H. Abeliovich, An empirical extremum principle for the hill coefficient in ligand-protein interactions showing negative cooperativity, Biophysical Journal, vol.89, pp.76-79, 2005.

H. Abeliovich, On Hill coefficients and subunit interaction energies, Journal of Mathematical Biology, vol.73, pp.1399-1411, 2016.

G. S. Adair, A. V. Bock, and H. F. , The hemoglobin system VI. The oxygen dissociation curve of hemoglobin, Journal of Biological Chemistry, vol.63, pp.529-545, 1925.

J. Barcroft, The combinations of haemoglobin with oxygen and with carbon monoxide. II, Biochemical Journal, vol.7, issue.5, p.481, 1913.

A. Y. Ben-naim, Cooperativity and regulation in biochemical processes, 2013.

C. Bohr, K. Hasselbalch, and A. Krogh, Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindungübt 1, Skandinavisches Archiv für Physiologie, vol.16, pp.402-412, 1904.

P. Connelly, C. Robert, W. Briggs, and S. Gill, Analysis of zeros of binding polynomials for tetrameric hemoglobins, Biophysical Chemistry, vol.24, pp.295-309, 1986.

F. Durante and C. Sempi, Copula theory: an introduction, Copula Theory and its Applications, pp.3-31, 2010.

A. Gleixner, The SCIP Optimization Suite 6.0, 2018.

A. Greuet and M. Safey-el-din, Probabilistic algorithm for polynomial optimization over a real algebraic set, In: SIAM Journal on Optimization, vol.24, pp.1313-1343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00849523

P. Gutierrez, D. Monteoliva, and L. Diambra, Role of cooperative binding on noise expression, Physical Review E, vol.80, p.11914, 2009.

A. V. Hill, The combinations of haemoglobin with oxygen and with carbon monoxide. I, Biochemical Journal, vol.7, issue.5, p.471, 1913.

T. L. Hill, Cooperativity theory in biochemistry: steady-state and equilibrium systems, Springer Series in Molecular and Cell Biology, 1985.

C. A. Hunter and H. L. Anderson, What is cooperativity?, Angewandte Chemie International Edition, vol.48, pp.7488-7499, 2009.

M. Ikeda-saito, Thermodynamic properties of oxygen equilibria of dimeric and tetrameric hemoglobins from Scapharca inaequivalvis, Journal of Molecular Biology, vol.170, issue.4, pp.1009-1018, 1983.

K. Imai, Analyses of oxygen equilibriums of native and chemically modified human adult hemoglobins on the basis of Adir's stepwise oxygenation theory and the allosteric model of Monod, Wyman, and Changeux, Biochemistry, vol.12, pp.798-808, 1973.

R. A. Koyak, On measuring internal dependence in a set of random variables, The Annals of Statistics, vol.15, pp.1215-1228, 1987.

J. M. Landsberg, Graduate Studies in Mathematics, Tensors: geometry and applications, vol.128, p.439, 2012.

J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on Optimization, vol.11, issue.3, pp.796-817, 2001.

T. Lenaerts, J. Ferkinghoff-borg, J. Schymkowitz, and F. Rousseau, Information theoretical quantification of cooperativity in signalling complexes, BMC Systems Biology, vol.3, issue.1, p.9, 2009.

D. Maclagan and B. Sturmfels, Introduction to tropical geometry, vol.161, 2015.

J. W. Martini, A measure to quantify the degree of cooperativity in overall titration curves, Journal of Theoretical Biology, vol.432, pp.33-37, 2017.

J. W. Martini, L. Diambra, and M. Habeck, Cooperative binding: a multiple personality, Journal of Mathematical Biology, vol.72, pp.1747-1774, 2016.

J. W. Martini, M. Schlather, and S. Schütz, A model for carrier-mediated biological signal transduction based on equilibrium ligand binding theory, Bulletin of Mathematical Biology, vol.78, pp.1039-1057, 2016.

J. W. Martini, M. Schlather, and G. M. Ullmann, On the interaction of different types of ligands binding to the same molecule Part II: systems with n to 2 and n to 3 binding sites, Journal of Mathematical Chemistry, vol.51, pp.696-714, 2013.

J. W. Martini and G. M. Ullmann, A mathematical view on the decoupled sites representation, Journal of Mathematical Biology, vol.66, pp.477-503, 2013.

D. Monteoliva, C. B. Mccarthy, and L. Diambra, Noise minimisation in gene expression switches, PloS One 8, vol.12, p.84020, 2013.

R. B. Nelsen, An introduction to copulas, 2007.

A. Onufriev, D. A. Case, and G. M. Ullmann, A novel view of pH titration in biomolecules, Biochemistry 40, vol.12, pp.3413-3419, 2001.

A. Onufriev and G. M. Ullmann, Decomposing complex cooperative ligand binding into simple components: connections between microscopic and macroscopic models, The Journal of Physical Chemistry B, vol.108, pp.11157-11169, 2004.

P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Mathematical Programming, vol.96, pp.293-320, 2003.

Y. Ren, J. W. Martini, and J. Torres, Decoupled molecules with binding polynomials of bidegree (n,2), Journal of Mathematical Biology, vol.78, pp.879-898, 2019.

A. Rényi, On measures of dependence, Acta Mathematica Hungarica, vol.10, issue.3-4, pp.441-451, 1959.

C. Riener and M. Safey-el-din, Real root finding for equivariant semialgebraic systems, ISSAC'18-Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pp.335-342, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01819106

C. Rong, Homogeneous molecular systems are positively cooperative, but charged molecular systems are negatively cooperative, The Journal of Physical Chemistry Letters, vol.10, pp.1716-1721, 2019.

R. D. Roy, C. Rosenmund, and M. I. Stefan, Cooperative binding mitigates the high-dose hook effect, BMC Systems Biology, vol.11, issue.1, p.74, 2017.

D. V. Salakhieva, Kinetic regulation of multi-ligand binding proteins, BMC Systems Biology, vol.10, p.32, 2016.

J. A. Schellman, Macromolecular binding". In: Biopolymers, vol.14, pp.999-1018, 1975.

B. Schweizer, Thirty years of copulas, Advances in Probability Distributions with Given Marginals, pp.13-50, 1991.

B. Schweizer and E. F. Wolff, On nonparametric measures of dependence for random variables, The Annals of Statistics, vol.9, pp.879-885, 1981.

M. I. Stefan and N. Le-novère, Cooperative binding, PLoS Computational Biology, vol.9, p.1003106, 2013.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), vol.58, pp.267-288, 1996.

J. Wyman and S. J. Gill, University Science Books, 1990. Appendix A. List of Constraints 3. There, {12, 34, 123} represents the constraint f I ? r for I = {12, 34, 123}, which is the absolute interaction W for W ? O I where w 12, vol.34

?. , , vol.234, p.1234, 1234.

, United Kingdom Email address: yue.ren@swansea.ac, SA1 8JN Swansea, vol.6, 2912.