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8 Abstract In this paper, we investigated the age distribu-

9 tion and dynamics of polyps in the slow-growing and long-

10 lived gorgonian Corallium rubrum (the Mediterranean red

11 coral), applying an a posteriori demographic approach by

12 considering each colony as a population of polyps. In the

13 Mediterranean red coral, new polyps emerge from the

14 coenenchyme in different regions of the colony and their

15 budding rate depends on the age of branches. The age of

16 polyps, branches and colonies were estimated using the

17 organic-matter-staining dating method on thin sections of

18 the colony skeleton. The median age and maximum life

19 span of polyps were 4 and 12 years suggesting the presence

20 of senescence processes: thus a colony renews several

21 times its polyps during life cycle. Polyps were divided into

22 annual age classes, and their mortality rates calculated. The

23 polyp age distribution was then used to construct a mor-

24 tality table and an algebraic transition matrix based on the

25 age at death of 234 polyps. Finally, the polyp budding rate

26 of a young, unbranched colony was calculated, and polyp

27 temporal dynamics simulated. These findings represent the

28first steps for developing demographic models able to

29describe polyp dynamics of old and highly branched

30colonies. 31

32Keywords Octocoral � Polyp age � Mortality table �
33Budding rate

34Introduction

35Modularity is a common feature among plants and inver-

36tebrates. Nowadays, the term modular is mainly used as

37synonymous of hierarchical and refers to the repetition of

38homogenous units at different organization levels (Rosen

391986; Kim and Lasker 1998; Hageman 2003). The first

40definition of corals as modular organisms can be found in

41Harper (1977). Polyps, embedded in the coenenchyme, are

42the primary modules of colonial corals. They are the basic

43units of a colony, likely determining its shape by regulating

44the growth of branches (second-order modules, called

45structural units, Hageman et al. 1998; Hageman 2003).

46Therefore, the fundamental body plan of a colonial coral,

47often characterized by different growth forms, results from

48the repetition of units, i.e. polyps and branches of several

49orders and varying lengths (Williams 1975; Harper 1977;

50Harper and Bell 1979; Burlando et al. 1991; Lasker et al.

512003; Sánchez and Lasker 2003; Sánchez et al. 2004;

52Goffredo and Lasker 2006).

53Morphological plasticity, typical of modular organisms,

54is likely the result of genotypic variability or phenotypic

55response to local environmental conditions (e.g., Shaish

56et al. 2006, 2007; Sánchez et al. 2007; Rowley et al. 2015;

57Guizien and Ghisalberti 2017). The optimal shape of a

58stony-coral colony is the result of the polyp ability to

59calcify (Matsumoto 2004; Goffredo and Lasker 2006) and
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60 can thus be affected by polyp distribution and density

61 (Rossi et al. 2019). For example, ramified gorgonians have

62 evolved a prey capture structure by which barbed tentacles

63 of polyps and branches form an efficient fishing net inter-

64 cepting water flow thus feeding on detrital particulate

65 organic matter (POM) and microplankton (Barham and

66 Davies 1968; Grigg 1972; Russo 1985; Coma et al. 2001;

67 Kaandorp and Küler 2001; Tsounis et al. 2006b; Picciano

68 and Ferrier-Pagès 2007; Pedoni et al. 2009; Gori et al.

69 2011).

70 Merks et al. (2004) described coral growth as the

71 ‘‘collective result of a growth process taking place in the

72 polyps.’’ In their ‘‘polyp-oriented model,’’ polyps are

73 considered as separate units, which during their life cycle

74 deposit skeleton, bud new polyps and eventually die. Each

75 colony can then be considered as a population of polyps

76 and branches (belonging to the same genet; Harper 1977;

77 Galli et al. 2016); thus, its growth over time can be pro-

78 jected by dynamic models based on polyp growth and

79 mortality rates, as well as increase in branch number.

80 Under these circumstances, integrating data from individ-

81 ual and modular growth studies may enhance the under-

82 standing of growth in highly plastic corals. Precious corals

83 belonging to the Family Corallidae are generally slow-

84 growing and long-lived, thus, following their growth over

85 the entire life span is a nearly impossible task (Santangelo

86 et al. 2003) and indirect methods to assess colony devel-

87 opment in these species are needed (Marschal et al. 2004;

88 Vielzeuf et al. 2008; Benedetti et al. 2016; Kahra-

89 manoğullari et al. 2019).

90 We investigated polyp formation, age and spatial dis-

91 tribution in the highly valuable octocoral Corallium

92 rubrum (L 1758; Fig. 1), considering the iteration of the

93 primary modules (polyps) as the lowest level of colony

94 organization. C. rubrum is a long-lived Mediterranean

95 gorgonian, whose life span can exceed a century (Marschal

96 et al. 2004; Priori et al. 2013). This species is endemic to

97 the Mediterranean Sea and neighboring Atlantic rocky

98 bottoms, where it dwells between 10 and 1000 m depth.

99 Within this wide bathymetric distribution, shallow

100 (\ 50 m), deep (50–200 m), and deeper populations

101 ([ 200 m) have been conventionally distinguished by an

102 operative point of view (Santangelo and Abbiati 2001;

103 Costantini et al. 2011; Knittweis et al. 2016). C. rubrum

104 has long been subjected to commercial fishing, as its red

105 calcareous skeleton is widely used in jewelry and traded

106 worldwide (e.g., Cicogna and Cattaneo-Vietti 1993;

107 Tsounis et al. 2010). Due to its slow growth rates

108 (* 0.24 mm y-1 in basal diameter; Marschal et al. 2004;

109 Priori et al. 2013; Bramanti et al. 2014; Benedetti et al.

110 2016), the overharvesting of larger/older colonies has

111 caused an alarming shift in the structure of existing pop-

112 ulations toward smaller sizes (Santangelo and Abbiati

1132001; Tsounis et al. 2006a; Bramanti et al. 2009; Cau et al.

1142016; Garrabou et al. 2017). C. rubrum has therefore been

115included in three different international conventions (EU

116Directive Habitat, Bern Convention, and Convention on

117Biological Diversity) and its harvesting is regulated by

118Mediterranean, national and local/regional rules (GFCM-

119FAO 2011). For species with long life span and complex

120life cycle such as C. rubrum demographic studies are

121required to advise policy makers on the most appropriate

122conservation and management strategies (Santangelo et al.

1232007; Bramanti et al. 2009).

124A first step to assess population demographic dynamics

125is estimating the age of its components (Bramanti et al.

1262017). Age distribution data can be used for developing

127life history tables and for projecting population trends

128over time by means of algebraic transition matrices

129(Caswell 2001; Fujiwara and Caswell 2001; Santangelo

130et al. 2015).

131In this paper, we scale this approach down from the

132population to the colony level, considering a single col-

133ony as a population of polyps. While several studies have

134dealt with aging in octocorals (e.g., Sherwood 2006;

135Thresher et al. 2009), little is known about the aging and

136life span of polyps. We applied a novel method for

137assessing the age of Mediterranean red coral polyps

138(Vielzeuf et al. 2008) and their turnover to build a life

139history table (mortality table). In order to estimate the

140budding rate of polyps in a young colony and to project

141its structure through time, a transition matrix of polyp

142survival was constructed by means life history data. Thus,

143our work focuses on: (1) early skeleton formation and

144dynamics of polyp number, (2) distribution of polyp age

145and density across the colony, (3) polyp life span, mor-

146tality and variations in budding rate through time.

147Materials and methods

148C. rubrum basic features

149The Mediterranean red coral is gonochoric at both the

150polyp and colony levels and is characterized by a long life

151span and an early age at first reproduction (Santangelo

152et al. 2003; Gallmetzer et al. 2010). It is an internal brooder

153whose larvae are released yearly in late summer and settle

154within 20–25 days (L Bramanti personal observ.). After

155settlement, metamorphosis occurs in approximately

15610 days (L Bramanti pers. observ.) and a new colony starts

157growing (Lacaze Duthiers 1864; Vighi 1972).

158Similarly to other colonial octocorals, C. rubrum has

159polyps embedded in the coenenchyme, and their gas-

160trovascular cavities are interconnected by superficial and

161deep gastrodermal channels (Lacaze Duthiers 1864). The
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162 superficial channels are small and located within the coe-

163 nenchyme layer, while the deep channels are larger and

164 located in crenulations (wavelets) along the skeleton sur-

165 face. When the coenenchyme and polyps are removed, a

166 cavity mark can be distinguished, imprinted on the skeleton

167 just below the polyp (Fig. 1b; Lacaze Duthiers 1864; Grillo

168 et al. 1993; Vielzeuf et al. 2008). The deep channels are

169 absent on the surface of these cavity marks, hence no

170 crenulations are found below the polyps (Fig. 1b; Perrin

171 et al. 2015).

172 Skeleton formation and dynamics of polyp number

173 The early skeleton formation in 1–4-year-old colonies

174 (settled on artificial substrates; see Bramanti

175 et al. 2005, 2007) has been examined under a dissection

176 microscope (40–60 x; Fig. 2).

177 The relationship between total number of polyps and

178 branches was tested on 518 intact colonies of different size

179 (out of 695 collected across the Northwestern Mediter-

180 ranean between 2009 and 2016; Priori et al. 2013; Bra-

181 manti et al. 2014; Benedetti et al. 2016; unfortunately no

182 environmental data on sampling sites was at our disposal

183 (sampling details in Supplemental Materials). All the

184 colonies were photographed, numbered and fixed in 4%

185 formalin for laboratory analysis. The total number of

186polyps and the sex of each colony were determined under a

187binocular dissecting microscope (Santangelo et al. 2003).

188Three types of branches were identified in each colony:

189basal, internodal and apical. The basal branch corresponds

190to the base of the colony, the internodal branch is the first

191branch generated by the branching process (i.e., the largest/

192oldest branch of the colony; Benedetti et al. 2016) and the

193apical branch was chosen randomly among the tips

194(Fig. 1c).

195The relationship between the number of apical branches

196and the number of polyps was assessed by means of linear,

197power, logarithmic and exponential fits and the one with

198the highest R2 was selected. Significance was tested by

199Pearson’s correlation coefficient on log/log transformed

200data.

201Polyp age and distribution

202The age of polyps was estimated by applying the procedure

203developed by Vielzeuf et al. (2008) based on the Organic

204Matrix Staining (OMS) method for colony dating (Mars-

205chal et al. 2004), which highlights annual growth rings on

206decalcified and stained thin sections (50 lm), transversal to

207colony axis. Only 135 colonies (out of 695) were suit-

208able for this analysis (i.e., without signs of damage by

209boring sponges). Overall, 197 transverse thin sections cut

Fig. 1 a Corallium rubrum

colonies in the Marine Protected

Area of Cerbere/Banyuls sur

Mer (L Bramanti photocredits);

b A colony depleted of

coenechyme (arrows indicate

polyp cavity marks) and a detail

of crenulated colony axis with a

polyp cavity mark without

crenulations. c Three types of

branches in a C. rubrum colony;

d Thin OMS section of colony

axis where annual growth rings

are highlighted. Three dead

(black rectangles) and one

living polyp cavity mark (white

rectangle) are shown

Coral Reefs

123
Journal : Large 338 Dispatch : 18-5-2020 Pages : 12

Article No. : 1942
h LE h TYPESET

MS Code : CORE-D-18-00305R3 h CP h DISK4 4



R
E

V
IS

E
D

PR
O

O
F

Fig. 2 Formation of C. rubrum

skeleton starting from the walls

of cavity marks: a Young

colony at 1 polyp-stage (L

Bramanti photocredits).

b Skeleton of the colony at this

stage. c Young colony at 2

polyp-stage. (after Lacaze

Duthiers 1864). d Skeleton of

the colony at this stage.

e Skeleton of a young colony at

4 polyp-stage. f Skeleton of a

2–3-year-old colony: this ‘‘x

profile’’ will form the central

core in older colonies. g Thin

section of an older colony axis:

the central core is highlighted

by the arrow
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210 along the branches (135 basal sections and 62 internodal

211 and apical sections) were stained and examined to identify

212 the locations of polyps (i.e., cavity marks) and to estimate

213 their age. On thin sections, each annual growth ring is

214 made up of two seasonal bands (light and dark), with

215 crenulations in correspondence to the deep gastrodermal

216 channels (Fig. 1b, d). As these channels are absent on the

217 cavity mark surface, the lack of the crenulated layer along

218 growth rings indicates the presence of a polyp, and the

219 number of non-crenulated growth rings gives an estimate

220 of polyp age (Fig. 1d; Vielzeuf et al. 2008). A cavity mark

221 where the non-crenulated layer reaches the most external

222 growth ring (i.e., the most recent) indicates a polyp that

223 was still alive at the time of colony collection. When such a

224 marker was not present in the last growth ring (Fig. 1d), we

225 assumed that the polyp was already dead at the time of

226 collection (hereafter called ‘‘past polyp’’). Polyps still alive

227 at the time of sampling were excluded from the calculation

228 of longevity and life span.

229 The mean number of living and past polyp marks were

230 divided according to the age of the colony at the level at

231 which the thin section was cut. The age of branches was

232 determined by applying the OMS method (n = 162).

233 As data were not normally distributed, a nonparametric

234 analysis (Mann–Whitney) was applied to test if polyp age

235 differs between females (n = 82) and males (n = 93), and

236 between shallow (n = 168) and deep (n = 63) populations.

237 The average width of polyp cavity marks (i.e., the linear

238 distance between the two edges of the depression), mea-

239 sured on the most evident cavities (n = 114), was used as a

240 proxy for polyp diameter. Polyp growth rates (mm y-1)

241 were then calculated as the ratio between cavity mark

242 width and polyp age.

243 The density of polyps was measured on 10 living

244 colonies maintained alive in aquaria at 17 ± 1 �C (sam-

245 pling details in Supplemental Materials). The number of

246 polyps on the three branch types (basal n = 10, internodal

247n = 10 and apical n = 10) was counted under a dissecting

248microscope. For accuracy, polyp counts were performed

249twice, and the average value was used for the analysis.

250The length (distance, in mm, between the branch base and

251tip) and mean diameter (in mm, at the branch base and

252tip) of each branch on the colony skeletons were mea-

253sured with calipers and the branch surface (cm2) was

254calculated by approximating their shape to a truncated

255cone. Polyp density (number 9 cm-2) was calculated by

256dividing the polyp number by the area of each branch. In

257order to account for autocorrelation of data within a

258colony, polyp density in different branches of colonies

259was analyzed using a linear mixed model, including the

260branch types as a fixed effect and the colony as a random

261effect (model \ - lmer(Density * Branchtypes ?(1|Col-

262ony)), using the function ‘lmer’ in the R package ‘lme40

263(Bates et al. 2015). In order to assess the fit of the model,

264we calculated the marginal and conditional R2, using the

265function r.squared GLMM in the package MuMIn (Barton

2662019). The marginal R2 provides an estimate of the propor-

267tion of total variance explained by the fixed factor alone,

268while the conditional R2 an estimate of that explained by both

269the fixed and random factors (Nakagawa and Schielzeth

2702013). We tested the effects of Branch Type in the linear

271mixed model with a Type-III ANOVA (Table 1), using

272Satterthwaite’s method (lmerTest package; Kuznetsova et al.

2732017). The function ‘lsmeans’ in the R package ‘lsmeans’

274(Lenth 2016) was used for post hoc comparisons among

275Branch Type levels. Assumptions of linearity and homo-

276geneity of variance were checked by means of Q–Q plots and

277by plotting residuals versus fitted values.

278Mortality table and budding rate

279Based on the age of past polyps, a mortality table was

280constructed (i.e., a life table based on the age of polyps at

281death; Bergher 1990; Arrigoni et al. 2011; Table 2). In this

Table 1 (a) Type-III ANOVA

of polyp density. (b) Post hoc

comparisons among Branch

Type levels

(a)

Sum Sq Mean Sq Num DF Den DF F value Pr ([ F)

Branch Type 325.91 162.96 2 18 10.344 0.001022

(b)

Contrast Estimate SE DF t ratio p value

Apical-basal branches 8.06 1.78 18 4.541 0.0007

Apical-internodal

branches

4.43 1.78 18 2.494 0.0560

Basal- internodal

branches

- 3.63 1.78 18 - 2.047 0.1298
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282 table, polyps were divided into yearly age classes, and the

283 number of dead (Xi) and survivors (Si) during each age

284 interval reported.

285 Mortality values were used to construct a survival

286 transition matrix (Table 3), in which the nonzero entries in

287 the lower diagonal are the probabilities (ri) of polyp sur-

288 vival from one age class (i) to the next (i ? 1). The data

289 presented in Tables 2 and 3 were used to develop a model

290 describing the polyp budding rate in a young, unbranched

291 colony; as this rate is most likely similar to that of a new

292 branch, this parameter will hereafter be referred to as

293 ‘‘branch budding rate.’’ Then, the polyp number at the

294 colony base was projected over a period of 50 years. A

295 detailed description of the model and calculations of bud-

296 ding rate variability are reported in the Supplemental

297 Materials.

298 Results

299 Skeleton formation and dynamics of polyp number

300 The early formation of the skeleton was described on the

301 basis of the observation of polyp cavity marks in 1–4-year-

302 old colonies. A few weeks after larval settlement, the new

303 whitish polyp starts to deposit sclerites in the coenosarc,

304 forming the first cavity of the primary polyp (L Bramanti

305 personal observations; Fig. 2a, b). After two months, when

306 the young colony has two polyps (Fig. 2c), two adjacent

307 cavities are visible in the skeleton (Fig. 2d). Four cavities

308 from a quartet of adjacent polyps were evident in 1-year-

309 old colony skeletons (Fig. 2e). During the first 4 years,

310 only the skeleton between adjacent cavities grows and form

311 an ‘‘x-shaped profile’’ (from a vertical point of view,

312 Fig. 2f), which becomes the butterfly-like structure

313 observed in the transversal sections of the central skeletal

314 core of [ 4 years old colonies (arrow in Fig. 2g).

315 In branched colonies, older than 10 years, there was no

316 relationship between colony age and polyp number. How-

317 ever, a significant, correlation described by a power func-

318 tion was found between the number of polyps in a colony

319 and the number of its apical branches (y = 23.87x0.91,

320 R2 = 0.62, p \ 0.01, n = 548; Fig. 3). This suggests that

321 the total number of polyps is linked to the number of

322 branches rather than to colony age.

323 Polyp age and distribution

324 A total of 197 transversal sections of C. rubrum skeletons

325 were examined and 355 polyp cavity marks identified (234

326 of past polyps and 121 of polyps that were still alive at the

327 time of colony collection). Living polyps were more

328 abundant in sections cut from the younger branches of a

329colony (\ 10 years), with their number decreasing with

330branch age. Only past polyp markers were found on branch

331sections older than 35 years (Fig. 4).

332Despite the wide variability in polyp longevity, no polyp

333(out of the 355 examined) was older than 12 years sug-

334gesting that senescence is likely an important process in

335regulating polyp dynamics within colonies. The median

336age of past polyps and their maximum life span were 4 and

33712 years, respectively (n = 234; Fig. 5).

338As expected, living polyps were generally younger than

339past ones, accounting for 45% of the \ 1-year-old ones.

Fig. 3 Relationship between apical branch and polyp number:

y = 23.87x0.91, R2 = 0.62, p \ 0.01, ES = 138

Fig. 4 Mean number of polyp cavity marks per colony branches of

different age classes
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340 As \ 1-year-old polyps do not form cavity marks in the

341 growth ring layer, it is not possible to individuate these

342 polyps on the thin sections, but they can be identified only

343 if they were alive at the time of collection through the

344 remains of their tissue.

345 There was no significant difference in longevity between

346 polyps of female and male colonies (Mann–Whitney Test,

347 n = 82, n = 93, p [ 0.05) while polyps of deeper colonies

348 were significantly older than those of shallow ones (5.5 vs.

349 4 years, Median, Mann–Whitney Test: n = 66, n = 168;

350 p \ 0.001).

351 The median diameter of cavity marks was 1.0 mm (C.I.

352 0.98–1.03 mm, n = 114), and it is reached within the first

353 or the second year of polyp life.

354 The density of polyps varied significantly among dif-

355 ferent branches (Table 1a and Fig. 6a). Post hoc tests

356 indicated that polyp density at the apical branches

357 (16.1 ± 1.7 polyps cm-2, Mean ± ES) was higher than at

358 the basal branch (8.0 ± 1.2 polyps cm-2). Likewise, there

359 was a trend for polyp density on internodal branches to be

360higher than at the base of colonies, but differences were

361only marginally significant. There were no differences in

362polyp density between internodal and apical branches

363(Table 1b). The linear mixed model explained about 44%

364of the variation in the data (conditional R2= 0.436), of

365which around 40% was explained by the fixed factor (i.e.,

366Branch type; marginal R2= 0.402).

367Polyp density decreased with the age of branches and

368higher values were found at some tips (Fig. 6b).

369Mortality and Budding rate

370Mortality regularly increased with polyp age and 59% of

371polyps died before the age of 5 years (age classes 5–6). All

Fig. 5 Age distribution of living and past polyps

Fig. 6 a Polyp density in

different branches of the colony.

Bars = SE. b Polyp density

versus age of basal, internodal

and apical branches (y = 28.3-

11.7log(x), R2 = 0.47, p \ 0.05)

Table 2 Mortality table constructed from the age at death of 234

polyps

Polyp age classes (i) Xi Si li

1–2 25 234 1.00

2–3 31 209 0.89

3–4 41 178 0.76

4–5 40 137 0.59

5–6 34 97 0.41

6–7 28 63 0.27

7–8 10 35 0.15

8–9 7 25 0.11

9–10 5 18 0.08

10–11 7 13 0.06

11–12 4 6 0.03

12–13 2 2 0.01

13–14 0 0 0.00

Xi= number of polyps that died during each age interval; Si= number

of survivors at the beginning of each age interval; li= survival prob-

ability of class 1 polyps to age class (i) (number of survivors as a

fraction of newborns)
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372 polyps of a new, annual cohort (age class) died within

373 12 years; thus the complete turnover of a colony could

374 occur several times during its life cycle (e.g., a colony

375 100 years old could renew its polyps about 8 times).

376 A mortality table was constructed using the age at death

377 of past polyps (Table 2). In this table, polyps were divided

378 into 13 yearly age classes, and the yearly number of dead

379 (Xi) and survivors (Si) were reported. The polyp mortality

380 table was, then, used to compile a survival transition matrix

381 which describes the portion of polyps that, for each year,

382 passed from one age class to the following (Table 3). The

383 matrix was then applied to develop a dynamic population

384 model which fits the polyp budding rate of a young,

385 unramified colony (data from the literature in Supplemental

386Materials) and projects this rate up to 50 years (during this

387time the young colony became the basis of an older, larger

388one; Fig. 7). According to the model, the yearly number of

389polyps increases (up to 40 polyps year-1) with the age of

390branches and, after 15–16 years, it decreases reaching the

391lowest value (\ 10 polyps years-1) at 50 years. The model

392is based on average values and the variability around these

393values was calculated as reported in Supplemental Mate-

394rials and represented by dotted lines in Fig. 7.

395Discussion

396Understanding the mechanisms underpinning the organi-

397zation of polyps by an a posteriori demographic approach

398could shed some new light on the growth of long-lived,

399branched gorgonians. In Corallium rubrum, the colony

400shape may be described by a blend between the bifurcation

401model, in which ‘‘a single branch divides in two sisters

402branches’’ (Brazeau and Lasker 1992) and the mother–

403daughter branching model, in which ‘‘colonies branching

404subapically, generating hierarchical mother–daughter rela-

405tionships among branches’’ (Lasker et al. 2003; Sánchez

406et al. 2004; among others). Simulations of the modular

407growth of C. rubrum colonies have been developed on the

408basis of simple stochastic rules and results suggested that

409the morphology can result two conflicting processes,

410branching and growth, priority of which is regulated by

411environmental factors (Kahramanoğullari et al. 2019).

412In the Mediterranean red coral, the overall number of

413polyps is correlated with colony age during the first years

414of life (Bramanti et al. 2005), while in the older colonies,

415such as those examined here, this correlation is lost. In

416these larger colonies, the number of polyps is a function of

417the total number of apical branches that, despite the wide

418variability in their size, are characterized by higher polyp

419density. As the first ramification starts around 10 years

420(Benedetti et al. 2016), the lack of a correlation between

421polyp number and colony age in [ 10 years old colonies is

422likely the result of a large variation in the branching

423process.

424While the reproductive cycle of C. rubrum is well

425known (Vighi 1972; Santangelo et al. 2003), the mecha-

426nisms regulating the production of new polyps are still

427poorly understood. The highly variable colony morphology

428recorded in several octocorals, often considered as a con-

429sequence of large variability in hydro-mechanical forces

430(Patterson 1980; Chindapol et al. 2013; among others),

431could be driven by polyp density and distribution. Perrin

432et al. (2015) suggested that the direction of growth of new

433branches in C. rubrum could be influenced by the position

434of the polyp with respect to the tip: ‘‘…radially distributed

435polyps could favor a uni-directional vertical growth, while

Fig. 7 Branch budding rate over time. Continuous line: values of bn

(branch budding rate) for a young and unbranched colony of age

ranging from 1 to 9 years (data from Bramanti et al. 2005 and

Santangelo et al. 2007). Dashed line: estimated bn from 10 to

50 years. The two dotted curves represent the variability of bn

Table 3 Survival transition matrix of a Corallium rubrum polyp

population. The diagonal represents the portion (ri) of polyps that

raised by one class to the following each year
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436 polyps located at the very tip of the branch could favor the

437 emergence of a ramification.’’ Occasionally, some polyps

438 can drive the growth of further secondary branches starting

439 from the base or well below the colony tips, probably by

440 increasing the production of sclerites at their bases (Perrin

441 et al. 2015; Benedetti et al. 2016).

442 A first attempt to model the evolution over time of polyp

443 number in a C. rubrum colony was recently made by Galli

444 et al. (2016), who assumed that new polyps are produced

445 by the older ones via a budding process that depends on the

446 number of polyps at budding time. However, differently

447 from scleractinians (e.g., Richmond 1997; Gateño and

448 Rinkevich 2003) and some octocorals (Lan da Silveira and

449 Van’t Hof 1977), no budding in already existing polyps has

450 ever been documented in C. rubrum. The only description

451 of new polyp formation in colonies of this species dates

452 back to about 150 years ago, when the French naturalist,

453 Henry Lacaze Duthiers, described the ‘‘blastogenesis of a

454 polyp’’ as a ‘‘small whitish tumor’’ appearing on a point on

455 the colony surface (Lacaze Duthiers 1864). The lack of

456 polyp budding in the Mediterranean red coral has been

457 further confirmed by other researchers (S Rossi and G

458 Tsounis, pers. comm.). In conclusion the formation of new

459 polyps likely occurs on some points of the gastrodermal

460 channels embedded in the coenenchyma, following

461 modalities that are still unknown.

462 An analysis of the polyp distribution along colony

463 branches of different ages may provide a proxy for the

464 local budding rate of polyps. We found a significantly

465 higher density of polyps at the tips that together with its

466 decrease with increasing age suggests a higher rate of

467 production of new polyps in the younger parts of the col-

468 ony. Such observation is supported by the faster growth

469 rates in young colonies (Bramanti et al. 2005; 2007) and at

470 the tips (Benedetti et al. 2016; Lartaud et al. 2016). The

471 higher polyp density found at some tips, indicating faster

472 growth in some branches, could lead to directional and

473 asymmetrical colony growth.

474 At the base of branched colonies, polyp density and

475 diameter growth rates are lower and vertical growth stops

476 (Bramanti et al. 2014; Benedetti et al. 2016). The small

477 number of polyps found in this portion of the colony could

478 be explained by the limited plankton supply due to the

479 reduced current and the trophic shadow cast by higher rank

480 branches (Kim and Lasker 1997). We should then expect

481 that the sparse polyps found at the colony base may either

482 change their tentacles in response to a lower food supply

483 (Abel 1970; Lopez-Gonzalez et al. 2018) or shift from a

484 trophic to a cleaning/sweeping function.

485 Little is known about the life cycle of coral polyps. The

486 literature data are highly variable, spanning between the

487 observation made by Beklemishev (1969) who described

488 the polyps of colonial anthozoans as ‘‘short-lived,’’ and the

489reports of Wood-Jones (1907) who believed that coral

490polyps were theoretically immortal. In a more recent study

491on scleractinian polyps, Darke and Barnes (1993) estimated

492a mean polyp life expectancy of 5 years and a maximum

493life span of 8 years. Moreover, they found a significant

494difference in polyp longevity between colonies collected

495on reefs characterized by different ‘‘bumpiness’’ (i.e.,

496lenticular growth surface; Darke and Barnes 1993). To

497date, measures of polyp life span in gorgonian corals are

498rare. In the Mediterranean red coral, Vielzeuf et al. (2008)

499report that ‘‘…a polyp appears, fulfills its functions, and

500then disappears after 6–8 years of activity.’’ Using the

501method described in the foregoing, we determined the age

502distribution of polyps in C. rubrum colonies collected from

503different geographic areas and depths. According to our

504results, C. rubrum polyps reach their maximum size in the

505first two years of life and have an average life span of

5064 years, with no difference between females and males,

507suggesting that the different time needed for female and

508male gonad maturation (two and one year respectively;

509Vighi 1972) does not influence polyp life span. Fifty-nine

510percent of new polyps died before 5 years and their max-

511imum life span was 12 years. A 100-year-old colony

512should then pass through approximately 8 generations of

513polyps: such polyp renewal could be a key factor in the

514longevity of this species. In all colonies collected in the

515different sampling areas, no polyp lived more than

51612 years, polyp density decreased with branch age and

517mortality increased with polyp age: these findings clearly

518suggest the relevance of polyp senescence in determining

519colony growth and longevity. However, this does not

520exclude local, partial mortality due to predation (Priori

521et al. 2015).

522Our data indicate a significantly greater polyp age in

523colonies collected in deeper (50–130 m depth) than shal-

524lower areas (30–35 m depth). This difference is likely due

525to the higher mean colony age found in deeper populations

526(Tsounis et al. 2006a; Priori et al. 2013; Bramanti et al.

5272014; Benedetti et al. 2016). As observed in several marine

528modular organisms (Sánchez et al. 2004 and references

529herein), the polyp budding rate in C. rubrum decreases with

530branch age. Given that colony growth rate and polyp pro-

531duction are higher during the first years of colony life

532(Bramanti et al. 2005, 2014), it was expected that polyp

533production would be faster in younger and less branched

534colonies with respect to older ones.

535Using the mortality table of polyps, a transition matrix

536and a dynamic population model were set out to represent

537the branch budding rate of polyps over a life span of

53850 years. In a young, unbranched colony, the branch bud-

539ding rate increases up to 15 years of life, to decrease in the

540following period, when the formerly young colony

541becomes the basis of an older, branched one. Such bell-
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542 shaped trend is consistent with the reduction of polyp

543 density observed in the older parts of a colony, likely due

544 to senescence.

545 The demographic model proposed in this paper

546 describes the modular growth of young, unbranched C.

547 rubrum colonies. Our findings represent a first step toward

548 the development of advanced polyp dynamic models aimed

549 at representing the complex growth of older, ramified

550 colonies, in which also the second factor of modularity (i.e.

551 the branching process) and the variability of the growth

552 process, should be included.
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