H. Abdelgawad, D. De-vos, G. Zinta, M. A. Domagalska, G. T. Beemster et al., Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach, New Phytol, vol.208, pp.354-369, 2015.

M. Abdelhamid, M. M. Rady, A. S. Osman, and M. A. Abdalla, Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. plants, J. Hortic. Sci. Biotechnol, vol.88, pp.439-446, 2013.

R. Alam, D. Das, M. Islam, Y. Murata, and M. Hoque, Exogenous proline enhances nutrient uptake and confers tolerance to salt stress in maize (Zea mays L.), Progr. Agric, vol.27, pp.409-417, 2016.

M. N. Alyemeni, Q. Hayat, S. Hayat, M. Faizan, and A. Faraz, Exogenous proline application enhances the efficiency of nitrogen fixation and assimilation in chickpea plants exposed to cadmium, Legume Res, vol.39, pp.221-227, 2016.

P. Armengaud, L. Thiery, N. Buhot, G. G. March, and A. Savoure, Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features, Physiol. Plant, vol.120, pp.442-450, 2004.

M. F. Ashraf and M. R. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot, vol.59, issue.2, pp.206-216, 2007.

M. Ashraf, S. M. Shahzad, M. Imtiaz, and M. S. Rizwan, Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes: A review, J. Plant Nutr, vol.41, pp.1065-1081, 2018.

A. Atia, A. Debez, Z. Barhoumi, A. Smaoui, A. et al., ABA, GA3, and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions, C. R. Biol, vol.332, pp.704-710, 2009.

A. Bargaz, M. Zaman-allah, M. Farissi, M. Lazali, J. Drevon et al., Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes, Int. J. Mol. Sci, vol.16, pp.18976-19008, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01255743

C. Ben-ahmed, S. Magdich, B. Ben-rouina, S. Sensoy, M. Boukhris et al., Exogenous proline effects on water relations and ions contents in leaves and roots of young olive, Amino Acids, vol.40, pp.565-573, 2011.

K. Ben-rejeb, C. Abdelly, and A. Savoure, How reactive oxygen species and proline face stress together, Plant Physiol. Biochem, vol.80, pp.278-284, 2014.

C. Bianco and R. Defez, Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain, J. Exp. Bot, vol.60, pp.3097-3107, 2009.

C. Cabassa-hourton, P. Schertl, M. Bordenave-jacquemin, K. Saadallah, A. Guivarc'h et al., Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana, Biochem. J, pp.2623-2634, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01558869

A. Checcucci, G. C. Dicenzo, M. Bazzicalupo, and A. Mengoni, Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains, Front. Microbial, vol.8, p.2207, 2017.

D. Coskun, D. T. Britto, W. Q. Huynh, and H. J. Kronzucker, The role of silicon in higher plants under salinity and drought stress, Front. Plant Sci, vol.7, p.1072, 2016.

H. Dallali, E. M. Maalej, N. Ghanem-boughanmi, and R. Haouala, Salicylic acid priming in Hedysarum carnosum and Hedysarum coronarium reinforces NaCl tolerance at germination and the seedling growth stage, AJCS, vol.6, pp.407-414, 2012.

P. A. De-freitas, R. De-souza-miranda, E. C. Marques, J. T. Prisco, E. P. Gomes-filho et al., Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism, J. Plant Growth Regul, vol.37, pp.403-416, 2018.

S. Deivanai, R. Xavier, V. Vinod, K. Timalata, and O. Lim, Role of Exogenous Proline in Ameliorating Salt Stress at Early Stage in Two Rice Cultivars, J. Stress Physiol. Biochem, vol.7, pp.158-174, 2011.

A. J. Delauney, C. A. Hu, P. B. Kishor, D. Pal, and S. Verma, Cloning of Ornithine delta-Aminotransferase cDNA from Vigna aconitifolia by Trans-complementation in Escherichia coli and Regulation of Proline Biosynthesis, J. Biol. Chem, vol.268, pp.18673-18676, 1993.

K. Deuschle, D. Funck, G. Forlani, H. Stransky, A. Biehl et al., The role of D1-pyrroline-5-carboxylate dehydrogenase in proline degradation, Plant Cell, vol.16, pp.3413-3425, 2004.

K. Deuschle, D. Funck, H. Hellmann, K. Däschner, S. Binder et al., A nuclear gene encoding mitochondrial D1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity, Plant J, vol.27, pp.345-356, 2001.

A. A. Ehsanpour and N. Fatahian, Effects of salt and proline on Medicago sativa callus, Plant Cell Tiss. Org. Cult, vol.73, pp.53-56, 2003.

M. Faghire, A. Bargaz, M. Farissi, F. Palma, B. Mandri et al., Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco, Symbiosis, vol.55, pp.69-75, 2011.

M. Faghire, M. Farissi, K. Taoufiq, R. Fghire, A. Bargaz et al., Genotypic variation of nodules' enzymatic activities in symbiotic nitrogen fixation among common bean (Phaseolus vulgaris L.) genotypes grown under salinity constraint, Symbiosis, vol.60, pp.115-122, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268068

A. Fahmi, . Ii, H. H. Nagaty, R. A. Eissa, and M. M. Hassan, Effects of salt stress on some nitrogen fixation parameters in Faba Bean, Pakistan J. Biol. Sci, vol.14, pp.385-391, 2011.

M. Farissi, A. Bouizgaren, M. Faghire, A. Bargaz, and C. Ghoulam, Agrophysiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages, Seed Sci. Technol, vol.39, pp.389-401, 2011.

M. Farissi, F. Aziz, A. Bouizgaren, and C. Ghoulam, Legume-rhizobia symbiosis under saline conditions: Agro-physiological and biochemical aspects of tolerance, Int. J. Innov. Sci. Res, vol.11, pp.96-104, 2014.

M. Farissi, M. Mouradi, O. Farssi, A. Bouizgaren, and C. Ghoulam, Variations in leaf gas exchange, chlorophyll fluorescence and membrane potential of Medicago sativa root cortex cells exposed to increased salinity: The role of the antioxidant potential in salt tolerance, Arch. Biol. Sci, vol.70, pp.413-423, 2018.

M. Farooq, N. Gogoi, M. Hussain, S. Barthakur, S. Paul et al., Effects, tolerance mechanisms and management of salt stress in grain legumes, Plant Physiol. Biochem, vol.118, pp.199-217, 2017.

B. J. Ferguson, C. Mens, A. H. Hastwell, M. Zhang, H. Su et al., Legume nodulation: The host controls the party, Plant Cell Environ, vol.42, pp.41-51, 2019.

D. Funck, B. Stadelhofer, and W. Koch, Ornithine-d-aminotransferase is essential for Arginine Catabolism but not for Proline Biosynthesis, BMC Plant Biol, vol.8, p.40, 2008.

M. A. Ghars, E. Parre, A. Debez, M. Bordenave, L. Richard et al., Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K + /Na + selectivity and proline accumulation, J. Plant Physiol, vol.165, pp.588-599, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00267406

C. Ghoulam and K. Fares, Effect of salinity on seed germination and early seedling growth of sugar beet, Beta vulgaris L.). Seed Sci. Technol, vol.29, pp.357-364, 2001.

J. T. Guerzoni, N. G. Belintani, R. M. Moreira, A. A. Hoshino, D. S. Domingues et al., Stress-induced D1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane, Acta Physiol. Plant, vol.36, pp.2309-2319, 2014.

E. W. Hamilton and S. A. Heckathorn, Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine, Plant Physiol, vol.126, issue.3, pp.1266-1274, 2001.

S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel et al., Role of proline under changing environments: A review, Plant Signal. Behav, vol.7, pp.1-11, 2012.

H. Hellmann, D. Funck, D. Rentsch, and W. B. Frommer, Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application, Plant Physiol, vol.122, pp.357-368, 2000.

B. Heuer, Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants, Plant Sci, vol.165, p.222, 2003.

B. Heuer, Role of proline in plant response to drought and salinity, Handbook of Plant and Crop Stress, pp.213-238, 2010.

M. J. Holdsworth, L. Bentsink, and W. J. Soppe, Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination, New Phytol, vol.179, pp.33-54, 2008.

M. A. Hoque, M. N. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata, Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells, J. Plant Physiol, vol.165, pp.813-824, 2008.

M. A. Hossain and M. Fujita, Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress, Physiol. Mol. Biol. Plants, vol.16, pp.19-29, 2010.

Y. Huang, Z. Bie, Z. Liu, A. Zhen, W. et al., Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber, Soil Sci. Plant Nutr, vol.55, pp.698-704, 2009.

M. Hubbard, J. Germida, and V. Vujanovic, Fungal endophytes improve wheat seed germination under heat and drought stress, Botany, vol.90, pp.137-149, 2012.

M. Jamil, S. Rehman, K. J. Lee, J. M. Kim, H. Kim et al., Salinity reduced growth PS2 photochemistry and chlorophyll content in radish, Sci. Agric, vol.64, pp.111-118, 2007.

U. C. Jha, A. Bohra, R. Jha, and S. K. Parida, Salinity stress response and "omics" approaches for improving salinity stress tolerance in major grain legumes, Plant Cell Rep, vol.38, pp.255-277, 2019.

A. Kaundal, D. Sandhu, M. Duenas, and J. F. Ferreira, Expression of the high-affinity K+ transporter 1 (PpHKT1) gene from almond rootstock "Nemaguard" improved salt tolerance of transgenic Arabidopsis, PloS One, vol.14, 2019.

P. B. Kavi-kishor and N. Sreenivasulu, Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?, Plant Cell Environ, vol.37, pp.300-311, 2014.

C. Kaya, A. L. Tuna, M. Ashraf, A. , and H. , Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate, Environ. Exp. Bot, vol.60, pp.397-403, 2007.

A. Khan, I. Iqbal, I. Ahmed, H. Nawaz, and M. Nawaz, Role of proline to induce salinity tolerance in sunflower, Helianthus annus L.). Sci. Technol. Dev, vol.33, pp.88-93, 2014.

G. B. Kim, N. , and Y. W. , A novel D1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stressinduced proline accumulation during symbiotic nitrogen fixation, J. Plant Physiol, vol.170, pp.291-302, 2013.

T. Kiyosue, Y. Yoshiba, K. Yamaguchi-shinozaki, and K. Shinozaki, A nuclear gene encodinq mitochondrial Proline Dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis, Plant Cell, vol.8, pp.1323-1335, 1996.

D. H. Kohl, K. R. Schubert, M. B. Carter, C. H. Hagedorn, and G. Shearer, Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis, Proc. Natl. Acad. Sci, vol.85, pp.2036-2040, 1988.

T. Kraiser, D. E. Gras, A. G. Gutie?rez, B. Gonza?ez, and R. A. Gutie?rez, A holistic view of nitrogen acquisition in plants, J. Exp. Bot, vol.62, pp.1455-1466, 2011.

V. Kumar and D. R. Sharma, Effect of exogenous proline on growth and ion content in NaCl stressed and monstressed cells of mungbean, Vigna radiata var. radiata, Indian J. Exp. Biol, vol.27, pp.813-815, 1989.

L. Rudulier, D. Yang, S. S. Csonka, and L. N. , Nitrogen fixation in Lebsiella pneumoniae during osmotic stress Effect of exogenous proline or proline overproducing plasmid, Biochim. Biophys. Acta, vol.719, pp.273-283, 1982.

P. Lei, Z. Xu, J. Liang, X. Luo, Y. Zhang et al., Poly(g-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L, Plant Growth Regul, vol.78, pp.233-241, 2016.

R. Liu, L. Wang, M. Tanveer, and J. Song, Seed Heteromorphism: An Important Adaptation of Halophytes for Habitat Heterogeneity, Front. Plant Sci, vol.9, 2018.

M. Lo?ez, J. A. Herrera-cervera, C. Iribarne, N. A. Tejera, and C. Lluch, Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism, J. Plant Physiol, vol.165, issue.6, pp.641-650, 2008.

A. Maggio, S. Miyazaki, P. Veronese, T. Fujita, J. Ibeas et al., Does proline accumulation play an active role in stress-induced growth reduction?, Plant J, vol.31, pp.699-712, 2002.

G. Manchanda and N. Garg, Salinity and its effects on the functional biology of legumes, Acta Physiol. Plant, vol.30, pp.595-618, 2008.

S. Mani, B. Van-de-cotte, M. Van-montagu, and N. Verbruggen, Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis, Plant Physiol, vol.128, pp.73-78, 2002.

M. M. Mansour, A. , and E. F. , Evaluation of proline functions in saline conditions, Phytochemistry, vol.140, pp.52-68, 2017.

J. Matysik, B. B. Alia, and P. Mohanty, Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants, Curr. Sci, vol.82, pp.525-532, 2002.

M. Meena, K. Divyanshu, S. Kumar, P. Swapnil, A. Zehra et al., Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions, vol.5, p.2952, 2019.

G. Miller, H. Stein, A. Honig, Y. Kapulnik, and A. Zilberstein, Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation, Planta, vol.222, pp.70-79, 2005.

N. Misra and A. K. Gupta, Effect of salt stress on proline metabolism in two high yielding genotypes of green gram, Plant Sci, vol.169, issue.2, pp.331-339, 2005.

N. Monica, R. Vidican, R. Pop, and I. Rotar, Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured in vitro, ProEnvironment, vol.6, pp.42-45, 2013.

R. Munns and M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol, vol.59, pp.651-681, 2008.

B. Murillo-amador, R. Lopez-aguilar, C. Kaya, J. Larrinaga-mayoral, and A. Flores-hernandez, Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of Cowpea, J. Agron. Crop Sci, vol.188, pp.235-247, 2002.

K. Nakashima, R. Satoh, T. Kiyosue, K. Yamaguchi-shinozaki, and K. Shinozaki, A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis, Plant Physiol, vol.118, pp.1233-1241, 1998.

T. Nanjo, M. Fujita, M. Seki, T. Kato, S. Tabata et al., Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase, Plant Cell Physiol, vol.44, pp.541-548, 2003.

K. Nawaz, A. Talat, K. Hussain, . Ii, and A. Majeed, Induction of salt tolerance in two cultivars of Sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage, World Appl. Sci. J, vol.10, pp.93-99, 2010.

M. L. Nguyen, G. B. Kim, S. H. Hyun, S. Y. Lee, C. Y. Lee et al., Physiological and metabolomic analysis of a knockout mutant suggests a critical role of MtP5CS3 gene in osmotic stress tolerance of Medicago truncatula, Euphytica, vol.193, pp.101-120, 2013.

N. Nounjan, P. T. Nghia, and P. Theerakulpisut, Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes, J. Plant Physiol, vol.169, pp.596-604, 2012.

Y. Oono, M. Seki, T. Nanjo, M. Narusaka, M. Fujita et al., Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray, Plant J, vol.34, pp.868-887, 2003.

M. M. Posmyk and K. M. Janas, Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings, Acta Physiol. Plant, vol.29, pp.509-517, 2007.

S. Qin, Y. Liu, Y. Han, G. Xu, S. Wan et al., Aquaporins and their function in root water transport under salt stress conditions in Eutrema salsugineum, Plant Sci, vol.287, p.110199, 2019.

M. Rady, A. Kusvuran, H. F. Alharby, Y. Alzahrani, and S. Kusvuran, Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oOxidative stress, J. Plant Growth Regul, vol.38, pp.449-462, 2019.

C. S. Rajendrakumar, T. Suryanarayana, and A. R. Reddy, DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process, FEBS Lett, vol.410, pp.201-205, 1997.

X. W. Ren, D. W. Yu, S. P. Yang, J. Y. Gai, and Y. L. Zhu, Effects of StP5CS gene overexpression on nodulation and nitrogen fixation of vegetable soybean under salt stress conditions, Legume Res, vol.41, pp.675-680, 2018.

P. Rengasamy, World salinization with emphasis on Australia, J. Exp. Bot, vol.57, pp.1017-1023, 2006.

A. Ribarits, A. Abdullaev, A. Tashpulatov, A. Richter, E. Heberle-bors et al., Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development, Planta, vol.225, pp.1313-1324, 2007.

M. Rizwan, S. Ali, M. Ibrahim, M. Farid, M. Adrees et al., Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review, Environ. Sci. Pollut. Res, vol.22, pp.15416-15431, 2015.

M. M. Rodriguez and J. W. Heyser, Growth inhibition by exogenous proline and its metabolism in saltgrass (Distichlis spicata) suspension cultures, Plant Cell Rep, vol.7, pp.305-308, 1988.

D. Roy, N. Basu, A. Bhunia, and S. K. Banerjee, Counteraction of exogenous L-proline with NaCl in salt-sensitive cultivar of rice, Biol. Plant, vol.35, issue.1, p.69, 1993.

E. L. Sabagh, S. Sorour, A. Ragab, H. Saneoka, and M. Islam, The effect of exogenous application of proline and glycine betaine on the nodule activity of soybean under saline condition, J. Agric. Biotechnol, vol.2, pp.1-5, 2017.

H. Safdar, A. Amin, Y. Shafiq, A. Ali, Y. et al., A review: Impact of salinity on plant growth, Nat. Sci, vol.17, pp.34-40, 2019.

R. Satoh, Y. Fujita, K. Nakashima, K. Shinozaki, and K. Yamaguchi-shinozaki, A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis, Plant Cell Physiol, vol.45, pp.309-317, 2004.

P. Schertl, C. Cabassa, K. Saadallah, M. Bordenave, A. Savoure et al., Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria, FEBS J, vol.281, pp.2794-2804, 2014.

M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar et al., A gene expression map of Arabidopsis thaliana development, Nat. Genet, vol.37, issue.5, pp.501-506, 2005.

C. Servet, T. Ghelis, L. Richard, A. Zilberstein, and A. Savoure, Proline dehydrogenase: a key enzyme in controlling cellular homeostasis, Front. Biosci, vol.17, pp.607-620, 2012.

M. Shahbaz, Z. Mushtaq, F. Andaz, and A. Masood, Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)?, Sci. Hortic, vol.164, pp.507-511, 2013.

M. A. Shahid, R. M. Balal, M. A. Pervez, T. Abbas, M. A. Aqeel et al., Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves, Turk. J. Bot, vol.38, pp.914-926, 2014.

M. Sidari, C. Santonoceto, U. Anastasi, G. Preiti, and A. Muscolo, Variations in four genotypes of lentil under NaCl-Salinity stress, Am. J. Agric. Biol. Sci, vol.3, pp.410-416, 2008.

S. Signorelli, P. D. Dans, E. L. Coitiño, O. Borsani, and J. Monza, Connecting proline and g-aminobutyric acid in stressed plants through nonenzymatic Reactions, PloS One, vol.10, 2015.

S. Signorelli, The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants, Front. Plant Sci, vol.7, p.1339, 2016.

A. K. Singh and R. S. Dubey, Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl, Photosynth, vol.31, pp.489-499, 1995.

A. Skubacz, A. Daszkowska-golec, and I. Szarejko, The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk, Front. Plant Sci, vol.7, p.1884, 2016.

S. Slama, A. Bouchereau, T. Flowers, C. Abdelly, and A. Savoure, Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress, Ann. Bot, vol.115, pp.433-447, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208764

M. A. Sobahan, N. Akter, M. Ohno, E. Okuma, Y. Hirai et al., Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars, Biosci. Biotechnol. Biochem, vol.76, pp.1568-1570, 2012.

A. Solomon, S. Beer, Y. Waisel, G. P. Jones, and L. G. Paleg, Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes, Physiol. Plant, vol.90, pp.198-204, 1994.

L. Szabados and A. Savoure, Proline: a multifunctional amino acid, Trends Plant Sci, vol.15, pp.89-97, 2010.

G. Sze?ely, E. A?braha?, Ã. Cse?lo, G. Rigo, L. Zsigmond et al., Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis, Plant J, vol.53, pp.11-28, 2008.

C. Teh, N. A. Shaharuddin, C. Ho, and M. Mahmood, Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress, Acta Physiol. Plant, vol.38, p.151, 2016.

N. A. Tejera, R. Campos, J. Sanjuan, and C. Lluch, Effect of sodium chloride on growth, nutrient accumulation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains, J. Plant Nutr, vol.28, pp.1907-1921, 2005.

J. Thouin, M. Y. Guo, I. Zribi, N. Pauly, M. Mouradi et al., The Medicago truncatula HKT family: Ion transport properties and regulation of expression upon abiotic stresses and symbiosis. bioRxiv, p.720474, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02789967

E. Van-zelm, Y. Zhang, and C. Testerink, Salt tolerance mechanisms of plants, Annu. Rev. Plant Biol, vol.71, pp.1-24, 2020.

D. Verdoy, T. Coba-de-la-pena, F. J. Redondo, M. M. Lucas, and J. J. Pueyo, Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress, Plant Cell Environ, vol.29, pp.1913-1923, 2006.

P. E. Verslues and S. Sharma, Proline metabolism and its implications for plant-environment interaction, Arabidopsis Book, vol.8, p.140, 2010.

B. Vinocur and A. Altman, Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations, Curr. Opin. Biotechnol, vol.16, pp.1-10, 2005.

X. Wang, O. Chao, Z. Fan, S. Gao, and L. Tang, Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress, J. Anim. Plant Sci, vol.6, issue.3, pp.700-708, 2010.

A. S. Wani, A. Ahmad, S. Hayat, and I. Tahir, Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars?, Environ. Sci. Pollut. Res, vol.23, pp.13413-13423, 2016.

F. Weltmeier, A. Ehlert, C. S. Mayer, K. Dietrich, X. Wang et al., Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors, EMBO J, vol.25, pp.3133-3143, 2006.

G. Wu, R. Feng, S. Li, and Y. Du, Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings, J. Anim. Plant Sci, vol.27, pp.246-251, 2017.

Z. Yan, J. Sun, and S. Guo, Effects of exogenous proline on nitrate reduction in melon seedlings under salt stress, Plant Sci. J, vol.29, pp.118-123, 2011.

X. Yang, X. Chen, Q. Ge, B. Li, Y. Tong et al., Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions, Plant Sci, vol.171, pp.389-397, 2006.

J. You, H. Hu, and L. Xiong, An ornithine d-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice, Plant Sci, vol.197, pp.59-69, 2012.

H. H. Zahran, J. Sprent, and . Ii, Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum, Planta, vol.167, issue.3, pp.303-309, 1986.

H. H. Zahran, Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol, Mol. Biol. Rev, vol.63, issue.4, pp.968-989, 1999.

X. H. Zhang, D. Zhou, J. J. Cui, H. L. Ma, D. Y. Lang et al., Effect of silicon on seed germination and the physiological characteristics of Glycyrrhiza uralensis under different levels of salinity, J. Hortic. Sci. Biotechnol, vol.90, pp.439-443, 2015.

W. B. Zhen and Q. H. Ma, Proline metabolism in response to salt stress in common reed, Cav.) Trin. Ex Steud. Bot. Mar, vol.52, pp.341-347, 2009.

J. L. Zheng, L. Y. Zhao, C. W. Wu, B. Shen, and A. Y. Zhu, Exogenous proline reduces NaCl-induced damage by mediating ionic and osmotic adjustment and enhancing antioxidant defense in Eurya emarginata, Acta Physiol. Plant, vol.37, p.181, 2015.

Y. Zhu and H. Gong, Beneficial effects of silicon on salt and drought tolerance in plants, Agron. Sustain. Dev, vol.34, pp.455-472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01234814

J. Zhu, Regulation of ion homeostasis under salt stress, Curr. Opin. Plant Biol, vol.6, pp.441-445, 2003.