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Abstract

In this paper, we propose a new single shot method for multi-person 3D human
pose estimation in complex images. The model jointly learns to locate the hu-
man joints in the image, to estimate their 3D coordinates and to group these
predictions into full human skeletons. The proposed method deals with a vari-
able number of people and does not need bounding boxes to estimate the 3D
poses. It leverages and extends the Stacked Hourglass Network and its multi-
scale feature learning to manage multi-person situations. Thus, we exploit a
robust 3D human pose formulation to fully describe several 3D human poses
even in case of strong occlusions or crops. Then, joint grouping and human
pose estimation for an arbitrary number of people are performed using the asso-
ciative embedding method. Our approach significantly outperforms the state of
the art on the challenging CMU Panoptic. Furthermore, it leads to good results
on the complex and synthetic images from the newly proposed JTA Dataset.

Keywords: multi-person, 3D, human pose, deep learning

1. Introduction

3D human pose estimation based on RGB images is a challenging task from
the computer vision perspective. Recent Convolution Neural Network (CNN)
based approaches [1, 2] achieve excellent performance in 2D human pose esti-
mation thanks to large scale in the wild datasets. Nevertheless, methods for
3D human pose estimation require 3D ground truth that is only available using
Motion Capture (Mocap) systems. Therefore, these methods have good per-
formance in controlled environment but bad generalisation to real in the wild
images. Furthermore, most of the 3D pose estimation methods are restricted to
a single fully visible subject. In real-world scenarios, multiple people interact
in cluttered or even crowded scenes containing both self-occlusions of the body
and strong inter-person occlusions. Therefore, inferring the 3D pose of all the
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subjects (without knowing in advance their number) from a single and monoc-
ular RGB image is a harder problem and recent single-person 3D human pose
estimation methods fail in this case.

A natural approach is the decomposition of the multi-person ill-posed prob-
lem into multiple single-person 3D estimations. These top-down approaches are
based on the generation of multiple pose proposals that are evaluated and re-
fined in a second time [3]. Thus, they perform many redundant estimations and
scale badly for a large number of subjects.

Another way to solve this problem is bottom-up approaches [4], [5], [6] that
manage the whole scene in a single forward pass to give multi-person 3D hu-
man pose estimates. By their principle, they are more effective in managing
occlusions between people and take advantage of context-related information to
predict the different poses.

In the present article, we propose a new bottom-up approach that manages
the whole scene in a single forward pass to give multi-person 3D human pose
estimates. Our method is based on the Stacked Hourglass architecture [7] that
has demonstrated its effectiveness for 2D human pose estimation. Single shot
multi-person 3D human pose estimation is challenging as it needs to properly
locate human joints and to regroup these estimations into final 3D skeletons. By
associating the Hourglass architecture with a powerful joints grouping method
named the associative embedding [2] and a robust multi-person 3D pose descrip-
tion [8], we design an end-to-end architecture that jointly performs 2D human
joints detection, joints grouping and full body 3D human pose estimation even
when the subjects are partially occluded or truncated by the image boundary.
The proposed method surpasses state of the art results on the CMU-Panoptic [9]
dataset and shows good results on the Joint Track Auto dataset[10], a synthetic
but realistic dataset with a large number of people, various camera viewpoints
and backgrounds.

2. Related Work

Human pose estimation is more and more studied as it is very useful for many
applications (e.g. motion capture, human image synthesis, activity recognition,
sign language recognition, robotics vision, etc.). In this section, we present
recent deep learning approaches for 2D human pose estimation and single/multi-
person 3D human pose estimation.

2D human pose estimation: Most methods for 2D human pose estimation
extract probabilistic maps called heatmaps that estimate the probability of each
pixel to contain a particular joint. At inference time, the 2D joint positions cor-
respond to the local maxima of the heatmaps. Most of these methods [7, 11] are
also iterative. A refined estimate of the heatmap is obtained from the previous
estimates and the convolutional features. Wei et al. [11] refine the predictions
over successive stages with intermediate supervision at each stage. The Stacked
Hourglass networks [7] perform repeated bottom-up top-down processing with
intermediate supervision.
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Both top-down and bottom-up human approaches have been proposed for
multi-person 2D human pose estimation. Top down methods [12, 13] first de-
tect human bounding boxes and then estimate 2D human poses. Nevertheless,
these methods fail when the detector fails, in particular when there are strong
occlusions. Bottom-up approaches [1, 2] first estimate the 2D location of each
joint and then associate them into full skeletons. Cao et al. [1] regress affin-
ity between joints that means the direction of the bones in the image. Unlike
this approach that needs complex post-processing to group joints, Newell et al.
[2] propose to learn this association in an end-to-end network thanks to the
Associative Embeddings.

Single-person 3D human pose estimation: Motivated by the recent ad-
vances in 2D human pose estimation, some existing approaches [14, 15, 16, 17,
18, 19, 20, 21, 22] use only 2D human poses estimated by other methods [7, 1]
to predict 3D human poses. Chen and Ramanan [20] performs a nearest neigh-
bour search on a given 3D pose library with a large number of 2D projections.
Moreno-Noguer [21] formulate the problem of the 3D human pose estimation as
a 2D to 3D distance matrix regression. Nie et al. [22] predict depth on joints
using LSTM. Martinez et al. [14] lift 2D joints to 3D space using a deep resid-
ual neural network. Nevertheless, these approaches are limited by the 2D pose
estimator performance and do not take into account important images clues,
such as contextual information, to make the prediction.

Other methods predict 3D human poses from images features[23, 24, 25,
26, 27]. Recent methods make this prediction directly from monocular images
[28, 29, 30, 31, 32, 33] or from sequences of images [34, 35] using Convolutional
Neural Networks. The learning procedure needs images annotated with 3D
ground-truth pose. Since no large scale 3D in the wild annotated dataset exists,
current approaches tend to overfit on the constrained environment they have
been trained on. The existing in the wild approaches use either synthetic data
[31, 32, 36] or are trained on both 3D and in the wild 2D datasets [8, 37, 38, 39,
40, 41, 42, 43]. Mehta et al. [8] use a pretrained 2D pose network to initialize
the 3D pose regression network. Zhou et al. use geometric constraints [41] in
a weakly supervised setting. Pavlakos et al. [42] take another approach by
relying on weak 3D supervision in form of a relative 3D ordering of joints which
can be easily annotated even for in the wild images. Yang et al. [44] use an
adversarial loss that transfers the 3D human pose structures learned from the
indoor annotated dataset to the in-the-wild images. Although performing well
with a single fully visible subject, these methods fail with several interacting
people that are at different image scale and that occult each other.

Multi-person 3D human pose estimation: In a top-down approach,
Rogez et al. [3] generate human pose proposals that are further refined using a
regressor. This approach performs many redundant estimations that need to be
fused and scales badly for a large number of people. Zanfir et al. [5] estimate the
3D human shape from sequences of frames using a pipeline process followed by
a 3D pose refinement based on a non-linear optimisation process and semantic
constraints. MubyNet [4] is a bottom-up multi-task network that identifies joints
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and learns to score their possible associations as limbs. These scores are used
to solve a global optimisation problem that groups the joints into full skeletons
following the human kinematic tree. Mehta et al. [6] propose an approach that
predicts 2D heatmaps, part affinity fields [1] and Occlusions Robust Pose Maps
(ORPM). This approach manages multi-person 3D human pose estimation even
for occluded and cropped people. Nevertheless, the architecture used in [6] is
not a stacked architecture while the stacking strategy [1, 2] performs well in the
2D context.

The proposed method deals with multi-person 3D human pose estimation.
Unlike [5], it does not need sequence of images to refine the pose estimates. It
is based on the stacked hourglass networks [7] devoted to mono-person 2D pose
estimation and showing very good performance on this task. Thus, we extend
this approach using the multi-person 3D poses description robust to occlusions
proposed in [6] and the associative embedding [2] that groups joints in skeletons
in a more effective way that part affinity fields [1] proposed in a 2D context.
The final network architecture is notably trained in an end-to-end manner and
the inference requires a single forward pass.

3. Proposed Method

K

K

2D Pose

3D Pose

3xKInput 
Image

Hourglass 
Network

Heatmaps

Associative 
Embeddings

ORPM

(a) Model overview

Associative 
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Read-out 
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(b) Outputted maps for shoulder joint

Figure 1: The proposed model estimates full 3D skeletons for an arbitrary number of people.
It predicts, for each joint, a 2D localisation map(heatmap), an associative embedding map
and 3 ORPM. The associative embeddings maps contain different embedding values for joints
belonging to different subjects. The ORPM store the 3D joints coordinates at different 2D
locations. Best viewed in color.

3.1. Description

Given a monocular RGB image I of size W×H, we seek to estimate the 3D
human poses PI = {Pi | i ∈ [1, . . . , N ]} where N is the number of visible people,
Pi ∈ R3×K are the 3D joints locations and K is the number of predicted joints.
The 3D joint coordinates are expressed relatively to their parents joints in the
kinematic tree and converted to pelvis relative locations for evaluation in a 3D
coordinate reference oriented like the camera one. The model is composed of
several stacked hourglass networks. The image is first sub-sampled to images
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features I’ of size W ′ ×H ′ by convolution and pooling layers. Each hourglass
module outputs heatmaps for 2D joints detection, ORPM for 3D joints locali-
sation and associative embeddings maps for joint grouping, each map being of
size W ′ ×H ′. Except for the first hourglass that takes as input only image fea-
tures, other hourglasses takes as input images features and the prediction of the
previous hourglass that is refined. Fig. 1 depicts an overview of the proposed
method.

3.2. Occlusions Robust Pose Maps

Suppose we have an image I and the corresponding 3D poses PI . A good 3D
pose representation to train a Convolutional Neural Network should have the
following characteristics:

• a fixed dimension regardless of the number of people in the image;

• being robust to occlusions and crops.

To address these two problems, we adopt the ORPM formulation. For each
joint, each hourglass network outputs three maps of dimensions W ′×H ′, one for
each X,Y,Z dimension. The size of these maps does not depend on the number
of visible people which allows the estimation of the 3D pose of an arbitrary
number of people. In these maps, the 3D joint coordinates of each person are
stored at different 2D locations:

• at the 2D positions of the pelvis and the neck;

• at the 2D position of the joint;

• at the 2D positions of the joints belonging to the same limb.

For instance, the 3D coordinates of the wrist joints are stored in the wrist
ORPM at the pelvis, the neck, the elbow and the shoulder 2D positions. This
redundancy in the ORPM allows a robustness to occlusions and crops. Indeed,
neck and pelvis are the best estimated and the less prone to occlusions.

At inference time, the 3D pose readout of a person is performed in two steps:
a full 3D pose readout followed by a 3D pose refinement.

The full 3D pose readout is performed by reading the full person 3D pose at
the following 2D positions in the ORPM:

• at the pelvis 2D position, if the pelvis is detected;

• at the neck 2D position, if the neck is detected and the pelvis is not.

If none of these two joints are detected, we take the mean skeleton in the
training dataset as the full person 3D pose.

The full 3D pose readout is followed by the 3D pose refinement. During this
step, for each joint, we refine the predicted 3D coordinates previously obtained
by reading in the ORPM at one of the following 2D locations:
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• at the joint 2D position in the ORPM if this 2D position is a valid readout
location;

• at the 2D position of a joint belonging to the joint’s limb. We take the
extremity of the joint’s limb and we go back in the kinematic tree until a
valid readout location is found.

If no valid readout location is found in the joint’s limb, the 3D coordinates
are not refined. A 2D readout position is considered valid is it satisfies the
following criteria:

• the confidence associated to the 2D predicted position of the joint is higher
than a given threshold τC ;

• the distance between the 2D joint position and the 2D position of the
other joints must be less than a given distance τD;

• the 3D coordinates read at this 2D position in the ORPM must be an-
thropomorphically correct. In this purpose, we compute the mean length
of each limb in the training dataset and we reject each predicted 3D co-
ordinates that gives limbs whose length is too far from the corresponding
computed mean.

3.3. Associative embedding

The network predicts for each joint a 2D heatmap and 3 ORMP for each
X,Y, Z joint coordinates. This description is independent of the number of
people. Now, we use the associative embedding to associate the joint to full
skeletons. Predicted heatmaps contain peaks at the 2D joint positions of differ-
ent subjects. To regroup the joints belonging to the same person, an additional
output is added to the network for each joint corresponding to embeddings. De-
tections are then grouped by comparing the embedding values of different joints
at each 2D peak position in the heatmap. If two joints have a close embedding
value, they belong to the same person. The network is trained to perform this
grouping by predicting close embeddings for joints belonging to the same person
and distant embeddings for joints of distinct people.

Formally, let Ek ∈ RW ′×H′
be an embedding map predicted by the network

for the kth joint and ek(x) be the embedding value at the 2D position x. Let
us consider an image composed of N people, each having K joints. Let xk,n

be the 2D ground-truth position of the kth joint of the person n. We refer by
reference embedding, the predicted embedding of a person obtained as the mean
of its embedding’s joints:

en =
1

K

∑
k

ek(xk,n) (1)

The grouping loss is then defined by:
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LAE =
1

NK

∑
n

∑
k

(en − ek(xk,n))
2

+
1

N2

∑
n

∑
n′ 6=n

exp

(
− 1

2σ2
(en − en′)2

)
(2)

The first term of equation (2) corresponds to a pull loss that brings similar
embeddings for joints belonging to a same person and the second part cor-
responds to a push loss that gives different embeddings to joints of different
subjects. σ is a parameter giving more or less importance to the push loss.

3.4. Network loss
We learn jointly the three following tasks: i) 2D joint localisation by pre-

dicting heatmaps; ii) 3D joint coordinates estimation with ORPM prediction;
iii) Joint grouping with associative embedding prediction. The network loss is
then:

L3DMP = L2D + LORPM + λAE LAE (3)

Where L2D is the euclidean distance between the ground-truth 2D heatmaps
and the predicted 2D heatmaps, LORPM is the euclidean distance between the
predicted ORMP and the ground-truth ORMP and LAE is the loss defined by
equation (2). And λAE = 0.001 is the weight of the Associative Embeddings
loss.

3.5. Multi-Scale Inference
Although being single-shot and working well when there are a reduced num-

ber of people that are close to the camera, our method with a single scale
inference tends to fail in complex and crowded images like those from the JTA
dataset. In these images, visible people are at very different distances from the
camera. Consequently, these people are projected with very different pixel res-
olutions and the model has difficulties to handle properly all these scales with
a single image resolution. To handle these cases, Multi-Scale Heatmaps, Multi-
Scale Associative Embeddings maps and Multi-Scale ORPM are computed.

Suppose that we have an input image I for which we want to extract Multi-
Scale Heatmaps, Multi-Scale Associative Embeddings maps and Multi-Scale
ORPM. Let S = s1, s2, . . . , sM the scale pyramid for which we want to compute
these maps, sM being the highest resolution scale.

First, for each scale si, we compute HMsi ∈ RK×Wsi
×Hsi , Asi ∈ RK×Wsi

×Hsi

, Osi ∈ R3×K×Wsi
×Hsi respectively the predicted heatmaps, associative embed-

ding maps and ORPM for scale si. Each Hsi , Asi and Osi is resized to maps
HM’si , A’si and O’si that match the resolution of scale sM .

The Multi-Scale Heatmaps are the mean of the rescaled heatmaps. Let
MSH ∈ RK×WsM

×HsM be the Multi-Scale Heatmaps, msh(j,x) be the value
of MSH at position x for joint j and h′si(j,x) be this value for the rescaled
heatmaps HM’si . Then, we have :

msh(j,x) =
1

M

M∑
i=1

h′si(j,x) (4)
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The Multi-Sacle Associative Embeddings maps are the concatenation of the
rescaled associative emedings maps A’si .

In order to compute the Multi-Scale ORMP MSO ∈ R3×K×WsM
×HsM , we

cannot compute a simple average like done for the heatmaps. Indeed, if a person
is detected at a given scale but not in another one, if we simply compute the
average between the ORPM at each scale, the well estimated 3D pose at one
scale could be altered by this operation. To avoid this, the mean is weighted by
the predicted heatmaps and we take into account the different readout locations
induced by the ORPM formulation. This way, more the model is confident about
a predicted joint at a given scale, more the ORPM at this scale will contribute
to the MSO. Let mso(c, j,x) be the value of MSO for coordinate c (X, Y
or Z coordinate) and joint j at 2D position x, O′si(c, j,x) be this value for the

rescaled ORPM O’si and RLj = rlj1, rl
j
2, . . . , rl

j
Lj

be the set of readout locations
for the joint j in the ORPM. Then, we have:

mso(c, j,x) =

∑M
i=1

∑Lj

l=1 h
′
si(rl

j
l ,x)o′si(c, j,x)∑M

i=1

∑Lj

l=1 h
′
si(rl

j
l ,x)

(5)

3.6. Final prediction

Once the network is trained, the final prediction is obtained in several stages.
First, a non-maximum suppression is applied on the heatmaps to obtain the set
of joint detections. Then, all the neck embeddings are read from the neck
embedding map at the predicted neck 2D positions. This pool of 2D neck
positions with their corresponding embedding gives the initial set of detected
people. The other joints associated to these necks need now to be found. Each
person is characterised by its reference embedding. The next joint associated
to a given person is the one having the highest detection score and having a
distance with the person embedding lower than a given threshold τAE . We
repeat this step until there is no more joint that respects these two criteria.
Once this process is done, the non-associated joints are used to create a new
pool of people. At the end, the 2D pose of each person is obtained and used to
read the 3D pose in the ORPM as described in Section 3.2.

4. Experiments

In this paper, we address the problem of single shot multi-person 3D human
pose estimation. To evaluate our method, we perform separate experiments on:

• multi-person 3D human pose estimation in a controlled environment (CMU-
Panoptic dataset [9]); some images are depicted in Figure 2.

• multi-person 3D human pose estimation in virtual environments with
many people (JTA dataset)[10]. This dataset is more complex and richer
than the previous one. Some images are shown in Figure 3. No previous
method for 3D human pose estimation has been evaluated on this dataset
to the best of our knowledge.
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Evaluation Metrics: To evaluate our Multi-Person 3D pose approach, we
use two metrics. The first one is the Mean per Joint Position Error (MPJPE)
that corresponds to mean Euclidean distance between ground truth and pre-
diction for all people and all joint. The second one is the 3D PCK which is
3D extension of the Percentage of Correct Keypoints (PCK) metric used for 2D
Pose evaluation, as well. A joint is considered correctly estimated if the error
in its estimation is less than 150mm. If an annotated subject is not detected by
our approach, we consider all of its joints to be incorrect in the 3D PCK metric.

Training Procedure: The method was implemented with PyTorch. The
hourglass component is based on the public code in [2]. We used four stacked
hourglasses in our model, each one outputting 2D heatmaps, ORPM and asso-
ciative embeddings. We trained the model using mini-batches of size 30 on 8
Nvidia Titan X GPU during 240k iterations. We used the Adam[45] optimiser
with an initial learning rate of 10−4.

4.1. Multi-person 3D pose estimation on CMU-Panoptic

CMU Panoptic [9] is a dataset containing images with several people per-
forming different scenarios (playing an instrument, dancing, etc.) in a dome
where several cameras are placed. This dataset is challenging because of complex
interactions and difficult camera viewpoints. We evaluate our model following
these protocols:

• Panoptic-1 protocol: it is the protocol used in [5, 4]. The model is eval-
uated on 9600 frames from HD cameras 16 and 30 and for 4 scenarios:
Haggling, Mafia, Ultimatum, Pizza. The model is trained on the other 28
HD cameras of this dataset.

• Panoptic-2 protocol: This protocol is an extension of the previous one.
Instead of evaluating on a subset of arbitrary selected frames, we evaluate
on the entire sequences from cameras 16 and 30. The training dataset in
this protocol is the frames from all the HD cameras (except cameras 16
and 30) for the Haggling, Mafia, Ultimatum, Pizza scenarios. The model
is evaluated on the same scenarios by taking one frame every ten frames
from HD cameras 16 and 30.

• Panoptic-3 protocol: Previous protocols use a large number of training
cameras. To evaluate the robustness to the number of cameras and to the
amount of training data, we propose protocol Panoptic-3. The model is
trained on the Haggling, Mafia, Ultimatum, Pizza scenarios but only a
subset of the training cameras is used:

– Panoptic 3a: HD cameras 0, 2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26
and 28 are used during training

– Panoptic 3b: HD cameras 0,4,8,12,20,24 and 28 are used during train-
ing

– Panoptic 3c: HD cameras 0,8, and 24 are used during training

9



Method Haggling Mafia Ultimatum Pizza Mean

[30] 217.9 187.3 193.6 221.3 203.4
[5] 140.0 165.9 150.7 156.0 153.4
[4] 72.4 78.8 66.8 94.3 72.1

Ours, full 70.1 66.6 55.6 78.4 68.5

Table 1: Mean per joint position error (MPJPE) in mm on the Panoptic Dataset following
Panotic-1 Protocol

The test set is the same as Panoptic 2.

• Panoptic-4 protocol : In the previous protocols, the model is trained and
evaluated on the same scenarios. To evaluate the robustness to an unseen
scenario in new camera viewpoints, we propose the Panoptic-4 protocol.
The training dataset in this protocol is the frames from all the HD cameras
(except cameras 16 and 30) from the Haggling, Mafia and Ultimatum
scenarios. The model is evaluated on the pizza scenario by taking one
frame every ten frames from HD cameras 16 and 30.

Comparison with prior work: On Panoptic-1 protocol, our model im-
proves the results over the recent state of the art methods on all the scenarios
(Table 1). It shows a global improvement of 5.0% compared to [4]. Note that
unlike [5] we do not learn on any frame from the cameras 16 and 30 and on any
external data. Actually, the proposed model does not need a trained attention
readout process thanks to the effective ORPM readout process.

Ablative studies: Table 2 provides ablative results of our method follow-
ing Panoptic-1 protocol on the Haggling, Mafia, Ultimatum and Pizza scenarios.
Firstly, we present the results obtained by stacking one, two or three hourglass
modules. Each time an hourglass module is added, the Mean per Joint Posi-
tion Error (MPJPE) decreases (from 91.8 mm for one hourglass module to 68.5
mm for our full four hourglass modules model). This shows the importance of
the stacking scheme and the refinement process in the model architecture. The
penultimate line of this table shows the results obtained with four hourglass
modules and a Naive Readout (NR) in the ORPM, that means when the 3D
joint coordinates are read directly from their 2D positions. Because of frequent
crops and occlusions in the panoptic dataset, this model has poor performance
with an MPJPE of 118.8 mm. This proves the importance of the ORPM stor-
age redundancy to manage occlusion. Our complete model(last row) with four
hourglass modules and the readout procedure described in Section 3.2 has the
lowest MPJPE (68.5mm)

Examples of 3D human pose estimations on the Panoptic dataset are shown
in Figure 2. Our method can estimate the 3D pose of multiple people even in
case of truncation (1st, 2nd and last rows) or people overlap (2nd and 4th rows)

Robustness to the number of training cameras : Protocols Panoptic
1 and 2 results are obtained by using a large number of training cameras. What
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Method Nb of HG ORPM Haggling Mafia Ultimatum Pizza Mean
Ours, 1-HG 1 92.3 86.1 82.7 103.8 91.8
Ours, 2-HG 2 77.1 74.8 68.0 89.8 78.3
Ours, 3-HG 3 72.4 72.4 60.12 85.2 73.8
Ours, NR 4 × 101.5 124.2 105.7 130.3 118.8
Ours, full 4 70.1 66.6 55.6 78.4 68.5

Table 2: Mean per joint position error (MPJPE) in mm on the Panoptic Dataset following
Panoptic-1 protocol. (i-HG stands for i stacked hourglasses and NR for Naive Readout).

Protocol Haggling Mafia Ultimatum Pizza Mean

Panoptic 2 78.3 60.7 84.2 78.3 68.1
Panoptic 3a 82.4 64.3 88.7 82.2 72.3
Panoptic 3b 84.0 74.2 87.4 92.0 76.4
Panoptic 3c 149.4 151.3 155.5 167.9 150.9
Panoptic 4 79.4 79.4

Table 3: Mean per joint position error (MPJPE) in mm on the Panoptic Dataset following
Panoptic-2, Panoptic-3 and Panoptic-4 protocols

is the robustness of our model when using a reduced number of cameras ? Table
3 provides Panoptic 3 protocol results. Panoptic 3a and 3b results show that
even by using only half and fourth of the training cameras, the MPJPE is only
increased respectively by 6.9% and 12.2%. On the other hand, where only 3
training cameras are used, the MPJPE is 2.2 times greater than the Panoptic
2 MPJPE. This number of cameras is insufficient to learn such a complex task.
Even single person 3D human pose models are trained on datasets[46, 8] that
provides images from four cameras or more.

Performance on an useen scenario: Protocols Panoptic 1,2 and 3 show
the ability of the model to generalise to unseen camera viewpoints. Panoptic 4
results show the ability of the model to generalise to new scenarios. The model is
trained only on the Haggling, Mafia and Ultimatum scenarios and evaluated on
the unseen Pizza scenario. The Panoptic 4 MPJPE (79.4) is close the MPJPE
obtained on the Panoptic 2 protocol for the Pizza scenario showing that model
does not overfeat on the training scenarios and can generalise to new ones.

4.2. Multi-person 3D pose estimation on JTA dataset

JTA (Joint Track Auto) is a dataset for human pose estimation and tracking
in urban environment. It was collected from the realistic video-game the Grand
Theft Auto V and contains 512 HD videos of 30 seconds recorded at 30 fps. The
collected videos feature a vast number of different body poses, in several urban
scenarios at varying illumination conditions and viewpoints. People perform
different actions like walking, sitting, running, chatting, talking on the phone,
drinking or smoking. Each image contains a number of people ranging between
0 and 60 with an average of more than 21 people. The distance from the camera
ranges between 0.1 to 100 meters, resulting in pedestrian heights between 20
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Figure 2: Multi-person poses predicted by our approach on the CMU-Panoptic Dataset.
Ground truth translation and scale are used for visualisation. The first column corresponds
to the input image with the predicted 2D pose. The second column corresponds to the ground
truth 3D poses and the last column to the predicted 3D poses. These examples show that
our approach works with a variable number of people in the image and can predict the 3D
coordinates of joints that are not visible in the image thanks to the ORPM redundancy. Best
viewed in color.
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and 1100 pixels. None existing (virtual or real) dataset with annotated 3D pose
is comparable with JTA dataset in terms of number of people per image, people
and background variability. As far as we know, we are the first to demonstrate
the ability of a trained model to deal with such complex and rich environments
with many people at different camera distances and with different resolutions.
256 videos are used for training and 128 for testing (the remaining 128 videos
are used for validation). From the testing videos, we take one frame every ten
frames for the evaluation.

Table 4 presents per camera distance results on the the JTA Dataset. We
evaluate our model on this dataset at different resolutions (S1=512px, S2=1024px
and S3=1536px) and also with the multi-scale inference described in section 3.5.
The images from this dataset contain a large number of people in various dis-
tances from the camera. The distance from the camera can have a significant
impact on the performance of a 3D human pose estimator. Indeed, distant peo-
ple require higher image resolution and are more likely to be occulted. For this
reason, we provide in Table 4 results for people in different ranges of distance
from the camera. Note that our testing set contains 262510 people. Among
these people, 10% have a distance from the camera less than 10 meters, 23%
have a distance from the camera between 10 and 20 meters, 21% have a dis-
tance from the camera between 20 and 30 meters, 14% have a distance from the
camera between 30 and 40 meters and 31% have a distance from the camera
greater than 40 meters.

The resolution having the best overall 3D PCK is the resolution S2 with a
3D PCK of 37.8%. This resolution performs a good compromise to estimate
the pose of the high resolution people that S3 cannot handle properly and low
resolution people that are too small from scale S1. Resolution S1 has the best
results for people that are close to the camera (less than 10 meters) with an
MPJPE of 165.2mm and a 3D PCK of 68.5%. Resolution S2 has the best results
for people that have a distance from the camera between 10 and 20 meters with
a 3D PCK of 62.3% and an MPJPE of 194.50. Resolution S3 has the best results
for people that are far from the cameras (greater than 20 meters). These results
show that each resolution is adequate to a given range of people distance and
consequently to a resolution of people.

The multi-scale inference (MSI) improves the overall 3D PCK and MPJPE.
The 3D PCK goes from 37.8 to 43.9 for the MSI and the MPJPE goes from
258.9mm to 193.5mm. MSI has better results than scale S2 and S3 for close to
the camera people (less than 10 meters) taking advantages from poses estimated
from scale S1 but without improving over this scale for these people. MSI has
equivalent results to scales S1 and S2 for people that have a distance from the
camera between 10 and 20 meters and significantly better than scale S3 for
these people. It has worse results than scales S2 and S3 for people that have
a distance from the camera between 20 and 40 meters but it surpasses all the
scales for people that have a distance from the camera greater than 40 meters.

Joint-wise analysis (Table 5) shows that the results are unequal from one
joint to another one. Regardless of the distance to the camera, spines and
hips are always the best estimated joints. These articulations have a reduced
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Scale Distance to camera MPJPE 3D PCK

S1 (512 px)

<10m 165.2 68.5
>10m and <20m 220.6 61.6
>20m and <30m 358.7 42.2
>30m and <40m 409.7 36.0
>40m 382.1 32.2
All 294.0 33.1

S2(1024px)

<10 m 275.53 43.5
>10m and <20m 194.50 62.3
>20m and <30m 281.5 51.25
>30m and <40m 358.8 41.0
>40m 368.2 35.5
All 258.9 37.8

S3(1536px)

<10m 319.0 33.9
>10m and <20m 231.16 49.4
>20m and <30m 222.75 53.3
>30m and <40m 269.1 47.5
>40m 305.90 38.8
All 274.3 34.8

Multi Scale Inference(MSI)

<10m 175.5 55.8
>10m and <20m 220.6 61.6
>20m and <30m 358.6 42.2
>30m and <40m 409.7 36.0
>40m 262.12 41.7
All 193.5 43.9

Table 4: MPJPE and 3D PCK on the JTA dataset. Results are provided per scale and per
camera distance that means by taking into account in the metrics computation only the people
that are in the corresponding distance range from the camera.

variability compared to the extremity joints like wrists and ankles that have
the worst MPJPE and 3D PCK. Indeed, since the 3D joint coordinates are
expressed relatively to their parents joints in the kinematic tree and converted
to pelvis relative locations, errors in the estimation of a parent joint impact the
estimation of all its descendent in the kinematic tree.

Examples of 3D human pose estimations on the JTA dataset are shown in
Figure 3. Our method can estimate the 3D pose in several urban scenarios at
varying illumination conditions and viewpoints. Nevertheless, very far people
are not detected and the method fails in case of crowded people.

Figure 4 shows qualitative results on natural images. The trained model is
able to predict 3D human poses even for real in the wild images.

5. Conclusion

We have presented a single shot trainable model for multi-person 3D human
pose estimation in real environment with various camera viewpoint conditions,
strong occlusions and several social activities or in virtual but very realistic
environment with a vast number of body poses, and several urban scenarios at
varying illumination conditions and viewpoints. 2D and 3D human joints are
predicted using heatmaps and ORPM which have proven their ability to manage
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Figure 3: Qualitative results (reprojected 3D poses) of our approach shown on the test set of
JTA Dataset. Our 3D estimations are relative to the pelvis. Ground truth translation and
scale are used for visualisation. Our approach predict 3D poses in several urban scenarios at
varying illumination conditions and viewpoints and for low resolution people. Nevertheless,
very far people are not detected and the method fails in case of crowded people. Best viewed
in color.

Distance to camera Metric head neck clavicles shoulders elbows wrists spines hips knees ankles all

>0
MPJPE 196.5 174.7 174.9 215.3 264.6 329.4 42.3 76.3 253.2 425.5 193.5
3D PCK 41.1 44.6 44.9 33.8 27.2 19.0 74.4 73.9 25.7 8.9 43.9

<10m
MPJPE 131.7 195.1 191.8 219.5 218.7 254.6 45.8 66.97 236.1 395.9 175.5
3D PCK 68.1 48.1 48.5 37.5 39.5 30.6 94.2 94.0 29.0 7.3 55.8

>10m and <20m
MPJPE 231.2 188.6 192.5 239.7 297.14 365.7 47.1 86.0 297.2 505.3 220.6
3D PCK 60.0 66.5 65.1 52.8 45.5 33.5 91.9 87.8 45.2 24.9 61.6

>20m and <30m
MPJPE 392.1 302.3 309.2 385.9 484.2 581.4 73.0 142.0 489.5 827.3 358.6
3D PCK 36.1 45.6 42.8 23.9 16.6 9.9 85.0 73.8 18.0 7.9 42.2

>30m and <40m
MPJPE 451.1 345.9 352.1 443.3 552.0 650.7 84.21 166.4 561.9 945.8 409.7
3D PCK 28.7 37.8 34.4 14.3 8.8 4.7 82.1 65.9 10.3 4.6 36.0

>40m
MPJPE 248.0 200.3 212.1 310.8 410.6 505.2 49.7 119.0 324.7 528.5 262.12
3D PCK 39.2 50.1 45.3 18.0 11.1 6.0 89.7 72.1 13.1 4.5 41.7

Table 5: Joint wise MPJPE and 3D PCK on the JTA Dataset of our approach with the
Multi-Scale Inference
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Figure 4: Multi-person poses predicted by our approach on natural images. The first column
corresponds to the input image. The second column corresponds to predicted 3D poses. Best
viewed in color.
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occlusions. The difficult problem of associating joints to people skeletons is
managed using the recent associative embeddings method. The same stacked
network jointly learns and estimates, in an end-to-end manner, 2D human poses
and 3D human poses exploiting the complementarity of these tasks.

The experiments provided in this work have proven the importance of the
stacking scheme and the ORMP formulation, validating the proposed network
architecture. Furthermore, large-scale experiments, on the CMU Panoptic dataset,
demonstrate that the proposed approach results surpass those of the state of
the art. Nevertheless, the experiments on the JTA Dataset, although being
correct for high resolution people close to the camera, show that complex urban
scenarios with many people at different image resolution remains a challenge for
our approach. Thus, we are working on an extension of this method to solve
these difficult cases.
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