-th frame. For a given robot with 𝑛 joints all DH parameters except
for the rotation are fixed values. So that image of 𝐹 for given joint values (the rotations)
(𝜃1, . . . , 𝜃𝑛) is just the multiplication of these transformations in SE(3). The parameters
𝑑1, 𝑑𝑛, 𝑎𝑛, 𝛼𝑛 are assumed to be 0. This is not a loss of generality, because we can freely
choose the frame at the base and at the end-effector. More detailed discussion on these can
be seen in [31].

Example 2.1. The UR5 robot has the following DH parameters:
distances (m.) (𝑎1, . . . , 𝑎6) := (0,− 425

1000
,− 39225

100000
, 0, 0, 0)

offsets (m.) (𝑑1, . . . , 𝑑6) := (0, 0, 0, 10915
100000

, 9465
100000

, 0)
twist angles (rad.) (𝛼1, . . . , 𝛼6) := (𝜋

2
, 0, 0, 𝜋

2
,−𝜋

2
, 0)

For example, the following joint angles (rotations, in rad.)

(𝜃1, . . . , 𝜃6) :=

(︂
1

10
,

2

10
,

3

10
,

4

10
,

5

10
,

6

10

)︂
leads to the following transformation in (𝑅, �⃗�) ∈ SE(3) (represented as elements in SO(3) o
R3) where:

𝑅 ≃

⎛⎝ 0.047 −0.977 −0.209
−0.393 0.174 −0.903
0.918 0.123 −0.376

⎞⎠ , �⃗� ≃ (−6.768,−1.7784,−3.336).

Definition. Given the kinematic map of a manipulator 𝐹 : SO(2)𝑛 → SE(3), the kinematic
singularities in the configuration space are the points 𝑃 ∈ (P1)𝑛 such that the Jacobian of
𝐹 at 𝑃 is rank-deficient.

In this paper, we will only deal with 6-jointed manipulators. Therefore the kinematic map
is a differentiable map from the 6-dimensional configuration space (SO(2))6 to the group
SE(3), which is also 6-dimensional. For non-singular points of the map, the Jacobian is
therefore invertible, and 𝐹 is a local homeomorphism. Here is a well-known geometric
description of singularities.
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Theorem 2.2. Let 𝐹 : SO(2)6 → SE(3) be the kinematic map of a robot with 6 joints. Let
𝑃 ∈ SO(2)6. Then the following are equivalent.

1. 𝑃 is a kinematic singularity.

2. The Jacobian of 𝐹 at 𝑃 is singular.

3. If 𝑃1, . . . , 𝑃6 ∈ P5(R) are the Plücker representation of the axes (lines in P3) of the
joints of the robot at the configuration point 𝑃 then the matrix consisting of the
Plücker coordinates (𝑝𝑖,𝑗)𝑖,𝑗≤6 (𝑃𝑖 = (𝑝𝑖,1 : 𝑝𝑖,2 : · · · : 𝑝𝑖,6) for 𝑖 = 1, . . . , 6) is singular.

Proof. The equivalence of the first two items is clear by definition. The equivalence of the
first and the third item is found in [30, §4.5.1], [23, §4.1] or [1, §4.5.1.]

Assume that we have two non-singular points in the configuration set. As explained earlier,
we want to decide if these two configurations can be connected by a curve of configurations
which avoids the singular hypersurface (see [33] §1.2 for some history on this question).
If yes, then an explicit construction of such a curve is also of interest. In order to tackle
these problems, we choose parameters for SO(2) so that the equation of the hypersurface
becomes a polynomial. This is not the case when we use the angles 𝜃1, . . . , 𝜃𝑛, because the
Jacobian contains trigonometric functions in these angles. One well-known strategy is to
parametrize by points on a unit circle, i.e. by two parameters satisfying the equation of
the unit circle. This has a clear disadvantage: the number of variables increases, and the
singular set has co-dimension greater than one. Another well-known strategy is to replace 𝜃𝑖
by 𝑣𝑖 = tan 𝜃𝑖

2
. The variable 𝑣𝑖 ranges over the projective line, and the angle 𝜋 corresponds

to the point at infinity. If we set 𝑣𝑖 = tan 𝜃𝑖
2
for 𝑖 = 1, . . . , 𝑛, then we obtain, in general,

a polynomial in 𝑣2, . . . , 𝑣5. More precisely, the degree is 2 in 𝑣2 and 𝑣5 and degree 4 in 𝑣3
and in 𝑣4. The Jacobian does not depend on the joint angles 𝜃1 and 𝜃6. This is clear from
the third characterization of singularities in Theorem 2.2: only the position of the axes are
relevant, and a rotation along the first or the last axis does not change the position of any
axis.
We define the UR Family to be robots having a similar DH-parameter as the known
UR robots (UR5, UR10, etc.). Such UR robots are parameterised by the following DH
parameters
distances (m.) (𝑎1, . . . , 𝑎6) := (0, 𝑎2, 𝑎3, 0, 0, 0)
offsets (m.) (𝑑1, . . . , 𝑑6) := (0, 0, 0, 𝑑4, 𝑑5, 0)
twist angles (rad.) (𝛼1, . . . , 𝛼6) := (𝜋

2
, 0, 0, 𝜋

2
,−𝜋

2
, 0)

For these robots, the determinant of the Jacobian (see [34]), expressed as a polynomial in
𝑣2, . . . , 𝑣5, is 𝐴 = −𝐵𝑣3𝑣5 with

𝐵 = 𝑎2𝑣
2
2𝑣

2
3𝑣

2
4−𝑎3𝑣

2
2𝑣

2
3𝑣

2
4−2𝑑5𝑣

2
2𝑣

2
3𝑣4−2𝑑5𝑣

2
2𝑣3𝑣

2
4−2𝑑5𝑣2𝑣

2
3𝑣

2
4+𝑎2𝑣

2
2𝑣

2
3+𝑎2𝑣

2
2𝑣

2
4−𝑎2𝑣

2
3𝑣

2
4−𝑎3𝑣

2
2𝑣

2
3

+𝑎3𝑣
2
2𝑣

2
4+4𝑎3𝑣2𝑣3𝑣

2
4+𝑎3𝑣

2
3𝑣

2
4+2𝑑5𝑣

2
2𝑣3+2𝑑5𝑣

2
2𝑣4+2𝑑5𝑣2𝑣

2
3+8𝑑5𝑣2𝑣3𝑣4+2𝑑5𝑣2𝑣

2
4+2𝑑5𝑣

2
3𝑣4

+2𝑑5𝑣3𝑣
2
4+𝑎2𝑣

2
2−𝑎2𝑣

2
3−𝑎2𝑣

2
4+𝑎3𝑣

2
2+4𝑎3𝑣2𝑣3+𝑎3𝑣

2
3−𝑎3𝑣

2
4−2𝑑5𝑣2−2𝑑5𝑣3−2𝑑5𝑣4−𝑎2−𝑎3

Note that there is a degree drop in three of the four cases: the degree in 𝑣3 is only 3, and
not 4, and the degree in 𝑣4 is only 2, and not 4, and the degree in 𝑣5 is only 1, and not
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2. The drop in the degree means that the homogeneous form of the Jacobian has a linear
factor that vanishes if and only if the value of the variable whose degree drops is infinity, or
equivalently, that the corresponding angle is 𝜋. Since we are interested in the complement
of the singular space, we may assume that none of these three angles is equal to 𝜋, and we
can use the parameters 𝑣3, 𝑣4, 𝑣5 without worrying about paths crossing infinity.
For the angle 𝜃2, the situation is different. There is no degree drop, hence there are configu-
rations with 𝜃2 = 𝜋 in the non singular configuration set. If we use the parametrization
by half angle, then we have to take paths in the projective line into account that cross
infinity, or, in other words, consider this variable in the projective space P1(R). But, to
take advantage on algorithms acting on semi-algebraic sets, one needs variables that range
over R.
Hence, we instead use parameters 𝑠2 = sin(𝜃2) and 𝑐2 = cos(𝜃2) and add the additional
equation 𝑠22 +𝑐22 = 1, obtaining a polynomial in the variables 𝑠2, 𝑐2, 𝑣3, 𝑣4, 𝑣5 with coefficients
depending on the parameters 𝑎2, 𝑎3, 𝑑4, 𝑑5. Of course, the reason for this more costly
treatment for 𝜃2 is just necessary if we use the ROADMAP algorithm subsequently. For an
alternative analysis not using it, it is still better to use the half tangent ranging over the
projective line.

3 Analysis of the UR5 Robot
We gave in Example 2.1 the Denavit-Hartenberg parameters of the UR5 robot. These values
are used to instantiate 𝑎2, 𝑎3 and 𝑑5 in the above polynomial 𝐵; the specialized polynomial
is then denoted by �̃� and we let 𝐴 = �̃�𝑣3𝑣5. Recall that 𝑣2 ranges over P1, while 𝑣3, 𝑣4, 𝑣5
range only over the affine line.
We investigate the discriminant of �̃� with respect to the variable 𝑣2 (thus the projection of
the critical set to the (𝑣3, 𝑣4)-plane). The discriminant of �̃� with respect to the variable 𝑣2
we denote as 𝑏 ∈ R[𝑣3, 𝑣4]. This discriminant is still factorisable in C[𝑣3, 𝑣4]. In fact, one
checks, that it is the factor of two complex conjugates of some polynomial in R[𝑣3, 𝑣4]. This
implies that 𝑏 = 𝑐2 + 𝑑2 is the sum of two squares of real polynomials 𝑐, 𝑑 ∈ R[𝑣3, 𝑣4]. These
two polynomials are given by

𝑐 =
1577212𝑣3 − 3561263𝑣4 − 14850585√

2006237

𝑑 =
(
√
2006237𝑣4 + 1239915− 7144712)𝑣3 + 16090500𝑣4√

2006237

Thus, 𝑏 can have only two real roots (i.e. two pairs (𝑣3, 𝑣4)), i.e the vanishing set of 𝑏 in
R2 is finite, namely they points that are the zeros of both 𝑐 and 𝑑. We solve this as floating
numbers to have an idea of their vicinity in an affine chart of the ambient space of the
kinematic singularity. The roots are

𝑞1 = (𝑣3 ≃ −9.140975564 , 𝑣4 ≃ −8.218388067)
𝑞2 = (𝑣3 ≃ 9.140975563 , 𝑣4 ≃ −.1216783622)
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For the two special values 𝑞1 and 𝑞2 in the (𝑣3, 𝑣4)-plane, all three coefficients of �̃� with
respect to 𝑣2 are zero.
Now, since the discriminant 𝑏 is positive except at these two points and since �̃� itself is
quadratic with respect to 𝑣2 we conclude that the preimage of the projection (to (𝑣3, 𝑣4)-
plane) are two real points in the variety defined by �̃�. Thus, the variety defined by �̃� is
composed of two sheets (above any two points (𝑣3, 𝑣4) except 𝑞1 and 𝑞2). Let 𝑋 be the
complement of the vanishing points of �̃� in P1 × A2. Set

𝑌 := A2 ∖ ({𝑞1, 𝑞2} ∪ {(0, 𝑣4) | 𝑣4 ∈ R})

So we have a canonical projection (to the (𝑣3, 𝑣4)-plane) from 𝑋 ∩ (P1× 𝑌 ) to 𝑌 . The fiber
of this projection is a projective line without two distinct points. Hence, every fiber has
two components. The sign of �̃� is different for the two components of each fiber. Then, we
have two components of 𝑋 for each component of 𝑌 . Obviously, 𝑌 has two components,
hence we have a total number of 4 components.
For the non singular set, which is the complement of the zero set of 𝐴, we get 8 components:
for each component of 𝑋, we have one component where 𝑣5 is positive and one where 𝑣5 is
negative.
Now assume that we have two non singular configuration points 𝑥, 𝑦 in the same component,
and we want to construct a path connecting them. The projections to 𝑌 have to lie in the
same component of 𝑌 , and because 𝑌 is the plane without a line and two points, it is easy
to connect the images of the projections in 𝑌 : in most cases, a straight line segment is fine;
if the straight line segment connecting the two image points contains 𝑞1 or 𝑞2, we have to do
a random detour via a third point. The zero set of �̃� is a two-sheeted covering of 𝑌 . So, for
any value of 𝑌 , we have two points in the zero set of �̃� projecting to it. If we look at these
points as points in SO(2), then it is clear that there are two “midpoints” in the zero set of
�̃�, which have equal angle distance to these two points. The value of �̃� is positive for one
of the two midpoints and negative for the other one. The sign of �̃�(𝑥) and �̃�(𝑦), however,
must be the same because the two points are in the same connected component. Suppose,
without loss of generality, that �̃�(𝑥) and �̃�(𝑦) are both positive. Then we first connect 𝑥
to the midpoint over the projection of 𝑥 to 𝑌 with positive sign, by a curve in the fiber.
Next, we lift the path in 𝑌 , connecting the projections of 𝑥 and 𝑦 in the same component,
to a path of midpoints with positive sign, arriving at the midpoint with positive sign lying
over the projection of 𝑦. Finally, we connect this midpoint to 𝑦 by the other fiber.
Below, we show the sheets in Figure 1 to illustrate that:

(i) the regions above and below the sheets can be connected

(ii) the region between the two sheets is the other connected component

(iii) the two points 𝑞2 and 𝑞3 are points in the projection where the sheets get connected
(see assymptotes in Fig. 1). Thus, the variety describing the two sheets is connected.
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Legends:

path in component 1
path in component 2
asymptotes

Figure 1: The two sheets of �̃�

4 UR series
We can make a general statement for robots belonging to the UR family (e.g. UR10, UR3
etc. ). We define the UR Family to be robots which have a similar DH-parameter as the
known UR robots (UR5, UR10 etc.), a robot in this family we shall call a UR robot. Namely
they are parameterised by the following DH parameters :
distances (m.) (𝑎1, . . . , 𝑎6) := (0, 𝑎2, 𝑎3, 0, 0, 0)
offsets (m.) (𝑑1, . . . , 𝑑6) := (0, 0, 0, 𝑑4, 𝑑5, 0)
twist angles (rad.) (𝛼1, . . . , 𝛼6) := (𝜋

2
, 0, 0, 𝜋

2
,−𝜋

2
, 0)

i.e. these robots are parameterised by 4 parameters: 𝑎2, 𝑎3, 𝑑4, 𝑑5.
We can write the largest (in number of terms and in degree) polynomial factor of the
polynomial whose vanishing points is the kinematic singularity in configuration space of a
UR robot as
𝐵 = 𝑎2𝑣

2
2𝑣

2
3𝑣

2
4−𝑎3𝑣

2
2𝑣

2
3𝑣

2
4−2𝑑5𝑣

2
2𝑣

2
3𝑣4−2𝑑5𝑣

2
2𝑣3𝑣

2
4−2𝑑5𝑣2𝑣

2
3𝑣

2
4+𝑎2𝑣

2
2𝑣

2
3+𝑎2𝑣

2
2𝑣

2
4−𝑎2𝑣

2
3𝑣

2
4−𝑎3𝑣

2
2𝑣

2
3

+𝑎3𝑣
2
2𝑣

2
4+4𝑎3𝑣2𝑣3𝑣

2
4+𝑎3𝑣

2
3𝑣

2
4+2𝑑5𝑣

2
2𝑣3+2𝑑5𝑣

2
2𝑣4+2𝑑5𝑣2𝑣

2
3+8𝑑5𝑣2𝑣3𝑣4+2𝑑5𝑣2𝑣

2
4+2𝑑5𝑣

2
3𝑣4

+2𝑑5𝑣3𝑣
2
4+𝑎2𝑣

2
2−𝑎2𝑣

2
3−𝑎2𝑣

2
4+𝑎3𝑣

2
2+4𝑎3𝑣2𝑣3+𝑎3𝑣

2
3−𝑎3𝑣

2
4−2𝑑5𝑣2−2𝑑5𝑣3−2𝑑5𝑣4−𝑎2−𝑎3

Note that 𝑑4 does not affect the singularity of the robot. Taking the discriminant of 𝐵
with respect to 𝑣2 yields the sum of two squares i.e. the product of two quadratic complex
conjugate polynomials disc(𝐵, 𝑣2) = 𝑔𝑔.

𝑔 = (−𝑎2𝑣3𝑣4 +𝑎3𝑣3𝑣4 +𝑑5𝑣3 +𝑑5𝑣4 +𝑎2 +𝑎3) + (−𝑑5𝑣3𝑣4 +𝑎2𝑣3 +𝑎2𝑣4−𝑎3𝑣3 +𝑎3𝑣4 +𝑑5)𝑖

For a robot determined by some real quadruple 𝑢 ∈ R4, let 𝐴𝑢, 𝐵𝑢, 𝑔𝑢 be the polynomials
obtained by instantiating in 𝐴,𝐵, 𝑔 the variables 𝑎2, 𝑎3, 𝑑4, 𝑑5 by the corresponding real
values in the quadruple. Let 𝑓 : R3 → R2 be the projection (𝑣2, 𝑣3, 𝑣5) ↦→ (𝑣3, 𝑣5). Let
𝑌𝑢 ⊂ R2 be the complement of (the union of the line 𝑣3 = 0 and the common zero set of
Re 𝑔𝑢 and Im 𝑔𝑢). Then the real zero set of 𝐵𝑢 in R3 intersected with 𝑓−1(𝑌𝑢) projects to
surjectively to 𝑌𝑢, in such a way that there are two sheets, each projecting homeomorphically
to 𝑌𝑢.
For general robot 𝑢, the real set of 𝑔, which is meaning the set of all points in the real
(𝑣3, 𝑣4)-plane such that both the real part and the imaginary part of 𝑔 is equal to zero,
is a finite subset of R2. All arguments from the previous sections work in this case as
well. Hence we get 8 components for these parameters’values. Moreover, we have paths
connecting points in the same component, as in the previous section.
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It remains to treat the non-general robots where the real zero set of 𝑔 is one-dimensional.
This is the case if and only if 𝑑5 = 𝑎22−𝑎23 = 0. The even more special case 𝑑5 = 𝑎2 = 𝑎3 = 0
is easy to analyze: here, the determinant of the Jacobian 𝐴 is identically zero, which means
that there are no non singular configurations. Excluding that case, we have two families of
robots, and in each family, up to the value of 𝑑4, the parameters are unique up to scaling.
Without loss of generality, we can reduce to exactly two non-general robots 𝑢′ = (1, 1, 0, 0)
and 𝑢′′ = (1,−1, 0, 0). Then the polynomial 𝐵𝑢′ has a factor is 𝐶 ′ := 𝑣3𝑣4− 𝑣3− 𝑣4− 1, and
the polynomial 𝐵𝑢′′ has a factor 𝐶 ′′ := 𝑣3𝑣4 + 𝑣3 + 𝑣4 − 1. Apart from that complication,
the analysis proceeds similar as in the general case: the set 𝑌𝑢′ is the plane minus the
line 𝑣3 = 0 minus the hyperbola with equation 𝐶 ′, and the set 𝑌𝑢′′ is the plane minus the
hyperbola with equation 𝐶 ′′. In both cases, the number of components of 𝑌 is 5, as it can
be seen in Figure 2. Consequently, we have 20 components in total. The paths between
points in the same component can be constructed similarly as in the general case.

5 Connectivity and roadmaps
We explain the ROADMAP algorithm for the special case where the semi-algebraic set 𝑆 is
given as a subset of some vector space R𝑁 , 𝑁 ∈ N, defined by an equation 𝑓(𝑥1, . . . , 𝑥𝑁 ) = 0
and an inequation 𝑔(𝑥1, . . . , 𝑥𝑁) ̸= 0. We assume that the algebraic set defined by 𝑓 = 0
is smooth. This is sufficient for our application: the inequation is the determinant of the
Jacobian of the kinematic map 𝐴, and the equality is 𝑠22 + 𝑐22 − 1 = 0.
One first reduces the problem to one where the semi-algebraic set we consider is bounded.
Note that there exists 𝑅 > 0 large enough such that the connected components of 𝑆 are in
one-to-one correspondence with the intersection of 𝑆 with the hyper-ball defined by N𝑅 ≤ 0
where N𝑅 = 𝑥2

1 + · · ·+ 𝑥2
𝑛 −𝑅. We denote this intersection by 𝑆 ′. Note that a roadmap of

𝑆 ′ provides a roadmap of 𝑆.
Determining such a large enough real number 𝑅 is done by choosing it larger than the
largest critical value of the restriction of the map 𝑥→ ‖𝑥‖2 to each regular strata of the
the Euclidean closure of 𝑆. This leads us to compute critical values of that map restricted
to the hypersurface defined by 𝑓 = 0 and next take the limits of the critical values of the
sets defined by 𝑔 = ±𝜀 and 𝑓 = 𝑔 ± 𝜀 = 0 when 𝜀→ 0.
Next, we compute the critical values 𝜂1 < · · · < 𝜂𝑠 of the restriction of the map 𝑥→ 𝑔(𝑥) to
the semi-algebraic set defined by 𝑓 = 0 and N𝑅 ≤ 0. Following Thom’s isotopy lemma [13],

Figure 2: Left (resp. right) shows the components of 𝑣3(𝑣3𝑣4 + 𝑣3 + 𝑣4 − 1) ̸= 0 (resp. 𝑣3(𝑣3𝑣4 −
𝑣3 − 𝑣4 − 1) ̸= 0) in 𝑌
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when 𝑒 is chosen between 0 and min(|𝜂𝑖|, 1 ≤ 𝑖 ≤ 𝑠), the connected components of the semi-
algebraic set 𝑆+

𝑒 (resp. 𝑆−
𝑒 ) defined by N𝑅 ≤ 0, 𝑓 = 𝑔− 𝑒 = 0 (resp. N𝑅 ≤ 0, 𝑓 = 𝑔+ 𝑒 = 0)

are in one-to-one correspondence with the connected components of the semi-algebraic set
defined by N𝑅 ≤ 0, 𝑓 = 0, 𝑔 > 0 (resp. N𝑅 ≤ 0, 𝑓 = 0, 𝑔 > 0). Besides, 𝑆+

𝑒 ⊂ 𝑆 ′ (resp.
𝑆−
𝑒 ⊂ 𝑆 ′). Then a roadmap of 𝑆 ′ is obtained by taking the union of a roadmap of 𝑆+

𝑒 with
the roadmap of 𝑆−

𝑒 . Hence, we have performed a reduction to computing roadmaps in the
compact semi-algebraic sets 𝑆+

𝑒 and 𝑆−
𝑒 .

In our application, the algebraic sets defined by the vanishing of all subsets of the defining
polynomials of 𝑆+

𝑒 and 𝑆−
𝑒 are smooth. Hence, we can rely on a slight modification of the

roadmap algorithm given in [12] where we replace computations with multivariate resultants
for solving polynomial systems by computations of Gröbner bases.
The algorithm in [12] then takes as input a polynomial system defining a closed and bounded
semi-algebraic set 𝑆 and proceeds as follows. The core idea is to start by computing a curve
C which has a non-empty intersection with each connected component of 𝑆. That curve
will be typically the critical locus on the (𝑥1, 𝑥2)-plane when one is in generic coordinates
(else, one just needs to change linearly generically the coordinate system). A few remarks
are in order here. When 𝑆 is defined by 𝑓1 = · · · = 𝑓𝑝 = 0 and 𝑔1 ≥ 0, · · · , 𝑔𝑠 ≥ 0, to define
the critical locus of the projection on the (𝑥1, 𝑥2)-plane restricted to 𝑆 one takes the union
of the critical loci of that projection restricted to the real algebraic sets defined for all
{𝑖1, . . . , 𝑖ℓ} ⊂ {1, . . . , 𝑠}, by 𝑓1 = · · · = 𝑓𝑝 = 𝑔𝑖1 = · · · = 𝑔𝑖ℓ = 0 and intersect this union of
critical loci with 𝑆 (see [12]).
That way, one obtains curves that intersect all connected components of 𝑆 but these
intersections may not be connected. To repair these connectivity failures, Canny’s algorithm
finds appropriate slices of 𝑆. Let 𝜋1 be the canonical projection (𝑥1, . . . , 𝑥𝑛)→ 𝑥1. This
basically consists in finding 𝛼1 < . . . < 𝛼𝑘 in R such that the union of ∪𝑘𝑖=1𝑆 ∩ 𝜋−1

1 (𝛼𝑖)
with the critical curve C has a non-empty and connected intersection with each connected
component of 𝑆.
The way Canny proposes to find those 𝛼𝑖’s is to compute the critical values of the restriction
of 𝜋1 to C . By the algebraic Sard’s theorem (see e.g. [28, Appendix B]), these values are in
finite number and Canny proposes to take 𝛼1, · · · , 𝛼𝑘 as those critical values. This leads to
compute with real algebraic numbers which can be encoded with their minimal polynomials
and isolating intervals. Since these minimal polynomials may have large degrees (singly
exponential in 𝑛), that step can be prohibitive for practical computations. We use then the
technique introduced in [22] which consists in replacing 𝛼1 < · · · < 𝛼𝑘 with rational numbers
𝜌1 < · · · < 𝜌𝑘−1 with 𝛼𝑖 < 𝜌𝑖 < 𝛼𝑖+1. We refer to [22] for the rationale justifying this trick.
All in all, one obtains a recursive algorithm with a decreasing number of variables at each
recursive call. Combined with efficient Gröbner bases engines, we illustrate in Section 7
that the ROADMAP algorithm (with the modifications introduced above) can be used in
practice to answer connectivity queries in semi-algebraic sets in concrete applications.
The concept of roadmap and the algorithm computing it, described above, may seem
cumbersome and unnecessarily sophisticated, especially when compared with the much
more direct CAD approach [29]. The CAD algorithm is also a recursive algorithm, producing
its recursive instance by projecting the hypersurface to R𝑛+1 and analyzing the discriminant.
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This leads to an iteration of discriminants, and it is easy to see that the degree of the iterated
discriminants grows double exponentially in 𝑛: roughly, the degree of the discriminant
is squared in every iteration. There lies the motivation for all the sophistication of the
ROADMAP algorithm: for each instance in the all recursive calls, the degree of the input
polynomial is exactly the same as the degree of the initially given polynomial 𝑓 . This leads
to an asymptotic complexity which is only single exponential in 𝑛2. We refer to [27, 9, 28, 8]
for more recent algorithms improving the complexity of roadmap computations.

6 Parametric polynomial systems
Let 𝐹 = (𝑓1, . . . , 𝑓𝑝) and 𝐺 = (𝑔1, . . . , 𝑔𝑞) in Q[𝑥,𝑦] with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 =
(𝑦1, . . . , 𝑦𝑡). We consider further 𝑦 as a sequence of parameters and the polynomial system

𝑓1 = · · · = 𝑓𝑝 = 0, 𝑔1 𝜎1 0, . . . , 𝑔𝑞 𝜎𝑞 0

with 𝜎𝑖 ∈ {>,≥}. We let 𝑆 ⊂ R𝑛×R𝑡 be the semi-algebraic set defined by this system. For
𝑦 ∈ R𝑡, we denote by 𝐹𝑦 and 𝐺𝑦 the sequences of polynomials obtained after instantiating 𝑦
to 𝑦 in 𝐹 and 𝐺 respectively. Also, we denote by 𝑆𝑦 ⊂ R𝑛 the semi-algebraic set defined by
the above system when 𝑦 is specialized to 𝑦. The algebraic set defined by the simultaneous
vanishing of the entries of 𝐹 (resp. 𝐹𝑦) is denoted by 𝑉 (𝐹 ) ⊂ C𝑛+𝑡 (resp. 𝑉 (𝐹𝑦) ⊂ C𝑛).
We describe an algorithm for solving such a parametric polynomial system without assuming
that for a generic point 𝑦 in C𝑡, 𝑉 (𝐹𝑦) is finite. In that situation, solving such a parametric
polynomial system may consist in partitioning the parameters’space R𝑡 into semi-algebraic
sets 𝑇1, . . . , 𝑇𝑟 such that, for 1 ≤ 𝑖 ≤ 𝑟, the number of connected components of 𝑆𝑦 is
invariant for any choice of 𝑦 in 𝑇𝑖. We prove below that such an algorithmic problem makes
sense.

Proposition 6.1. Let 𝑆 ⊂ R𝑛×R𝑡 be a semi-algebraic set and 𝜋 be the canonical projection

(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑡)→ (𝑦1, . . . , 𝑦𝑡).

There exist semi-algebraic sets 𝑇1, . . . , 𝑇𝑟 in R𝑡 such that

∙ R𝑡 = 𝑇1 ∪ · · · ∪ 𝑇𝑟,

∙ there exists 𝑏𝑖 ∈ N such that for any 𝑦 ∈ 𝑇𝑖, the number of connected components of
𝑆𝑦 is 𝑏𝑖.

Proof. Observe that the restriction of 𝜋 to 𝑆 is semi-algebraically continuous. From Hardt’s
semi-algebraic triviality theorem [10, Theorem 9.3.2], there exists a finite partition of R𝑡

into semi-algebraic sets 𝑇1, . . . , 𝑇𝑟 and for each 1 ≤ 𝑖 ≤ 𝑟, a trivialization 𝜗𝑖 : 𝑇𝑖 × 𝐸𝑖 →
𝜋−1(𝑇𝑖) ∩ 𝑆 (where 𝐸𝑖 is a fiber 𝜋−1(𝑦) ∩ 𝑆 for some 𝑦 ∈ 𝑇𝑖). Fix 𝑖 and choose an arbitrary
point 𝑦′ ∈ 𝑇𝑖. Observe that we are done once we have proved that 𝜋−1(𝑦′) ∩ 𝑆 and 𝐸𝑖 have
the same number of connected components. Recall that, by definition of a trivialization (see
[10, Definition 9.3.1]), 𝜃𝑖 : 𝑇𝑖×𝐸𝑖 → 𝜋−1(𝑇𝑖)∩𝑆 is a semi-algebraic homeomorphism and for
any (𝑦′, 𝑥) ∈ 𝑇𝑖×𝐸𝑖, 𝜋∘𝜃𝑖(𝑦′, 𝑥) = 𝑦′. Hence, we deduce that 𝐸𝑖 is homeomorphic 𝜋−1(𝑦′)∩𝑆.
As a consequence, they both have the same number of connected components.
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Instead of computing a partition of the parameters’space into semi-algebraic sets 𝑇1, . . . , 𝑇𝑟

as above, one will consider non-empty disjoint open semi-algebraic sets 𝑈1, . . . , 𝑈ℓ in R𝑡

such that the complement of 𝑈1∪· · ·∪𝑈ℓ in R𝑡 is a semi-algebraic set of dimension less than
𝑡 and such that for 1 ≤ 𝑖 ≤ 𝑡, there exists 𝑏𝑖 ∈ N such that 𝑏𝑖 is the number of connected
components of 𝑆𝑦 for any 𝑦 ∈ 𝑈𝑖. For instance, one can take 𝑈1, . . . , 𝑈ℓ as the non-empty
interiors (for the Euclidean topology) of 𝑇1, . . . , 𝑇𝑟.
Our strategy to solve this problem is to first compute a polynomial ∆ in Q[𝑦]−{0} defining
a Zariski closed set D ⊂ C𝑡 such that D contains R𝑡 − (𝑈1 ∪ · · · ∪ 𝑈ℓ). The next lemma is
immediate.

Lemma 6.2. Let E ⊂ R𝑡 be a finite set of points which has a non-empty intersection with
any of the connected components of the semi-algebraic set defined by ∆ ̸= 0. For 1 ≤ 𝑖 ≤ ℓ,
E ∩ 𝑈𝑖 is not empty.

Hence, computing sample points in each connected component of the set defined by ∆ ̸= 0
(e.g. using the algorithm in [26] applied to the set defined by 𝑧∆− 1 = 0 where 𝑧 is a new
variable) is enough to obtain at least one point per connected component of 𝑈1, . . . , 𝑈ℓ.
Finally, for each such a point 𝑦, it remains to count the number of connected components
of the set 𝑆𝑦 by using a roadmap algorithm.
We call partial semi-algebraic resolution of (𝐹,𝐺) the data (𝑏1, 𝜂1), . . . , (𝑏𝑘, 𝜂𝑘) where 𝑏𝑖 is
the number of connected components of 𝑆𝜂𝑖 and {𝜂1, . . . , 𝜂𝑘} has a non-empty intersection
with each connected component of 𝑈1 ∪ · · · ∪ 𝑈ℓ.
Hence, our algorithm relies on three subroutines. The first one, which we call Eliminate, takes
as input 𝐹 and 𝐺, as well as 𝑥 and 𝑦 and outputs ∆ ∈ Q[𝑦] as above ; we let D = 𝑉 (∆).
The second one, which we call SamplePoints takes as input ∆ and outputs a finite set of
sample points {𝜂1, . . . , 𝜂𝑘} (with 𝜂𝑖 ∈ Q𝑡) which meets each connected component of R𝑡−D .
The last one, which we call NumberOfConnectedComponents takes 𝐹𝜂 and 𝐺𝜂 and for some
𝜂 ∈ Q𝑡 and computes the number of connected components of the semi-algebraic set 𝑆𝜂.
The algorithm is described hereafter.

Algorithm 1: ParametricSolve(𝐹,𝐺,𝑥,𝑦)

Data: Finite sequences 𝐹 and 𝐺 in Q[𝑥,𝑦] with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and
𝑦 = (𝑦1, . . . , 𝑦𝑡).

Result: a partial semi-algebraic resolution of (𝐹,𝐺)
1 ∆← Eliminate(𝐹,𝐺,𝑥,𝑦)
2 {𝜂1, . . . , 𝜂𝑘} ← SamplePoints(∆ ̸= 0)
3 for 𝑖 from 1 to 𝑘 do
4 𝑏𝑖 = NumberOfConnectedComponents(𝐹𝜂𝑖 , 𝐺𝜂𝑖)
5 end
6 return {(𝑏1, 𝜂1), . . . , (𝑏𝑘, 𝜂𝑘)}.
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While the rationale of algorithm ParametricSolve is mostly straightforward, detailing each
of its subroutines is less. The easiest ones are SamplePoints and NumberOfConnectedCompo-
nents: they rely on known algorithms using the critical point method [5, 7], polar varieties
[26, 24, 4, 3] and for computing roadmaps [6, 9, 28, 27].
The most difficult one is subroutine Eliminate. We provide a detailed description of it under
the following regularity assumption. We say that (𝐹,𝐺) satisfies assumption (A)

(A) for any {𝑖1, . . . , 𝑖𝑠} in {1, . . . , 𝑞}, the Jacobian matrix associated to (𝑓1, . . . , 𝑓𝑝, 𝑔𝑖1 , . . . , 𝑔𝑖𝑠)
has maximal rank at any complex solution to

𝑓1 = · · · = 𝑓𝑝 = 𝑔𝑖1 = · · · = 𝑔𝑖𝑠 = 0

Note that using the Jacobian criterion [14, Chap. 16], it is easy to decide whether (A) holds.
Note also that it holds generically.
For 𝑖 = {𝑖1, . . . , 𝑖𝑠} ⊂ {1, . . . , 𝑞}, under assumption (A), the algebraic set 𝑉𝑖 ⊂ C𝑛+𝑡 defined
by

𝑓1 = · · · = 𝑓𝑝 = 𝑔𝑖1 = · · · = 𝑔𝑖𝑠 = 0.

are smooth and equidimensional and these systems generate radical ideals (applying the
Jacobian criterion [14, Theorem 16.19]). Besides, the tangent space to 𝑧 ∈ 𝑉𝑖 coincides with
the the (left) kernel of the Jacobian matrices associated to (𝑓1, . . . , 𝑓𝑝, 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) at 𝑧.
Let 𝐼 be the ideal generated by (𝑓1, . . . , 𝑓𝑝, 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) and the maximal minors of the
truncated Jacobian matrix associated to (𝑓1, . . . , 𝑓𝑝, 𝑔𝑖1 , . . . , 𝑔𝑖𝑠) obtained by removing the
columns corresponding to the partial derivatives w.r.t. the 𝑦-variables. Under assumption
(A), one can compute the set of critical values of the restriction of the projection 𝜋 to the
algebraic set 𝑉𝑖 by eliminating the variables 𝑥 from 𝐼.
Hence, using elimination algorithms, which include Gröbner bases [15, 16] with elimination
monomial orderings, or triangular sets (see e.g. [32, 2]) or geometric resolution algorithms
[20, 18, 19], one can compute a polynomial ∆𝑖 ∈ Q[𝑦] whose vanishing set is the set of
critical values of the restriction of 𝜋 to 𝑉𝑖. By the algebraic Sard’s theorem (see e.g. [28,
App. A]), ∆𝑖 is not identically zero (the critical values are contained in a Zariski closed
subset of C𝑡).
Under assumption (A), we define the set of critical points (resp. values) of the restriction
of 𝜋 to the Euclidean closure of 𝑆 as the union of the set of critical points (resp. values) of
the restriction of 𝜋 to 𝑉𝑖 ∩ R𝑛+𝑡 when 𝑖 ranges over the subsets of {1, . . . , 𝑞}. We denote
the Euclidean closure of 𝑆 by 𝑆, the set of critical points (resp. values) of the restriction of
𝜋 to 𝑆 by W (𝜋, 𝑆) (resp. D(𝜋, 𝑆)).
We say that 𝑆 satisfies a properness assumption (P) if:

(P) the restriction of 𝜋 to 𝑆 is proper (∀𝑦 ∈ R𝑡, there exists a ball 𝐵 ∋ 𝑦 s.t. 𝜋−1(𝐵) ∩ 𝑆
is closed and bounded).

Our interest in critical points and values is motivated by the semi-algebraic version of
Thom’s isotopy lemma (see [13]) which states the following, under assumption (P). Take
an open semi-algebraic subset 𝑈 ⊂ R𝑡 which does not meet the set of critical values of
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the restriction of 𝜋 to 𝑆, 𝑦 ∈ 𝑈 and 𝐸 = 𝜋−1(𝑦) ∩ 𝑆. Then, there exists a semi-algebraic
trivialization 𝜗 : 𝑈 × 𝐸 → 𝜋−1(𝑈) ∩ 𝑆.
Hence, ∪𝑖⊂{1,...,𝑞}D(𝜋, 𝑉𝑖) contains the boundaries of the open disjoint semi-algebraic set
𝑈1, . . . , 𝑈ℓ. Recall that by Sard’s theorem it has co-dimension ≥ 1. This leads to the
following algorithm.

Algorithm 2: EliminateProper(𝐹,𝐺,𝑥,𝑦)

Data: Finite sequences 𝐹 and 𝐺 in Q[𝑥,𝑦] with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and
𝑦 = (𝑦1, . . . , 𝑦𝑡), defining a semi-algebraic set 𝑆 ⊂ R𝑛 × R𝑡.

Assumes that assumptions (A) and (P) hold.
Result: ∆ ∈ Q[𝑦] such that 𝜋 realizes a fibration over all connected components of

R𝑡 − {∆ = 0}
1 for all subsets 𝑖 in {1, . . . , 𝑞} do
2 ℳ← maximal minors of jac([𝐹,𝐺𝑖],𝑥)
3 ∆𝑖 ← AlgebraicElimination([𝐹,𝐺𝑖,ℳ],𝑥)

4 end
5 ∆←

∏︀
𝑖 ∆𝑖.

6 return ∆.

Lemma 6.3. On input (𝐹,𝐺) in Q[𝑥,𝑦] satisfying (A), algorithm EliminateProper is correct.

For some applications, deciding if (P) holds is easy (e.g. when the inequalities in 𝐺 define
a box). However, in general, one needs to generalize EliminateProper to situations where (P)
does not hold.
To do so, we use a classical technique from effective real algebraic geometry. Let 𝜀 be
an infinitesimal and R⟨𝜀⟩ be the field of Puiseux series in 𝜀 with coefficients in R. By [7,
Chap. 2], R⟨𝜀⟩ is a real closed field and one can define semi-algebraic sets over R⟨𝜀⟩𝑛+𝑡.
In particular the set solutions in R⟨𝜀⟩𝑛+𝑡 to the system defining 𝑆 is a semi-algebraic set
which we denote by ext(𝑆,R⟨𝜀⟩). We refer to [7] for properties of real Puiseux series fields
and semi-algebraic sets defined over such field. We make use of the notions of bounded
points of R⟨𝜀⟩𝑛 over R (those whose all coordinates have non-negative valuation) and their
limits in R (when 𝜀→ 0). We denote by lim0 the operator taking the limits of such points.
For 𝑎 = (𝑎1, . . . , 𝑎𝑛), we consider the intersection of ext(𝑆,R⟨𝜀⟩) with the semi-algebraic
set defined by

Φ(𝑎) = 𝑎1𝑥
2
1 + · · ·+ 𝑎𝑛𝑥

2
𝑛 − 1/𝜀 ≤ 0

where 𝑎𝑖 > 0 in R for 1 ≤ 𝑖 ≤ 𝑛. We denote by 𝑆 ′
𝜖 this intersection. Since 𝑎𝑖 > 0 for all

1 ≤ 𝑖 ≤ 𝑛, 𝑆 ′
𝜖 satisfies (P).

Lemma 6.4. Assume that (𝐹,𝐺) satisfies (A). There exists a non-empty Zariski open
set A ⊂ C𝑛 such that for any choice of 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ A , (𝐹,𝐺(𝑎)) satisfies (A) with
𝐺(𝑎) = 𝐺 ∪ {Φ(𝑎)}.
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Proof. Let 𝑖 = {𝑖1, . . . , 𝑖𝑠} ⊂ {1, . . . , 𝑞}. We prove below that there exists a non-empty
Zariski open set A𝑖 ⊂ C𝑛 such that for (𝑎1, . . . , 𝑎𝑛) ∈ A𝑖, the following property (A)𝑖 holds.
Denoting by 𝐺(𝑎),𝑖 the sequence (𝑔𝑖1 , . . . , 𝑔𝑖𝑠 ,Φ

(𝑎)), the Jacobian matrix of (𝐹,𝐺(𝑎),𝑖) has
maximal rank at any point of 𝑉 (𝐹,𝐺(𝑎),𝑖). Taking the intersection of the (finitely many)
A𝑖’s is then enough to define A .
Consider new indeterminates 𝛼1, . . . , 𝛼𝑛 and the polynomial Φ(𝛼) = 𝛼1𝑥

2
1 + · · ·+𝛼𝑛𝑥

2
𝑛− 1/𝜀.

Let Ψ be the map
Ψ : (𝑥, 𝑎)→ 𝐹 (𝑥), 𝑔𝑖1(𝑥), . . . , 𝑔𝑖𝑠(𝑥),Φ(𝑎)(𝑥)

Observe that 0 is a regular value for Ψ since (𝐹,𝐺) satisfies (A). Hence, Thom’s weak
transversality theorem (see e.g. [28, App. B]) implies that there exists A𝑖 such that (A)𝑖
for any 𝑎 ∈ A𝑖.

Assume for the moment that (𝐹,𝐺′) satisfies assumption (A). Observe that the coefficients
of 𝐹 and 𝐺′ lie in Q(𝜀). Hence, applying the subroutine EliminateProper to (𝐹,𝐺′) and the
above inequality will output a polynomial ∆𝜀 ∈ Q(𝜀)[𝑦] such that the restriction of 𝜋 to 𝑆 ′

𝜀

realizes a trivialization over each connected component of R⟨𝜀⟩𝑡 − {∆𝜀 = 0}. Without loss
of generality, one can assume that ∆𝜀 ∈ Q[𝜀][𝑦] and has content 1. In other words, one can
write ∆𝜀 = ∆0 + 𝜀∆̃ with ∆0 ∈ Q[𝑦] and ∆̃ ∈ Q[𝜀][𝑦].

Lemma 6.5. Let 𝑈 be a connected component of R𝑡 − {∆0 = 0}. Then, there exists a
semi-algebraically connected component 𝑈𝜀 of R⟨𝜀⟩𝑡−{∆𝜀 = 0} such that ext(𝑈,R⟨𝜀⟩) ⊂ 𝑈𝜀.

Proof. Let 𝑦 and 𝑦′ be two distinct points in 𝑈 . Since 𝑈 is a semi-algebraically connected
component of R𝑡−{∆0 = 0}, there exists a semi-algebraic continuous function 𝛾 : [0, 1]→ 𝑈
with 𝛾(0) = 𝑦 and 𝛾(1) = 𝑦′ such that ∆0 is sign invariant over 𝛾([0, 1]) (assume, without
loss of generality that it is positive). Note also for all 𝑡 ∈ [0, 1], ∆0(𝛾(𝑡)) ∈ R. We deduce
that ∆𝜀(𝛾(𝑡)) > 0 for all 𝑡 ∈ [0, 1]. Now, take 𝜗 ∈ ext([0, 1],R⟨𝜀⟩). Observe that 𝜗 is
bounded over R and then lim0 𝜗 exists and lies in [0, 1]. We deduce that ∆𝜀(lim0 𝜗) > 0 and
its limit when 𝜀→ 0 is ∆0(lim0 𝜗) > 0 in R. We deduce that ∆𝜀(𝜗) > 0. Hence, ∆𝜀 is sign
invariant over ext(𝛾([0, 1]),R⟨𝜀⟩) and then 𝑦 and 𝑦′ both lie in the same semi-algebraically
connected component of R⟨𝜀⟩𝑡 − {∆𝜀 = 0}.

We deduce that there exists 𝑏′ ∈ N such that for all 𝑦 ∈ 𝑈 , the number of semi-algebraically
connected components of 𝑆 ′

𝜀 ∩ 𝜋−1(𝑦) is 𝑏. Using the transfer principle as in [9], we
deduce that there exists 𝑒′ ∈ R positive and small enough such that, the following holds.
There exists 𝑏 ∈ N such that for all 𝑒 ∈]0, 𝑒′[ the number of connected components of
𝑆 ∩ {𝑎1𝑥2

1 + · · ·+ 𝑎𝑛𝑥
2
𝑛 ≤ 1

𝑒
} ∩ 𝜋−1(𝑦). is 𝑏 when 𝑦 ranges over 𝑈 . This proves the following

lemma.

Lemma 6.6. Let 𝑈 be as above. Then the number of connected components of 𝑆𝑦 is
invariant when 𝑦 ranges over 𝑈 .

Finally, we can describe the subroutine Eliminate whose correctness follows from the previous
lemma.
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Algorithm 3: Eliminate(𝐹,𝐺,𝑥,𝑦)

Data: Finite sequences 𝐹 and 𝐺 in Q[𝑥,𝑦] with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and
𝑦 = (𝑦1, . . . , 𝑦𝑡), defining a semi-algebraic set 𝑆 ⊂ R𝑛 × R𝑡.

Assumes that (𝐹,𝐺) satisfies assumption (A).
Result: ∆ ∈ Q[𝑦] such that the number of connected components of 𝑆𝑦 is invariant

when 𝑦 ranges over a connected component of R𝑡 − {∆ = 0}
1 Choose 𝑎1 > 0, . . . , 𝑎𝑛 > 0 in Q randomly and let 𝑔 ← 𝑎1𝑥

2
1 + · · ·+ 𝑎𝑛𝑥

2
𝑛 ≤ 1

𝜀

2 ∆← EliminateProper(𝐹,𝐺 ∪ 𝑔,𝑥,𝑦)
3 ∆← Normalize(∆) return ∆0.

7 Computations
We have implemented several variants of the roadmap algorithms sketched in Section 5 as
well as variants of the algorithm ParametricSolve. To perform algebraic elimination, we use
Gröbner bases implemented in the FGb library by J.-C. Faugère [17]. The roadmap algo-
rithm and the routines for computing sample points in semi-algebraic sets are implemented
in the RAGlib library [25].
We have not directly applied the most general version of ParametricSolve to the polynomial
𝐵. Indeed, since its variables 𝑣2, 𝑣3, 𝑣4 lie in the Cartesian product P1(R)× P1(R)× P1(R)
(which is compact), the projection on the parameter’s space is proper and it suffices to
compute critical loci of that projection. There is one technical (but easy) difficulty to
overcome: polynomial 𝐵 actually admits a positive dimensional singular locus. But an
easy computation shows that this singular locus has one purely complex component (which
satisfies 𝑣24 + 1) which can then be forgotten. The other component has a projection on
the paramaters’space which Zariski closed (it is contained in the set satisfied by 𝑎2𝑎3 = 0).
This way, we directly obtain the following polynomial for ∆ by computing the critical locus
and consider additionally the set defined by 𝑎2𝑎3 = 0.

𝑎2𝑎3𝑑5 (𝑎2 + 𝑎3 + 𝑑5) (𝑎2 + 𝑎3 − 𝑑5)

Computing ∆ as above does not take more than 3 sec. on a standard laptop using FGb.
Getting sample points in the set defined by ∆ ̸= 0 is trivial. We obtain the following 10
sample points using RAGlib

{𝑎2 = −1, 𝑎3 = −3, 𝑑5 = 3}, {𝑎2 = −1, 𝑎3 = −1, 𝑑5 = 3}, {𝑎2 = −1, 𝑎3 = 2, 𝑑5 = 3}, {𝑎2 =

−1, 𝑎3 = 5, 𝑑5 = 3}, {𝑎2 = −1, 𝑎3 =
1

2
, 𝑑5 = 3}, {𝑎2 = 1, 𝑎3 = −120, 𝑑5 = 118}, {𝑎2 = 1, 𝑎3 =

−118, 𝑑5 = 118}, {𝑎2 = 1, 𝑎3 = 1, 𝑑5 = 118}, {𝑎2 = 1, 𝑎3 = 118, 𝑑5 = 118}, {𝑎2 = 1, 𝑎3 = −1/2, 𝑑5 = 118}

Our implementation allows us to compute a roadmap for one sample point within
20 minutes on a standard laptop. Analyzing the connectivity of these roadmaps is
longer as it takes 40 min. All in all, approximately 10 hours are required to handle
this positive dimensional parametric system. The data we computed are available at
http://ecarp.lip6.fr/papers/materials/issac20/. These computations allow to re-
trieve the conclusions of our theoretical analysis of the UR family. They illustrate that
prototype implementations of our algorithms are becoming efficient enough to tackle
automated kinematic singularity analysis in robotics.
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