

Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications

Lu Zhang, Yacine Mazouzi, Michèle Salmain, Bo Liedberg, Souhir Boujday

▶ To cite this version:

Lu Zhang, Yacine Mazouzi, Michèle Salmain, Bo
 Liedberg, Souhir Boujday. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosensors and Bioelectronics, 2020, 165, pp.112370. 10.1016/j.bios.2020.112370. hal-02928749

HAL Id: hal-02928749 https://hal.sorbonne-universite.fr/hal-02928749v1

Submitted on 18 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Experimental study of water evaporation rate, at the surface of aqueous solution, under the effect of a discontinuity of chemical potential - effect of water activity and air pressure

5 J.-C. Bénet¹, S. Ouoba², F. Ouedraogo³, F. Cherblanc¹

6

4

7 <u>Corresponding author</u>: fabien.cherblanc@umontpellier.fr

8

- 9¹ LMGC, Université de Montpellier, CNRS, Montpellier, France
- 10 ² LPCE, Université Joseph Ki-Zerbo, Ouagadougou, Burkina-Faso
- ³GERME & TI, Université Nazi Boni, Bobo Dioulasso, Burkina Faso.

12

13 Abstract

14 The aim of this communication is to analyse the influence of water activity and total pressure 15 on water evaporation. The system is composed of liquid and gas phases, separated by a plane surface, contained in a cylinder whose volume is regulated by a piston. Water activity is 16 17 regulated by saturated salt solutions and pressure by the piston. The experimental device and 18 procedures were defined to limit the temperature variation at the interface. A transient 19 method is used. From a steady state, a volume increment is imposed; the resulting non-20 equilibrium leads to an increase in the partial pressure of water vapour to the equilibrium 21 pressure imposed by the solution. Numerical calculation shows little variation in temperature 22 in the gas-liquid interface under the experimental conditions. An evaporation model is 23 adopted taking into account chemical potential discontinuity at the interface. The surface flux 24 evaporation and chemical potential jump at the interface are deducted from the total pressure 25 recording. In the neighbourhood of equilibrium, the surface flux of phase change is shown to 26 be proportional to the chemical potential jump. The surface coefficient of evaporation 27 increases with the total pressure of the gas phase and water activity.

Key words: surface evaporation rate; chemical potential; water activity; gas pressure;
 transient method.

30 Nomenclature

- 31 a_w : Activity of water (/)
- 32 C_{α} : Specific heat capacity of the phases; $\alpha = g$ for the gas phase, $\alpha = l$ for the liquid 33 phase (J.kg⁻¹.K⁻¹)

34	D_v	: Diffusion coefficient of water vapour in air (m ² .s ⁻¹)
35	h_g	: Thickness of the gas phase (m)
36	h _l	: Thickness of the liquid phase (m)
37	Jv	: Evaporation flux by surface unit and unit time (kg.m ⁻² .s ⁻¹)
38	J _{di}	: Diffusive flux of the vapour (i=v) and air (i=a) (kg.m ⁻² .s ⁻¹)
39	L ^S	: Isothermal phase change coefficient by unit surface (kg.K.s.m ⁻⁴)
40	М	: Molar mass of water (0.018 kg.mol ⁻¹)
41	p_g	: Pressure of the gas phase (Pa)
42	p_i	: Partial pressure of air, (i=a) and vapour (i=v) (Pa)
43	p_v^{eq}	: Partial pressure of water vapour at the equilibrium with water in a solution (Pa).
44	$p_{vs}(T)$: Saturated vapour pressure at temperature (T)
45	p^+	: Reference pressure (Pa)
46	p_0	: Standard pressure (101325 Pa)
47	Q	: Energy flux (J.m ⁻² .s ⁻¹)
48	R	: Perfect gas constant (8.314 J.K ⁻¹ mol ⁻¹)
49	Т	: Temperature (K)
50	T_l	: Temperature of the liquid phase (K)
51	T_v	: Temperature of water vapour (K)
52	T_0	: Standard temperature (273.15 K)
53	v^k_{lpha}	: Gas phase velocity ($\alpha = g$), of air ($\alpha = a$) and water vapour($\alpha = v$) (m.s ⁻¹)
54	Ζ	: Elevation from the liquid-gas interface (m)
55		
56	Greek	symbols

- 58 λ_{α} : Thermal conductivity of the phases; ($\alpha = g$) for the gas phase, ($\alpha = l$) for the liquid 59 phase (W.m⁻¹.K⁻¹)
- 60 μ_{ν} : Mass chemical potential of water vapour (J.kg⁻¹)
- 61 μ_w : Mass chemical potential of liquid water (J.kg⁻¹)
- 62 μ^+ : Reference mass chemical potential reference, function of the temperature *T*, at 63 reference pressure P^+ (J.kg⁻¹)

64 ρ_{α} : Mass density of gas phase ($\alpha = g$), of air ($\alpha = a$) and water vapour ($\alpha = v$) (kg.m⁻ 65 ³)

- 66 ε : Correcting coefficient for evaporation rate (/)
- 67

68 **1.** Introduction

69 Liquid-gas phase change is involved in many mass and energy transfer. Examples include 70 evaporation over large bodies of water (lakes and seas) and their impact on climate, 71 evaporation from the soil surface associated with desertification, industrial distillation and 72 refining processes, high temperature geothermal processes, drying of food and industrial 73 products.

74 Surface evaporation involves mass and energy transfer phenomena related to:

- (i) temperature discontinuity at the interface and its variations on both sides of theinterface,
- 77 (ii) convective and diffusive transport in both phases,
- (iii) chemical potential discontinuity at the interface, generally associated with a difference
 between the vapour partial pressure and the equilibrium vapour pressure of liquid
 water.

81 The simultaneous consideration of all these mechanisms and their coupling makes theoretical 82 and experimental analysis difficult. Concerning phenomena (i) and (ii), Fang and Ward [1] 83 performed a phase change experiment for a spherical interface separating pure water and 84 water vapour. Partial pressure was kept constant at values between 194.7 and 596 Pa by a flux of vapour. The tests were carried out for temperatures of 15, 26 and 35°C. The average 85 surface evaporation flux varied between 70 µl/h and 160 µl/h. The temperature was measured 86 87 in the fluid and gas phases by thermocouples. The measurements showed an interfacial temperature discontinuity up to 8°C for evaporation rates of 160 µl/h. The temperature on the 88 89 vapour side was greater than the temperature on the liquid side.

Concerning phenomena (i) and (ii), Gatapova et al. [2] brought heat locally to a thin layer of
water at atmospheric pressure. Temperature and heat flux are recorded during experiments.
Various thermocouples (4 µm diameter) allow measuring the temperature jump at the waterair interface. A temperature jump of about 0.2°C is detected for the liquid surface temperature
of 35.2°C and the heater temperature of 43.6°C. They conclude that the value of temperature

95 jump depends not only on evaporation intensity but also on the temperature gradients in liquid and gas phases near the interface. 96

97 Kazemi et al. [3] conducted an experimental and theoretical study on the non-stationary 98 evaporation of water at low pressure. They proposed a mathematical model of the system 99 which takes into account mass, momentum and heat transport in liquid and gas phases, as 100 well as the phase change at the interface. The study allowed the description of the mass transfer through the interface. The experiments consisted in measuring the velocity field in 101 102 the central plane of the evaporating water. In addition, the temperature distribution at the 103 liquid-vapour interface was measured with a fine thermocouple. The results showed good 104 correlation between simulation and experiment. So, this model was used to reveal certain 105 behaviours on the phenomenon of evaporation difficult to access by experiments alone.

106 In the experiments proposed by Badam et al. [4], concerning phenomena (i), a cylindrical 107 water vapour interface is subjected to heat input. Heaters provided energy to the interface. A 108 moving thermocouple was used to measure the temperature profile in the liquid and vapour 109 phases. The water flow at the interface was determined from the quantity of water injected 110 into the liquid phase. These measurements were used to deduce the flow of evaporated water 111 and the temperature discontinuity at the interface, as well as heat flows in the liquid and gas phases near the interface. Temperature discontinuity depended on the imposed energy; it was 112 about 2°C without input of heat energy, and reached values up to 10°C when the temperature 113 114 was regulated at 80°C. These values are approximately 10 to 20 times higher than those given

115 by the kinetic theory of gases [4].

116 The experiments mentioned that the addition or removal of mass or heat at the interface 117 increases phase change. The release of latent heat of cools the two phases and leads to 118 temperature discontinuity at the interface. These experiments are performed in steady state, 119 the temperature jump is determined at the end of the experiment, which supposes that the 120 interface has reached an equilibrium, which is far from immediate.

121 In the environment, solvent, usually water, is generally impure. When the water contains salts 122 or other chemical compounds in solution, the activity of the water is modified as well as the 123 evaporation rate. Limited to aqueous saline saturated solutions, the objective of the 124 experimental study proposed here is to validate a macroscopic evaporation law triggered by a 125 chemical potential at the interface (phenomenon (iii) [4, 5, 6]. The influence of aqueous water 126 activity and total gas pressure on the evaporation rate will be analysed in this contribution.

127

Experimental studies of gas-liquid evaporation with low temperature 128 2. variation 129

130 The choice of a jump in chemical potential as the cause of evaporation requires carrying out 131 an experiment that minimizes the magnitude of mechanisms (i) and (ii); this is achieved if the experiment is carried out in a closed environment in the absence of diffusion and if the 132 temperature variation at the interface is very low. However, the imposed conditions must be 133 134 able to create an interfacial discontinuity of the chemical potential. To avoid a prevailing 135 temperature jump at the interface and to restrict the movement of fluids, the experiments are 136 carried out under transient conditions. In a close cylinder containing liquid and vapour water,

the phase change will be triggered by a rapid supply of mechanical energy. This energy will be provided by an increment of volume occupied by the gaseous phase, causing the vaporization of a small quantity of water. Physical quantities will be recorded during the return to equilibrium in order to analyse the phase change resulting from a discontinuity of the chemical potential. However, this experimental procedure can still induce evaporation under the action of mechanisms (i) and (ii), requiring to discuss the assumptions made.

143

144 Description of the experimental device

145 The experimental device, presented in Fig.1, was recently developed to characterize the 146 liquid-gas equilibrium in hygroscopic porous materials [7]. The same apparatus is used here 147 to analyse the kinetics between two equilibrium situations.

Water activity is controlled by means of standard saturated salt solutions (Tab.2). The solution under investigation was placed in a cylindrical tank (a), it thickness being of the order of 5 mm. A piston pump (c) was placed above the solution in order to apply gas pressure in (g) below the atmospheric pressure. The piston chamber volume is modified by a screw system (d) with a graduated ruler (e). O-ring gaskets (f) ensured perfect air tightness so that the system could be considered closed.

154

Figure 1

Table 1

155

156 Some characteristic dimensions are given Tab.1. A pressure transducer (b) (Druck, 157 PMP4030AB) was used to record the total pressure of the gas phase, p_g , throughout the 158 process with accuracy of ±10 Pa. The whole device was placed in a thermo-regulated bath at 159 30°C to ensure a constant temperature at the outer surface of the cylinder. As the device was 160 made of stainless steel its high thermal inertia led to low temperature variations. Data 161 acquisition was performed through a National Instrument DAQ card and analysed using 162 LabView software.

163 **Operating mode**

164

165 The tests were carried out for total pressures of 55, 75 and 95 kPa. In order to regulate both 166 the total pressure of the gas phase and the partial pressure of water vapour, the following procedure was adopted.

167 1/ To adjust the final total pressure, preliminary experiments were carried out. The solutions 168 were introduced and the piston was placed in the low position. By using the pressure sensor, 169 the total pressure was brought to the desired value. The device was then disassembled and the 170 height of the cavity (g), noted h_g was measured. The gaseous phase being composed of 96% 171 of air, in the most unfavourable case of pure water, h_g depended little on the composition of 172 the solution. For the three pressures (55, 75 and 95 kPa), the average values of h_g were 173 respectively: 14.22, 24.09 and 26.24 mm.

2/ As can be seen in Tab.2 the minimum equilibrium partial pressure was 500 Pa for LiCl. It
was decided to impose a partial pressure variation of 500 Pa with respect to the equilibrium

