, 94 (dt, 3 J H-H = 8.1 Hz, 4 J H-H = 1.8 Hz, 1 H, H 17, 7.99 (t, 3 J H-H = 7.6 Hz, 1 H, H 22 ), vol.7

H. Hz, Due to solubility limitations, no 13 C{ 1 H} or 195 Pt{ 1 H} NMR spectra could be recorded

, 048 mmol) and Re(CO) 5 Br (20 mg, 0.048 mmol) were dissolved in chloroform (1 mL). The reaction was refluxed overnight. After the reaction mixture has been cooled down to room temperature, chloroform was partially evaporated under reduced pressure and upon addition of cyclohexane the product precipitated which lead after drying under vacuum to the pure product as an orange powder, p.40

. Mhz, , vol.298

, H 17 ), 7.77 (m, 6 H, H 22 ), 7.65 (d, 3 J H-H = 8.5 Hz, 1 H, H 16 ), 7.54 (m, 3 H, H 23 ), 7.38-7.49 (m, 8 H, H 10 + H 18 + H 22 ), vol.7, p.100

. Mhz, 4 (s, C 3 ), 153.1 (s, C 19 ), 150.1 (s, C 15 ), ? 195.2 (s, C?O), 194.5 (s, C?O), vol.298, p.1

J. 62, 5 (s, C 2 ), 104.1 (s, C 7 ), 55.2 (s, OCH 3 ), C 5 not visible. 31 P{ 1 H} NMR (CDCl 3 , 162 MHz, 298 K): ? 8.59 (s + d, 1 J P-Pt = 4295 Hz, vol.124, p.86

, Br(CO) 3 Re(L2)Pt(PPh 3 )). ESI-MS (MeCN) positive mode exact mass for ?C 41 H 29 N 4 O 6 PBrPtReNa? + (1189.0064): measured m/z 1189.0091 ?M+Na? + . Calcd for C 41 H 29 N 4 O 6 PPtReBr

. Br, After the reaction mixture has been cooled down to room temperature, chloroform was partially evaporated under reduced pressure and upon addition of cyclohexane the product precipitated which led after drying under vacuum to the pure product as an orange powder (56 mg, 0.054 mmol, 94 % yield). 1 H NMR (CDCl 3 , 400 MHz, 298 K): ? 9.01 (d, 3 J H-H = 5.1 Hz, 1 H, H 19, The reaction was refluxed overnight, p.1

H. , , vol.3, p.100

. Mhz, 4 (s, OCH 3 ), 33.8 (s, NCH 3 ). 195 Pt{ 1 H} NMR (CDCl 3 , 86 MHz, 298 K): ? -2116 (s, Br(CO) 3 Re(L2)Pt(NHC)). ESI-MS (MeCN) positive mode, vol.168

+. , Calcd for C 32 H 24 N 6 O 6 BrPtRe (1049.8): C, 36, p.61

, AgBF 4 (11 mg, 0.058 mmol) was dissolved in methanol (500 µL) and added onto the [Br(CO) 3 Re(L2)Pt(PPh 3 )]/pyridine mixture. The reaction was carried out at room temperature for 2 h. The reaction mixture was filtrated through celite, the solvent was evaporated and the product was washed with cyclohexane to lead after drying under vacuum to the pure product as an orange powder, p.298

, 32 (s, 1 H, H 19 ), 8.62 (d, 3 J H-H = 3.8 Hz, ? 9, vol.8

H. Hz, Jmod NMR (CD 3 CN, 100 MHz, 298 K): ? 195.2 (s, C?O), 195.1 (s, C?O), 170.4 (s, C 1 ), 170.1 (s, C 14 ), 165.6 (s, C 3 ), 157.6 (s, C 6 ), 154.1 (s, C 19 ), 5 + H 18 + H 21 ), 7.60-7.68 (m, 11 H, H 22 + H 23 + H 25 ), 7.43 (d, 3 J H-H = 7.3 Hz, 1 H, H 10 ), 7.30 (t, 3 J H-H = 7.3 Hz, 1 H, H 12 ), 6.58 (m, 2 H, H 11 + H 13 ), 6.41 (m, 1 H, H 4 ), vol.5

, ESI-MS (MeCN) positive mode exact mass for ?C 46 H 34 N 5 O 6 PPtRe? + (1165.1446): measured m/z 1165.1459 ?M-BF 4 ? + . Calcd for C 46 H 34 N 5 O 6

, Unit-cell parameters determination, integration and data reduction were carried out with SAINT program. [38] SADABS was used for scaling and absorption correction. [39] The structure was solved with SHELXT [40] and refined by full-matrix least-squares methods with SHELXL [41] using Olex2 software package. [42] All non-hydrogen atoms were refined anisotropically. This structure was deposited at the Cambridge Crystallographic Data Centre with number CCDC 1971095 and can be obtained free of charge via www.ccdc.cam.ac.uk. For complexes 2a and 3c, a single crystal of each compound was selected, vol.38

B. Rosenberg, L. Vancamp, and T. Krigas, Nature, vol.205, pp.698-699, 1965.

R. Oun, Y. E. Moussa, and N. J. Wheate, Dalton Trans, vol.47, pp.6645-6653, 2018.

M. Fanelli, M. Formica, V. Fusi, L. Giorgi, M. Micheloni et al., Eur. J. Med. Chem, vol.310, pp.349-382, 2016.

D. Wang and S. J. Lippard, Nat. Rev. Drug Discov, vol.4, pp.307-320, 2005.

N. J. Wheate, S. Walker, G. E. Craig, and R. Oun, Dalton Trans, vol.39, pp.8113-8127, 2010.

G. Jaouen, A. Vessières, S. Top, ;. Levina, A. Mitra et al., Chem. Soc. Rev, vol.44, pp.11840-11851, 2009.

L. P. Yang, S. J. Kea, and G. M. Keating, Drugs, vol.15, pp.2211-2230, 2007.

S. A. Loza-rosas, A. M. Zquez-salgado, K. I. Rivero, L. Egr-n, and . Delgado, Inorg. Chem, vol.56, pp.7788-7802, 2017.

G. Dahm, E. Borré, C. Fu, S. Bellemin-laponna, and M. Mauro, Chem. Asian J, vol.10, pp.2368-2379, 2015.

J. Fernández-gallardo, B. T. Elie, T. Sadhukha, S. Prabha, M. Sanaú et al., Chem. Sci, vol.6, pp.5269-5283, 2015.

B. Bertrand, A. Citta, I. L. Franken, M. Picquet, ·. Folda et al., J. Biol. Inorg. Chem, vol.20, pp.1005-1020, 2015.

L. K. Batchelor, D. Orti, and P. J. Dyson, Inorg. Chem, vol.58, pp.2501-2513, 2019.

M. Wenzel, E. Bigaeva, P. Richard, P. L. Gendre, M. Picquet et al., J. Inorg. Biochem, vol.141, pp.10-16, 2014.

M. Wenzel, B. Bertrand, M. Heymin-ondel, V. Comte, J. A. Harvey et al., Inorg. Chem, vol.50, pp.9472-9480, 2011.

L. Boselli, M. Carraz, S. Mazères, L. Paloque, G. González et al., Organometallics, vol.34, pp.2544-2557, 2015.

V. Fernández-moreira, I. Marzo, M. C. Gimeno, ;. Luengo, V. Fernández-moreira et al., Inorg. Chem, vol.5, pp.15159-15170, 2014.

S. Clède and C. Policar, Coord. Chem. Rev, vol.21, pp.172-188, 2015.

D. Fischer-durand, ,. Lizinska, B. Guérineau, M. Rudolf, and . Salmain, Appl. Organomet. Chem, p.4798, 2019.

C. Policar, J. B. Waern, M. Plamont, S. Clède, C. Mayet et al., Angew. Chem. Int. Ed, vol.50, pp.860-864, 2011.

Y. Wang, F. Heinemann, S. Top, A. Dazzi, C. Policar et al., Organometallics, vol.47, pp.746-756, 2018.

S. Steinhauser, U. Heinz, H. Nick, and K. Hegetschweiler, Eur. J. Inorg. Chem, pp.4177-4192, 2004.

F. Slowinski, O. B. Ayad, O. Ziyaret, C. Botuha, L. L. Falher et al., Org. Lett, vol.15, pp.3494-3497, 2013.

A. Massard, V. Rampazzi, A. Perrier, E. Bodio, M. Picquet et al., Organometallics, vol.31, pp.947-958, 2012.

M. Bouché, G. Dahm, A. Maisse-françois, T. Achard, and S. Bellemin-laponnaz, Eur. J. Inorg. Chem, pp.2828-2836, 2016.

H. Motschi and P. S. Pregosin, Inorg. Chim. Acta, vol.40, pp.141-146, 1980.

L. C. Lee, K. Leung, K. K. , and .. Lo, Dalton Trans, vol.46, pp.16357-16380, 2017.

S. Clède, F. Lambert, R. Saint-fort, M. Plamont, H. Bertrand et al., Chem. Eur. J, vol.20, pp.8714-8722, 2014.

J. A. Sklorz, S. Hoof, N. Rades, N. De-rycke, L. Könczöl et al., Chem. Eur. J, vol.21, pp.11096-11109, 2015.

E. D. Olmon, P. A. Sontz, A. M. Blanco-rodr-guez, M. Towrie, I. P. Clark et al., J. Am. Chem. Soc, vol.133, pp.13718-13730, 2011.

V. Fernández-moreira and M. C. Gimeno, Chem. Eur. J, vol.24, pp.3345-3353, 2018.

C. P. Newman, R. J. Deeth, G. J. Clarkson, and J. P. Rourke, Organometallics, vol.26, pp.6225-6233, 2007.

J. K. Muenzner, T. Rehm, B. Biersack, A. Casini, I. A. De-graaf et al., J. Med. Chem, vol.58, pp.6283-6292, 2015.

K. Brandenburg, , 1999.

H. Yao, G. He, S. Yan, C. Chen, L. Song et al., Oncotarget, vol.8, pp.1913-1924, 2017.

S. Salehi, A. S. Saljooghi, and A. Shiri, Eur. J. Pharmacol, vol.781, pp.209-217, 2016.

D. J. Minick, J. H. Frenz, M. A. Patrick, and D. A. Brent, J. Med. Chem, vol.31, pp.1923-1933, 1988.

B. Bertrand, M. A. O'connell, Z. A. Waller, and M. Bochmann, Chem. Eur. J, vol.24, pp.3613-3622, 2018.

B. Bertrand, J. Fernandez-cestau, J. Angulo, M. M. Cominetti, Z. A. Waller et al., Inorg. Chem, vol.56, pp.8105-8112, 2017.

. Bruker, APEX II / APEX III / SAINT, Bruker AXS Inc, 2012.

. Bruker, SADABS / TWINABS. Bruker AXS Inc, 2001.

G. M. Sheldrick, Act. Cryst. A, vol.71, pp.3-8, 2015.

G. M. Sheldrick, Act. Cryst C, vol.71, pp.3-8, 2015.

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, J.Appl. Crystallogr, vol.42, pp.339-341, 2009.

A. L. Spek, Act. Cryst. C, vol.71, pp.9-18, 2015.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski et al., , 2009.

J. P. Perdew, K. Burke, M. Ernzerhof, ;. Adamo, and V. Barone, Phys. Rev. Lett, vol.77, pp.6158-6170, 1996.

D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta, vol.77, pp.123-141, 1990.

W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys, vol.56, pp.2257-2261, 1972.