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Abstract. We investigate a family of (µ+λ) Genetic Algorithms (GAs)
which creates offspring either from mutation or by recombining two
randomly chosen parents. By scaling the crossover probability, we can
thus interpolate from a fully mutation-only algorithm towards a fully
crossover-based GA. We analyze, by empirical means, how the perfor-
mance depends on the interplay of population size and the crossover
probability.
Our comparison on 25 pseudo-Boolean optimization problems reveals an
advantage of crossover-based configurations on several easy optimization
tasks, whereas the picture for more complex optimization problems is
rather mixed. Moreover, we observe that the “fast” mutation scheme with
its are power-law distributed mutation strengths outperforms standard
bit mutation on complex optimization tasks when it is combined with
crossover, but performs worse in the absence of crossover.
We then take a closer look at the surprisingly good performance of the
crossover-based (µ + λ) GAs on the well-known LeadingOnes bench-
mark problem. We observe that the optimal crossover probability in-
creases with increasing population size µ. At the same time, it decreases
with increasing problem dimension, indicating that the advantages of
the crossover are not visible in the asymptotic view classically applied in
runtime analysis. We therefore argue that a mathematical investigation
for fixed dimensions might help us observe effects which are not visible
when focusing exclusively on asymptotic performance bounds.

Keywords: Genetic Algorithms · Crossover · Fast Mutation

1 Introduction

Classic evolutionary computation methods build on two main variation opera-
tors: mutation and crossover. While the former can be mathematically defined
as unary operators (i.e., families of probability distributions that depend on a
single argument), crossover operators sample from distributions of higher arity,
with the goal to “recombine” information from two or more arguments.

There is a long debate in evolutionary computation about the (dis-
)advantages of these operators, and about how they interplay with each
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other [32,37]. In lack of generally accepted recommendations, the use of these
operators still remains a rather subjective decision, which in practice is mostly
driven by users’ experience. Little guidance is available on which operator(s) to
use for which situation, and how to most efficiently interleave them. The question
how crossover can be useful can therefore be seen as far from being solved.

Of course, significant research efforts are spent to shed light on this question,
which is one of the most fundamental ones that evolutionary computation has
to offer. While in the early years of evolutionary computation (see, for exam-
ple, the classic works [11,22,2]) crossover seems to have been widely accepted as
an integral part of an evolutionary algorithm, we observe today two diverging
trends. Local search algorithms such as GSAT [36] for solving Boolean satisfiabil-
ity problems, or such as the general-purpose Simulated Annealing [27] heuristic,
are clearly very popular optimization methods in practice – both in academic
and in industrial applications. These purely mutation-based heuristics are nowa-
days more commonly studied under the term stochastic local search, which forms
a very active area of research. Opposed to this is a trend to reduce the use of
mutation operators, and to fully base the iterative optimization procedure on
recombination operators; see [41] and references therein. However, despite the
different recommendations, these opposing positions find their roots in the same
problem: we hardly know how to successfully dovetail mutation and crossover.

In addition to large bodies of empirical works aiming to identify useful com-
binations of crossover and mutation [11,33,23,21],

the question how (or whether) crossover can be beneficial has also always
been one of the most prominent problems in runtime analysis, the research
stream aiming at studying evolutionary algorithms by mathematical means
[42,28,25,30,26,15,38,14,13,40,7,8,35,44,34,10] , most of these results focus on
very particular algorithms or problems, and are not (or at least not easily) gen-
eralizable to more complex optimization tasks.

Our Results In this work, we study a simple variant of the (µ + λ) GA which
allows us to conveniently scale the relevance of crossover and mutation, respec-
tively, via a single parameter. More precisely, our algorithm is parameterized by
a crossover probability pc, which is the probability that we generate in the repro-
duction step an offspring by means of crossover. The offspring is generated by
mutation otherwise, so that pc = 0 corresponds to the mutation-only (µ+λ) EA,
whereas for pc = 1 the algorithm is entirely based on crossover. Note here that
we either use crossover or mutation, so as to better separate the influence of the
two operators.

We first study the performance of different configurations of the (µ+ λ) GA
on 25 pseudo-Boolean problems (the 23 functions suggested in [19], a concate-
nated trap problem, and random NK landscape instances). We observe that the
algorithms using crossover perform significantly better on some simple functions
as OneMax (F1) and LeadingOnes (F2), but also on some problems that are
considered hard, e.g., the 1-D Ising model (F19).

We then look more closely into the performance of the algorithm on a bench-
mark problem intensively studied in runtime analysis: LeadingOnes, the prob-
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lem of maximizing the function f : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i :
xj = 1}. We observe some very interesting effects, that we believe may motivate
the theory community to look at the question of usefulness of crossover from
a different angle. More precisely, we find that, against our intuition that uni-
form crossover cannot be beneficial on LeadingOnes, the performance of the
(µ+λ) GA on LeadingOnes improves when pc takes values greater than 0 (and
smaller than 1), see Fig. 3. The performances are quite consistent, and we can
observe clear patterns, such as a tendency for the optimal value of pc (displayed
in Tab. 2) to increase with increasing µ, and to decrease with increasing problem
dimension. The latter effect may explain why it is so difficult to observe benefits
of crossover in theoretical work: they disappear with the asymptotic view that
is generally adopted in runtime analysis.

We have also performed similar experiments on OneMax (see our project
data [45]), but the good performance of the (µ + λ) GA configurations using
crossover is less surprising for this problem, since this benefit has previously
been observed for genetic algorithms that are very similar to the (µ + λ) GA;
see [40,35,7,8] for examples and further references. In contrast to a large body of
literature on the benefit of crossover for solving OneMax, we are not aware of
the existence of such results for LeadingOnes, apart from the highly problem-
specific algorithms developed and analyzed in [1,17].

We hope to promote with this work (1) runtime analysis for fixed dimensions,
(2) an investigation of the advantages of crossover on LeadingOnes, and (3)
the (µ + λ) GA as a simplified model to study the interplay between problem
dimension, population sizes, crossover probability, and mutation rates.

2 Algorithms and Benchmarks

We describe in this section our (µ+λ) GA framework (Sec. 2.1) and the bench-
mark problems (Sec. 2.2). Since in this paper we can only provide a glimpse
on our rich data sets, we also summarize in Sec. 2.3 which data the interested
reader can find in our repository [45].

2.1 A Family of (µ + λ) Genetic Algorithms

Our main objective is to study the usefulness of crossover for different kinds of
problems. To this end, we investigate a meta-model, which allows us to easily
transition from a mutation-only to a crossover-only algorithm. Alg. 1 presents
this framework, which, for ease of notation, we refer to as the family of the
(µ+ λ) GA in the following.

The (µ + λ) GA initializes its population uniformly at random (u.a.r., lines
1-2). In each iteration, it creates λ offspring (lines 6–16). For each offspring,
we first decide whether to apply crossover (with probability pc, lines 8–11) or
whether to apply mutation (otherwise, lines 12–15). Offspring that differ from
their parents are evaluated, whereas offspring identical to one of their parents
inherit this fitness value without function evaluation (see [5] for a discussion).
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Algorithm 1: A Family of (µ+ λ) Genetic Algorithms

1 Input: Population sizes µ, λ, crossover probability pc, mutation rate p;

2 Initialization: for i = 1, . . . , µ do sample x(i) ∈ {0, 1}n uniformly at random

(u.a.r.), and evaluate f(x(i));

3 Set P = {x(1), x(2), ..., x(µ)} ;
4 Optimization: for t = 1, 2, 3, . . . do
5 P ′ ← ∅;
6 for i = 1, . . . , λ do
7 Sample r ∈ [0, 1] u.a.r. ;
8 if r ≤ pc then
9 select two individuals x, y from P u.a.r. (w/ replacement);

10 z(i) ← Crossover(x, y);

11 if z(i) /∈ {x, y} then evaluate f(z(i)) else infer f(z(i)) from parent;

12 else
13 select an individual x from P u.a.r.;

14 z(i) ← Mutation(x);

15 if z(i) 6= x then evaluate f(z(i)) else infer f(z(i)) from parent;

16 P ′ ← P ′ ∪ {z(i)};
17 P is updated by the best µ points in P ∪ P ′ (ties broken u.a.r.);

The best µ of parent and offspring individuals form the new parent population
of the next generation (line 17).

Note the unconventional use of either crossover or mutation. As mentioned,
we consider this variant to allow for a better attribution of the effects to each
of the operators. Moreover, note that in Alg. 1 we decide for each offspring
individually which operator to apply. We call this scheme the (µ+λ) GA with
offspring-based variator choice. We also study the performance of the (µ+
λ) GA with population-based variator choice, which is the algorithm that
we obtain from Alg. 1 by swapping lines 7 and 6.

We study three different crossover operators, one-point crossover, two-point
crossover, and uniform crossover, and two different mutation operators, standard
bit mutation and the fast mutation scheme suggested in [16]. These variation op-
erators are briefly described as follows.
- One-point crossover : a crossover point is chosen from [1..n] u.a.r. and an off-
spring is created by copying the bits from one parent until the crossover point
and then copying from the other parent for the remaining positions.
- Two-point crossover : similarly, two different crossover points are chosen u.a.r.
and the copy process alternates between two parents at each crossover point.
- Uniform crossover creates an offspring by copying for each position from the
first or from the second parent, chosen independently and u.a.r.
- Standard bit mutation: a mutation strength ` is sampled from the conditional
binomial distribution Bin>0

(n, pm), which assigns to each k a probability of(
n
k

)
pk(1 − p)n−k/(1 − (1 − p)n) [5]. Thereafter, ` distinct positions are chosen
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u.a.r. and the offspring is created by first copying the parent and then flipping
the bits in these ` positions. In this work, we restrict our experiments to the stan-
dard mutation rate p = 1/n. Note, though, that this choice is not necessarily
optimal, as in particular the results in [3,40] and follow-up works demonstrate.
- Fast mutation [16]: operates similarly to standard bit mutation except that
the mutation strength ` is drawn from a power-law distribution: Pr[L = `] =

(Cβn/2)−1`−β with β = 1.5 and Cβn/2 =
∑n/2
i=1 i

−β .

2.2 The IOHprofiler Problem Set

To test different configurations of the (µ + λ) GA, we first perform an exten-
sive benchmarking on the problems suggested in [19], which are available in the
IOHprofiler benchmarking environment [18]. This set contains 23 real-valued
pseudo-Boolean test problems: F1 and F4-F10: OneMax (F1) and W-model
extensions (F4-10), F2 and F11-F17: LeadingOnes (F2) and W-model exten-
sions (F11-17), F3: Linear function f(x) =

∑n
i=1 ixi, F18: Low Autocorrelation

Binary Sequences (LABS), F19-21: Ising Models, F22: Maximum Independent
Vertex Set (MIVS), and F23: N-Queens (NQP).

We recall that the W-model, originally suggested in [43] and extended in [19],
is a collection of perturbations that can be applied to a base problem in order
to calibrate its features, such as its neutrality, its epistasis, and its ruggedness.
We add to the list of [19] the following two problems:
F24: Concatenated Trap (CT) is defined by partitioning a bit-string into seg-
ments of length k and concatenating m = n/k trap functions that takes each
segment as input. The trap function is defined as follows: f trapk (u) = 1 if the

number u of ones satisfies u = k and f trapk (u) = k−1−u
k otherwise. We use k = 5

in our experiments.
F25: Random NK landscapes (NKL). The function values are defined as the av-
erage of n sub-functions Fi : [0..2k+1 − 1]→ R, i ∈ [1..n], where each component
Fi only takes as input a set of k ∈ [0..n−1] bits that are specified by a neighbor-
hood matrix. In this paper, k is set to 1 and entries of the neighbourhood matrix
are drawn u.a.r. in [1..n]. The function values of Fi’s are sampled independently
from a uniform distribution on (0, 1).

Note that the IOHprofiler problem set provides for each problem several
problem instances, which all have isomorphic fitness landscapes, but different
problem representations. In our experiments we only use the first instance of
each problem (seed 1). For the mutation-based algorithms and the ones using
uniform crossover, the obtained results generalize to all other problem instances.
For algorithms involving one- or two-point crossover, however, this is not the
case, as these algorithms are not unbiased (in the sense of Lehre and Witt [29]).

2.3 Data Availability

Detailed results for the different configurations of the (µ+λ) GA are available in
our data repository at [45]. In particular, we host there data for the IOHprofiler
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Fig. 1. Heat map of normalized ERT values of the (µ + λ) GA with offspring-based
(top part) and population-based (bottom part) variator choice for the 100-dimensional
benchmark problems, computed based on the target values specified in Table 1. The
crossover probability pc is set to 0.5 for all algorithms except the mutation-only ones
(which use pc = 0). The displayed values are the the quotient of the ERT and ERTbest,
the ERT achieved by the best of all displayed algorithms. These quotients are capped
at 40 to increase interpretability of the color gradient in the most interesting region.
The three algorithm groups – the (µ+ 1), the (µ+ dµ/2e), and the (µ+ µ) GAs – are
separated by dashed lines. A dot indicates the best algorithm of each group of four.
A grey tile indicates that the (µ + λ) GA configuration failed, in all runs, to find the
target value within the given budget.

experiments (36 algorithms, 25 functions, 5 dimensions ≤ 250, 100 independent
runs) and for the (µ+ λ) GA on OneMax and on LeadingOnes for all of the
following 5544 parameter combinations: n ∈ {64, 100, 150, 200, 250, 500} (6 val-
ues), µ ∈ {2, 3, 5, 8, 10, 20, 30, ..., 100} (14 values), λ ∈ {1, dµ/2e, µ} (3 values),
pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95} (11 values), two mutation operators (stan-
dard bit mutation and fast mutation). In these experiments on OneMax and
LeadingOnes, the crossover operator is fixed to uniform crossover.

A detailed analysis of these results, for example using IOHprofiler or us-
ing HiPlot [9] may give additional insights into the dependence of the overall
performance on the parameter setting

3 Results for the IOHprofiler Problems

In order to probe into the empirical performance of the (µ+λ) GA, we test it on
the 25 problems mentioned in Sec. 2.2, with a total budget of 100n2 function eval-
uations. We perform 100 independent runs of each algorithm on each problem.
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Fig. 2. Heat map comparing standard bit mutation (sbm) with fast mutation on the
25 problems from Sec. 2.2 in dimensions n = 100. Plotted values are (ERTfast −
ERTsbm)/ERTsbm, for ERTs computed wrt the target values specified in Table 1. pc is
set to 0.5 for all crossover-based algorithms. Values are bounded in [−1, 1] to increase
visibility of the color gradient in the most interesting region. A black dot indicates that
the (µ+ λ) GA with fast mutation failed in all runs to find the target with the given
budget; the black triangle signals failure of standard bit mutation, and a gray tile is
chosen for settings in which the (µ+ λ) GA failed for both mutation operators.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

100 100 5050 50 90 33 100 51 100 100 50 90 33 7

F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

51 100 100 4.215852 98 180 260 42 9 17.196 -0.2965711
Table 1. Target values used for computing the ERT value in Fig. 1.

A variety of parameter settings are investigated: (1) all three crossover operators
described in Sec. 2 (we use pc = 0.5 for all crossover-based configurations), (2)
both mutation variator choices, (3) µ ∈ {10, 50, 100}, and (4) λ ∈ {1, dµ/2e, µ}.

In Fig. 1, we highlight a few basic results of this experimentation for n =
100, where the mutation operator is fixed to the standard bit mutation. More
precisely, we plot in this figure the normalized expected running time (ERT),
where the normalization is with respect to the best ERT achieved by any of the
algorithms for the same problem. Table 1 provides the target values for which
we computed the ERT values. For each problem and each algorithm, we first
calculated the 2% percentile of the best function values. We then selected the
largest of these percentiles (over all algorithms) as target value.

On the OneMax-based problems F1, F4, and F5, the (µ+λ) GA outperforms
the mutation-only GA, regardless of the variator choice scheme, the crossover
operator, and the setting of λ. When looking at problem F6, we find out that
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when µ = 10 the mutation-only GA surpasses most of (µ + λ) GA variants
except the population-based (µ + µ) GA with one-point crossover. On F8-10,
the (µ+ λ) GA takes the lead in general, whereas it cannot rival the mutation-
only GA on F7. Also, only the configuration with uniform crossover can hit the
optimum of F10 within the given budget.

On the linear function F3 we observe a similar behavior as on OneMax. On
LeadingOnes (F2), the (µ + λ) GA outperforms the mutation-only GA again
for µ ∈ {50, 100} while for µ = 10 the mutation-only GA becomes superior
with one-point and uniform crossovers. On F11-13 and F15-16 (the W-model
extensions of LeadingOnes), the mutation-only GA shows a better performance
than the (µ+ λ) GA with one-point and uniform crossovers and this advantage
becomes more significant when µ = 10. On problem F14, that is created from
LeadingOnes using the same transformation as in F7, the mutation-only GA
is inferior to the (µ+ λ) GA with uniform crossover.

On problems F18 and F23, the mutation-only GA outperforms the (µ+λ) GA
for most parameter settings. On F21, the (µ + λ) GA with two-point crossover
yields a better result when the population size is larger (i.e., µ = 100) while the
mutation-only GA takes the lead for µ = 10. On problems F19 and F20, the
(µ+ µ) GA with the population-based variator choice significantly outperforms
all other algorithms, whereas it is substantially worse for the other parameter
settings. On problem F24, the (µ + µ/2) GA with two-point crossover achieves
the best ERT value when µ = 100. None of the tested algorithms manages
to solve F24 with the given budget. The target value used in Fig. 1 is 17.196,
which is below the optimum 20. On problem F25, the mutation-only GA and the
(µ+ λ) GA are fairly comparable when µ ∈ {10, 50}. Also, we observe that the
population-based (µ+µ) GA outperforms the mutation-only GA when µ = 100.

In general, we have made the following observations: (1) on problems F1-6,
F8-9, and F11-13, all algorithms obtain better ERT values with µ = 10. On
problems F7, F14, and F21-25, the (µ+ λ) GA benefits from larger population
sizes, i.e., µ = 100; (2) The (µ+µ) GA with uniform crossover and the mutation-
only GA outperform the (µ+dµ/2e) GA across all three settings of µ on most of
the problems, except F10, F14, F18, and F22. For the population-based variator
choice scheme, increasing λ from one to µ improves the performance remarkably
on problems F17-24. Such an improvement becomes negligible for the offspring-
based scheme; (3) Among all three crossover operators, the uniform crossover
often surpasses the other two on OneMax, LeadingOnes, and the W-model
extensions thereof.

To investigate the impact of mutation operators on GA, we plot in Fig. 2 the
relative ERT difference between the (µ + λ) GA configurations using fast and
standard bit mutation, respectively. As expected, fast mutation performs slightly
worse on F1-6, F8, and F11-13. On problems F7, F9, and F15-17, however, fast
mutation becomes detrimental to the ERT value for most parameter settings.
On problems F10, F14, F18, and F21-25, fast mutation outperforms standard
bit mutation, suggesting a potential benefit of pairing the fast mutation with
crossover operators to solve more difficult problems. Interestingly, with an in-
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creasing µ, the relative ERT of the (µ + λ) GA quickly shrinks to zero, most
notably on F1-6, F8, F9, F11-13.

Interestingly, in [31], an empirical study has shown that on a randomly gen-
erated maximum flow test generation problem, fast mutation is significantly
outperformed by standard bit mutation when combined with uniform crossover.
Such an observation seems contrary to our findings on F10, F14, F18, and F21-
25. However, it is made on a standard (100 + 70) GA in which both crossover
and mutation are applied to the parent in order to generate offspring. We are
planning to investigate the effects of this inter-chaining in future work, but this
topic is beyond the focus of this study.

4 Case-Study: LeadingOnes

The surprisingly good performance of the (µ+λ) GA with pc = 0.5 on Leadin-
gOnes motivates us to investigate this setting in more detail. Before we go into
the details of the experimental setup and our results, we recall that for the op-
timization of LeadingOnes, the fitness values only depend on the first bits,
whereas the tail is randomly distributed and has no influence on the selection.
More precisely, a search point x with LeadingOnes-value f(x) has the follow-
ing structure: the first f(x) bits are all 1, the f(x) + 1st bit equals 0, and the
entries in the tail (i.e., in positions [f(x) + 2..n]) did not have any influence on
the optimization process so far. For many algorithms, it can be shown that these
tail bits are uniformly distributed, see [12] for an extended discussion.

Experimental setup. We fix in this section the variator choice to the
offspring-based setting. We do so because its performance was seen to be slightly
better on LeadingOnes than the population-based choice. We experiment with
the parameter settings specified in Sec. 2.3. For each of the settings listed there,
we perform 100 independent runs, with a maximal budget of 5n2 each.

Overall Running Time. We first investigate the impact of the crossover
probability on the average running time, i.e., on the average number of function
evaluations that the algorithm performs until it evaluates the optimal solution
for the first time. The results for the (µ+ 1) and the (µ+ µ) GA using uniform
crossover and standard bit mutation are summarized in Fig. 3. Since not all
algorithms managed to find the optimum within the given time budget, we plot
as red bars the ERT values for such algorithms with success ratio strictly smaller
than 1, whereas the black bars are reserved for algorithms with 100 successful
runs. All values are normalized by n2, to allow for a better comparison. All
patterns described below also apply to the (µ+ dµ/2e) GA, whose results we do
not display for reasons of space. They are also very similar when we replace the
mutation operator by the fast mutation scheme suggested in [16].

As a first observation, we note that the pattern of the results are quite reg-
ular. As can be expected, the dispersion of the running times is rather small.
For reasons of space, we do not describe this dispersion in detail, but to give
an impression for the concentration of the running times, we report that the
standard deviation of the (50 + 1) GA on the 100-dimensional LeadingOnes
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Fig. 3. By n2 normalized ERT values for the (µ+ λ) GA using standard bit mutation
and uniform crossover on LeadingOnes, for different values of µ and for λ = 1 (top)
and for λ = µ (bottom). Results are grouped by the value of µ (main columns), by
the crossover probability pc (minor columns), and by the dimension (rows). The ERTs
are computed from 100 independent runs for each setting, with a maximal budget of
5n2 fitness evaluations. ERTs for algorithms which successfully find the optimum in all
100 runs are depicted as black bars, whereas ERTs for algorithms with success rates
in (0, 1) are depicted as red bars. All bars are capped at 5.

function is approximately 14% of the average running time across all values of
pc. As can be expected for a genetic algorithm on LeadingOnes, the average
running increases with increasing population size µ, see [39] for a proof of this
statement when pc = 0.

Next, we compare the sub-plots in each row, i.e., fixing the dimension. We
see that the (µ+λ) GA suffers drastically from large pc values when µ is smaller,
suggesting that the crossover operator hinders performance. But as µ gets larger,
the average running time at moderate crossover probabilities (pc around 0.5) is
significantly smaller than that in two extreme cases, pc = 0 (mutation-only GAs),
and pc = 0.95. This observation holds for all dimensions and for both algorithm
families, the (µ+ 1) and the (µ+ µ) GA.

Looking at the sub-plots in each column (i.e., fixing the population size), we
identify another trend: for those values of µ for which an advantage of pc > 0 is
visible for the smallest tested dimension, n = 64, the relative advantage of this
rate decreases and eventually disappears as the dimension increases.



Benchmarking a (µ+ λ) GA with Configurable Crossover Probability 11

n
µ 2 3 5 8 10 20 30 40 50 60 70 80 90 100

(µ
+

1
)

64 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.4 0.5 0.5 0.6 0.7 0.6 0.7
100 0.0 0.1 0.1 0.1 0.1 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.4 0.6
150 0.0 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.5
200 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4
250 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.3 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

(µ
+
µ
)

64 0.0 0.2 0.1 0.1 0.2 0.2 0.4 0.4 0.6 0.5 0.5 0.7 0.5 0.7
100 0.0 0.0 0.1 0.1 0.2 0.3 0.3 0.3 0.5 0.4 0.5 0.5 0.6 0.5
150 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.5 0.4 0.5 0.5 0.5 0.5
200 0.0 0.0 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.4 0.5 0.4 0.5
250 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4
500 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3

Table 2. On LeadingOnes, the optimal value of pc for the (µ + 1) and the (µ +
µ) GA with uniform crossover and standard bit mutation, for various combinations of
dimension n (rows) and µ (columns). Values are approximated from 100 independent
runs each, probing pc ∈ {0.1k | k ∈ [0..9]} ∪ {0.95}.

Finally, we compare the results of the (µ+1) GA with those of the (µ+µ) GA.
Following [24], it is not surprising that for pc = 0, the results of the (µ+ 1) GA
are better than those of the (µ+µ) GA (very few exceptions to this rule exist in
our data, but in all these cases the differences in average runtime are negligibly
small), and following our own theoretical analysis [20, Theorem 1], it is not
surprising that the differences between these two algorithmic families are rather
small: the typical disadvantage of the (µ + dµ/2e) GA over the (µ + 1) GA is
around 5% and it is around 10% for the (µ + µ) GA, but these relative values
differ between the different configurations and dimensions.

Optimal Crossover Probabilities. To make our observations on the
crossover probability clearer, we present in Table 2 a heatmap of the values p∗c
for which we observed the best average running time (with respect to all tested
pc values). We see the same trends here as mentioned above: as µ increases,
the value of p∗c increases, while, for fixed µ its value decreases with increasing
problem dimension n. Here again we omit details for the (µ + dµ/2e) GA and
for the fast mutation scheme, but the patterns are identical, with very similar
absolute values.

Fixed-Target Running Times. We now study where the advantage of the
crossover-based algorithms stems from. We demonstrate this using the example
of the (50 + 50) GA in 200 dimensions. We recall from Table 2 that the optimal
crossover probability for this setting is p∗c = 0.3. The left plot in Fig. 4 is a fixed-
target plot, in which we display for each tested crossover probability pc (different
lines) and each fitness value i ∈ [0..200] (x-axis) the average time needed until
the respective algorithm evaluates for the first time a search point of fitness at
least i. The mutation-only configuration (pc = 0) performs on par with the best
configurations for the first part of the optimization process, but then loses in
performance as the optimization progresses. The plot on the right shows the
gradients of the fixed-target curves. The gradient can be used to analyze which
configuration performs best at a given target value. We observe an interesting
behavior here, namely that the gradient of the configuration pc = 0.8, which has
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Fig. 4. Left: Average fixed-target running times of the (50 + 50) GA with uniform
crossover and standard bit mutation on LeadingOnes in 200 dimensions, for differ-
ent crossover probabilities pc. Results are averages of 100 independent runs. Right:
Gradient of selected fixed-target curves.

a very bad fixed-target performance on all targets (left plot), is among the best
in the final parts of the optimization. The plot on the right therefore suggests
that an adaptive choice of pc should be investigated further.

5 Conclusions

In this paper, we have analyzed the performance of a family of (µ + λ) GAs,
in which offspring are either generated by crossover (with probability pc) or
by mutation (probability 1 − pc). On the IOHprofiler problem set, it has been
shown that this random choice mechanism reduces the expecting running time
on OneMax, LeadingOnes, and many W-model extensions of those two prob-
lems. By varying the value of the crossover probability pc, we discovered on
LeadingOnes that its optimal value p∗c (with respect to the average running
time) increases with the population size µ, whereas for fixed µ it decreases with
increasing dimension n.

Our results raise the interesting question of whether a non-asymptotic run-
time analysis (i.e., bounds that hold for a fixed dimension rather than in big-Oh
notation) could shed new light on our understanding of evolutionary algorithms.
We note that a few examples of such analyses can already be found in the liter-
ature, e.g., in [6,4]. The regular patterns observed in Fig. 3 suggest the presence
of trends that could be turned into formal knowledge.

It would certainly also be interesting to extend our study to a (µ + λ) GA
variant using dynamic values for the relevant parameters µ, λ, crossover proba-
bility pc, and mutation rate p. We are also planning to extend the study to more
conventional (µ+ λ) GA, which apply mutation right after crossover.
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