
HAL Id: hal-02931632
https://hal.sorbonne-universite.fr/hal-02931632

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maskara: Compilation of a Masking Countermeasure
with Optimised Polynomial Interpolation

Nicolas Belleville, Damien Couroussé, Karine Heydemann, Quentin Meunier,
Inès Ben El Ouahma

To cite this version:
Nicolas Belleville, Damien Couroussé, Karine Heydemann, Quentin Meunier, Inès Ben El Ouahma.
Maskara: Compilation of a Masking Countermeasure with Optimised Polynomial Interpolation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39 (11), pp.1-1.
�10.1109/TCAD.2020.3012237�. �hal-02931632�

https://hal.sorbonne-universite.fr/hal-02931632
https://hal.archives-ouvertes.fr

1

Maskara: Compilation of a Masking Countermeasure
with Optimised Polynomial Interpolation

Nicolas Belleville, Damien Couroussé, Karine Heydemann, Quentin Meunier, Inès Ben El Ouahma

Abstract—Side-channel attacks are amongst the major
threats for embedded systems and IoT devices. Masking is
one of the most used countermeasure against such attacks,
but its application remains a difficult process. We propose a
target-independent approach for applying a first-order boolean
masking countermeasure during compilation, on the static
single assignment form. Contrary to state-of-the art automated
approaches that require to simplify the control flow of the input
program, our approach supports regular control-flow program
structures. Moreover, our compiler is the first to automatically
mask table lookups using a polynomial interpolation approach.
We also present new optimisations to speed up the evaluation of
polynomials: we reduce the number of terms of the polynomial,
and we accelerate finite field multiplication. We show that our
approach is faster than the standard masked table approach with
mask refresh after each access, with speedups up to ×2.4 in our
experiments. Finally, using a formal verification approach, we
show that the compiled machine code is secure, i.e., that all inter-
mediate computations are statistically independent of the secrets.

Index Terms—side-channel attack, masking, compiler

I. INTRODUCTION

Side-channel attacks aim at recovering a secret manipulated
in a numerical computation by exploiting measurements of
physical quantities such as the power consumption or the
electromagnetic emissions [1]. Side-channel attacks are
famous for their ability to recover cryptographic keys, even
though they can be used as well to recover different secrets,
or to reverse-engineer a program executed. These attacks can
be applied to all kinds of computing systems, but they are
particularly effective against unprotected cryptographic IPs,
micro-controllers and embedded systems [2].

Many software and hardware countermeasures have been
developed since the early 1990s, but masking has received
much attention in the last decade. Masking consists in
splitting into shares the secret data and all subsequent

Manuscript received April 18, 2020; revised June 12, 2020; accepted
July 6, 2020. This article was presented in the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems 2020 and
appears as part of the ESWEEK-TCAD special issue.

This work was partially funded by the French National Research Agency
(ANR) as part of the project PROSECCO funded by the program AAP-2015
under grant agreement ANR-15-CE39. It was also partially funded as part
of the SARMENTI project, which has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No 825325. This work was partially supported by the French
national program ”Programme Investissements d’Avenir IRT Nanoelec”
ANR-10-AIRT-05.

N. Belleville (corresponding author) and D. Couroussé are with the
Univ Grenoble Alpes, CEA, List, F-38000 Grenoble, France (email:
firstname.lastname@cea.fr)

K. Heydemann, Q. Meunier and I. Ben El Ouahma are with the
Sorbonne Université, CNRS, LIP6, F-75005, Paris, France (email:
firstname.lastname@lip6.fr)

intermediate computation results deriving from the secrets,
in order to break the statistical correlation between secrets
and side-channel observations. Given an appropriate masking
scheme and an appropriate leakage model of the target circuit,
a masking countermeasure is sound [3], and can be targeted
by formal approaches to verify implementations [4], [5].
Masking is applied to hardware and software implementations
of cryptographic primitives. We focus on the compilation of
software implementations in the rest of this paper.

The compiler is a central piece in a production workflow of
software applications and systems. Standard compilers target
only the functional properties of the compiled program, and
as such they are likely to alter or break countermeasures [6].
In practice, compiled secured implementations would not
offer the expected level of security [7]. Hence, to the
best of our knowledge, countermeasures are still manually
applied in high-security products, involving modifications
and analysis of implementations at the assembly level. For
these reasons, several works have proposed to automatically
apply countermeasures within the compiler [8]–[10]. These
works paved the way for an automatic application of the
countermeasure, although they suffer from various limitations:
they are either target-dependent, or they need to peel or unroll
loops, or they require the use of a domain specific language.
Moreover, cryptographic implementations targeted by
masking often make use of constant tables indexed with values
depending on some secrets, e.g. S-Boxes, referred to as lookup
tables in the following. Automated masking of lookup table
accesses within a compiler has not received much attention,
and all existing compilation approaches handle them by
creating masked tables, whose masks are refreshed regularly.
However, such approaches are not sound in some cases [11].

In this paper, we propose an approach to apply first-order
boolean masking within a general-purpose compiler that
addresses the limitations aforementioned. Our contributions
are the following:

1) we show how to handle control flow, which makes it
possible to apply the countermeasure on code with loops
without unrolling them or peeling them,

2) we show how to integrate in a compiler the masking of
lookup tables with a polynomial interpolation approach
based on [12],

3) we propose several optimisations to speed up the evaluation
of interpolating polynomials,

4) we exploit a state-of-the-art formal verification tool to
check the absence of variables statistically dependent on
a secret in the compiled binaries.

2

Experimental results show that our compiler correctly ap-
plies the countermeasure: the resulting binaries are functional,
and the formal verification concludes that all the variables
are statistically independent of secret. Furthermore, the
optimisations targeting the interpolating polynomial evaluation
result in a ×2 speedup compared to the original approach.
Compared to an access to a masked table followed by a mask
refresh, the polynomial evaluation is up to ×2.4 as fast. The
C files used for experimental evaluation, as well as bytecode
and object files produced, the polynomials generated and the
logs of the formal verification analysis are available online1.

This paper is structured as follows. Section II first
gives some background. Section III presents the related
works. Section IV describes our approach to apply the
countermeasure on an intermediate code representation,
including our algorithms to handle loops and our optimisations
for fast polynomial evaluation. Section V is dedicated to the
implementation of the approach in LLVM. Then, Section VI
presents the results of a leakage analysis performed with
a formal verification tool to check that binaries produced
with our compiler verified the property that all variables are
statistically independent of secrets. Section VII details our
experimental results. In particular, Section VII-B is dedicated
to performance of approaches to mask tables and to the study
of our optimisations, and Section VII-C takes a wider look at
performance of masked code depending on the nature of the
instructions to be masked. Section VIII compares our approach
with the related works. Finally, Section IX concludes.

II. BACKGROUND

A. Masking countermeasure

Masking is a protection principle designed to remove the
statistical correlation between side-channel observations and
the secret data manipulated by a circuit or a processor [13],
[14]. The principle is to modify the algorithm of the targeted
program so that all intermediate results that depend on the
secret data are separated into several parts (called shares),
chosen such that the results can be recomposed using all the
shares, and such that any subset of shares of size strictly less
than the total number of shares is statistically independent
of the secrets. A masking is said to be of order d if it splits
secrets into d+ 1 shares.

The secret splitting is done by choosing d random numbers
(the masks) {m1, . . . ,md} and by computing sd+1 =
v�m1�· · ·�md where � is the operation used for masking, v
is the secret variable to be masked, which gives d+1 shares (d
masks and sd+1). We focus in this paper on boolean masking,
where � corresponds to the exclusive OR ⊕ (also noted XOR).

With first-order boolean masking, a secret s is transformed
into 2 shares s0 and s1 with s0 = s⊕m and s1 = m where
m is a random number. The masks are randomly chosen
at each execution, so that the values of the shares change
in a random way from one execution to another. All the
subsequent computations manipulate separately the 2 shares,
and the final value is reconstructed from its shares at the

1https://github.com/nicolas-belleville/Maskara

end. The transformation of the computations that manipulate
shares is presented in Section II-C.

If 2 variables masked with the same masks are combined,
a secret dependent leakage can appear. To solve this problem,
a mask refresh is done on one of the variables: a new mask
is generated and combined with the shares of the variable.

B. Threat model

The physical implementation of an algorithm can
be modelled as a sequence of physical elementary
computations [15]. In a physical implementation
I = {(Ci, fi)} of an algorithm, each physical elementary
computation (Ci, fi) is composed of an elementary
computation Ci and of a leakage function fi. A cryptographic
implementation computes outputs from some inputs X and
a secret k. Each execution of I leaks all the values fi(x),
referred to as (fi(x))i in the following, where x denotes X , k
or any intermediate computation value deriving from X and k.

In the side-channel setting, the attacker can observe or
control a set of inputs {Xj}. For each Xj , she can measure
some physical quantities deriving from (fi(xj))i, which we
assume equivalent to (fi(xj))i for the sake of simplicity. A
side-channel analysis tries to establish a statistical correlation
between xj and (fi(xj))i, which leads to the value of the
secret k. Note that it is also possible to exploit the knowledge
of the computation outputs and the leakages fi.

In an implementation I ′ = {(C ′i, f ′i)} protected with
masking, each execution of I ′ leaks the values (f ′i(xj , Rj))i
where Rj is a set of unpredictable values (usually random)
unknown to the attacker. The combination of the computation
variables with random data breaks the statistical correlation
between f ′i and the secret k, thus thwarting the attack. Higher-
order attacks combine several observations of f ′i to recover
(xj , Rj), hence k. Their computational cost is however
exponential with the order of the attack (i.e., the number of
observations combined). To succeed, the attack order needs
to be greater than the masking order d of the countermeasure.

In this paper, we consider an attacker capable of first-order
attacks, and a value-based leakage model at the ISA level:
leakages fi depend on the independent values manipulated in
the processor elements visible at the abstraction level of the
Instruction Set Architecture (ISA), i.e., processor registers
and memory.

C. Masking linear and non-linear operations

Each operation of the original program needs to be
transformed so that it operates separately on each share,
which depends on the nature of the operation: we distinguish
linear and non-linear operations.

An operation f is linear w.r.t. boolean masking if:
∀a, b : f(a ⊕ b) = f(a) ⊕ f(b). The transformations of
operations that are linear w.r.t. boolean masking is done by
applying the operation on each input share. For instance
with 2 shares, a XOR between 2 secrets s = a ⊕ b becomes
s0 = a0 ⊕ b0 and s1 = a1 ⊕ b1.

Non-linear operations, on the contrary, do not follow the
linearity condition. For example:

3

• XOR between a secret and a public value,
• boolean AND between 2 secret values,
• loads to a constant table, indexed by a secret variable.

To the best of our knowledge, there is no general approach
for the transformation of non-linear operations, and, as
a consequence, their masking needs to be examined on
case-by-case basis. There has been a large amount of research
to try to find efficient transformations for them [3], [12],
[16]–[22]. Among them, the so-called SecMult algorithm [3]
is used to mask the finite field multiplication between secrets,
at the price of 4 finite field multiplications, 4 XOR, and one
call to the random number generator. This masking scheme
is adapted from the masking scheme of the boolean AND
presented in [16]. In this section, we emphasise on one specific
transformation required for boolean masking: loads to constant
tables, which can be masked using several approaches. Other
transformations will be detailed in Section IV-D.

D. Masking table lookups indexed by secrets

1) Overview: Two main approaches are usually used to
mask loads to constant tables that are indexed by a secret [12],
[18]–[23]: (1) doing masked loads to a masked table [14],
[20], [21]; (2) replacing the table by the masked evaluation
of an interpolating polynomial [12], [19], [22], [23].

At first-order, the first solution consists in choosing 2
masks: one to mask the inputs of the table, and one to mask
the outputs of the table. The table is in this case recomputed
knowing these masks. However, mask refreshes force to
recompute the table regularly, and an attacker may exploit
the table recomputation to find the masks used [11].

The second solution consists in finding an interpolating
polynomial of the table, and to mask the evaluation of this
polynomial. The polynomial is defined in a finite field where
addition is a XOR. This solution is more complex to set
up than the first solution, but avoids the problem of table
recomputation for mask refreshes.

Other ad hoc approaches target specific tables, like the
approach proposed by [3] for the AES S-box, but we target
here a generic solution able to mask any lookup table within
the compiler.

2) Using polynomial interpolation: We introduce in this
section the polynomial interpolation strategy to mask accesses
to lookup tables.

We choose the finite field as the smallest finite field that
contains all input and output elements of the lookup table,
with the XOR as the addition, and a finite field multiplication
defined using an irreducible polynomial. The interpolating
polynomial will be defined using this finite field.

A generic approach would be to find an interpolating
polynomial under the following form, for instance using a
Lagrange polynomial (Eq. 1). However, the evaluation of
P in Eq. 1 is expensive since it requires to compute all
monomials, resulting in a lot of non-linear multiplications.

P [X] =

n−1∑
i=0

aiX
i (1)

Coron et al. [12] proposed instead to determine an interpo-
lating polynomial in the form shown in Eq. 2. In this formula,
t is a variable of the approach, which is chosen to have a
few masked multiplications (using SecMult), as the latter are
costly. The t − 1 polynomials qi and t polynomials pi are
polynomials constructed using mainly the squaring operation,
as squaring a secret variable is a linear operation, whereas per-
forming a finite field multiplication between 2 secret variables
is not linear and requires a SecMult. This approach resulted
in competitive performance as compared to the use of masked
tables for first-order and higher-order masking [12]. We choose
to implement this approach to handle table lookups indexed
by secrets within our masking compiler pass.

P [X] =

t−1∑
i=1

pi(X) · qi(X) + pt(X) (2)

III. RELATED WORKS

Several works have considered the use of compilation
to apply countermeasures against side-channel attacks [24].
Among them, [8]–[10] proposed different approaches to apply
boolean masking within a compiler.

Moss et al. [8] proposed a first approach based on a type
system and a static analysis to automatically mask a code
written in a domain specific language. They unroll the loops
and inline functions before the countermeasure is applied.

Agosta et al. [9] rely on a data-flow analysis that keeps
track, for each variable, of the number of bits of the key that
the variable depends on. This enables to mask only variables
that could be exploited by an attacker, without masking the
variables that depend on enough bits of the key to be out of
computational reach. They use loop peeling when the analysis
does not manage to propagate information, which means that
they iteratively unroll 1 iteration of the loop at a time until
the analysis succeeds.

The approach proposed by Bayrak et al. [10] differentiates
in several ways: it can use either a static analysis to determine
which instructions to mask, or a dynamic analysis by
making the link between a measurement with the assembly
code to determine which instructions induce leakage. The
countermeasure is then applied only on instructions that
leak information about the secret. Their compiler use is not
standard, as they use a compiler to decompile assembly
code, reconstructing a higher level representation where the
countermeasure is applied before emitting binary code.

All of these approaches use a masked table approach to
mask the loads indexed by a secret, but as said in previous
section, this approach requires to recompute the table
regularly which can be exploited by an attacker [11].

In this paper, we propose to tackle the problem of automated
application of the countermeasure without control flow
modification, as well as the problem of efficiently masking the
loads indexed by a secret. For this second point, we show how
to avoid the use of masked tables using a polynomial interpo-
lation approach for which we present several optimisations.
Our approach works with C code, and is target independent.

4

1. find secret input variables

Maskara

2. confidentiality of variables and memory contents

3. find all instructions that manipulate secret data

4. transform lookup tables

5. transform instructions and apply remasking

function code
in SSA form

masked function
code in SSA form

Fig. 1. Main steps for the application of the countermeasure

IV. AUTOMATED APPLICATION OF
THE FIRST-ORDER BOOLEAN MASKING COUNTERMEASURE

A. Overview

In order to automatically apply the first-order boolean
masking countermeasure during compilation, we developed
several algorithms operating on a low-level Intermediate Rep-
resentation (IR). We assume that the IR is target-independent
and in Static Single Assignment (SSA) form, as implemented
in production compilers like GCC and LLVM. In SSA form,
each definition target must be a unique variable name. As a
variable may be defined differently according to the execution
path taken by the program, to respect the unique naming
convention, so-called φ nodes are instructions inserted at
control flow merge points. φ nodes select the incoming value
according to the taken path and define a fresh variable set to
this value. E.g., if a basic block BB2 has two predecessors BB0
and BB1 defining a source variable x, the basic block BB2 will
first contain x2 = φ((x0,BB0), (x1,BB1)), selecting the value
of x in the SSA variable x2 depending on the taken path.

The countermeasure is applied to each function
independently, as illustrated in Figure 1. It is composed
of several steps:
1) The identification of source variables specified as secret

by the user.
2) A confidentiality analysis propagating this information to

determine a level of confidentiality for memory contents
at each program point and for all SSA variables.

3) An analysis that identifies the list of instructions LInst
which manipulate secret data. The analysis is based on the
results of the confidentiality analysis from the previous
step, and is performed in a topological order defined w.r.t.
the function instructions dependencies. Those instructions
will be transformed to work with shares. This step also
detects if LInst contains any load to constant lookup tables
indexed by secrets as a preliminary to the next step.

4) The creation of specific functions, in the case where LInst
contains accesses to constant lookup tables indexed by
secrets. A new function is created for each lookup table.
It performs a masked evaluation of a polynomial that
interpolates the original table.

5) Transformation of each instruction of LInst to make it
compliant with the masking scheme used (first-order
boolean in the context of this paper). Tightly coupled with

the transformation, a remasking analysis determines if the
transformation may create a secret data leak. If this is the
case, a remasking is performed.

The following sub-sections detail the steps 2, 4 and 5.

B. Confidentiality analysis

The first step of the masking pass starts by retrieving source
variables specified as secret by the user (Fig. 1 step 1). This
information is used to analyse the confidentiality of 1) the
memory contents accessed by the program at each program
point and 2) all SSA variables defined within the function
using a data-flow analysis presented in this section (step 2).
This confidentiality analysis is mandatory to determine the
list of instructions that manipulate secret data (step 3).

We assume a reduced SSA IR language given in Figure 2
to explain the confidentiality analysis. The IR only comprises
instructions that define a (new) SSA variable or change the
memory contents, as other kinds of IR instructions do not
impact the confidentiality of variables (e.g. jump instructions).
We omit calls to functions returning a value for the sake
of simplicity without loss of generality. Thus, our SSA IR
language is composed of computational instructions (e.g., ad-
dition, boolean AND, shift operation, type conversion), φ node
instructions selecting between SSA variables and memory
access instructions performing a read or a write given an
expression of the memory address to access. Expressions are
either a SSA variable, a constant, a memory address corre-
sponding to a source variable, or a computation on expressions.

expr := varSSA | cst | @varsrc |
opunary expr | expr opbinary expr

inst := store(expr, expraddr)

varSSA = load(expraddr)

varSSA = oper(expr1, ..., exprn)

varSSA = φ(varSSA1 , ..., varSSAn)

Fig. 2. Expression and IR languages

Let T be a set of confidentiality types composed of {Si|i ≥
0}∪{P}. Type S0 corresponds to a secret data type, Si, i > 0
represents the type of memory addresses containing (or of
pointers to) data of type Si−1. Type P corresponds to public
data. For keeping uniform all the rules for the confidentiality
analysis we pose P ≡ S∞ and get T = {Si|i ≥ 0} ∪ {S∞}.
In the sequel, we use the terms confidentiality type and confi-
dentiality interchangeably, and we say that the confidentiality
gets higher if i decreases (the variable becomes closer to a
secret), and that the confidentiality gets lower if i increases.

We assume that, at the beginning of a function, alive source
code variables, parameters, alive memory addresses or alive
memory contents have a type in T . It is either defined by
the programmer or derived from the confidential analysis of
the calling function. By default, variables and addresses are
considered public, hence of type S∞, unless the user declares
another type (this can be done using simple annotation), or
the inference algorithm determines a higher confidentiality.

5

isConst(e)

Γ ` e : S∞
(CST)

isSrcVar(varssa) Γ ` SrcVar(varssa) : t

Γ ` varssa : t
(SRC)

Γ ` varsrc : Si
Γ ` @varsrc : Si+1

(SRCADDR)

Mem[addr] = e Γ ` e : Si
Γ ` addr : Si+1

(ADDR)
Γ ` e : Si

Γ ` opunary e : Si
(OP1)

Γ ` e1 : Sk1 Γ ` e2 : Sk2

Γ ` e1 opbinary e2 : Smin(k1,k2)
(OP2)

Fig. 3. Confidentiality typing rules for expressions

∀i ∈ [1, n] Γ ` ei : Ski

Γ, v := oper(e1, ..., en)→ Γ[v← S min
1≤i≤n

ki]
(COMPUT)

∀i ∈ [1, n] Γ ` vi : Ski

Γ, v := φ(v1, ..., vn)→ Γ[v← S min
1≤i≤n

ki]
(PHINODE)

Γ ` eaddr : Si
Γ, v := load(eaddr)→ Γ[v← Smax(0,i−1)]

(LOAD)
Γ ` e : Si

Γ, store(e, eaddr)→ Γ[eaddr ← Si+1]
(STORE)

Fig. 4. Confidentiality propagation rules for instructions

Let Γ be the environment associating memory contents,
source variables, or defined SSA variables to a confidentiality
type T . Figure 3 defines the confidentiality inference rules
for expressions of our IR language. We note Γ ` e : t the
confidentiality t of expression e according to Γ. The predicate
isSrcVar tests if a SSA variable corresponds to a source
variable (be it a parameter, a local or a global variable),
and the function SrcVar returns this variable in affirmative
case. The rules in Figure 4 reflect how instructions of our IR
language update the environment. Notation Γ, I → Γ′ means
that the update of Γ by executing I gives the environment Γ′.
We note Γ[v ← t] the update of the confidentiality of v with
the confidentiality type t.

Using the defined rules, the confidentiality analysis follows
a forward data-flow analysis to infer the type of each SSA
variable defined by a function: from the entry of a function,
each instruction is processed by following the control-flow
graph. Due to the presence of loops, the analysis is iterative
until every SSA variable is typed and a fixed point is reached.
Note that the confidentiality of a SSA variable defined by an
instruction cannot be lower than the confidentiality type of
the instruction operands (rules COMPUT, PHINODE, LOAD).
The analysis can never derive a public data from a secret.

C. Polynomial interpolation of lookup tables

This section shows how constant tables that are accessed
with indexes depending on secret data are transformed (Fig. 1
step 4). Lookup tables include, in particular, substitution
tables, called S-boxes in cryptographic primitives whose
structure is a substitution/permutation network that associates
to each integer of a set another integer of another set. For
example, in the case of AES, the S-box can be seen as a
bijection of the set of integers in the [0, 255] interval in itself.

1) Overview: The use of lookup tables is detected by
the presence of a load whose base address corresponds to
a constant table and whose index is a secret (type S0). We
chose to mask lookup tables by creating for each of them a

function that performs a masked evaluation of an interpolating
polynomial defined over a finite field. We follow the method
of Coron et al. [12] to construct an interpolating polynomial
in the form presented in Section II-D. This construction is
detailed in Section IV-C2. The generation of the code that
handles the masked evaluation of the polynomial is presented
in Section IV-C3. Finally, in Section IV-C4, we bring several
optimisations to speed up the evaluation of the polynomial.

2) Polynomial construction: As proposed in [12], finding
an interpolating polynomial as a sum of products of some
polynomials pi and qi (Eq. 2) makes it possible to avoid
computing all monomials and to reduce the number of
non-linear multiplications when evaluating it. The qi and
pi are constructed using only a chosen restricted set of
monomials denoted M, which must satisfy condition CondM
as follows: for all monomial m not in M, there exists a
product of 2 monomials p, q in M such that m = p · q.

The set M is the union of two sets MNL and MS that
are constructed as follows. MNL is first built to contain a
fixed number l of monomials: it comprises X0, X1 and l− 2
other monomials that can only be obtained using a non-linear
multiplication. MS contains all the monomials that can be
obtained from MNL only using squaring operations. The
chosen monomials in MNL and the derived ones in MS are
kept only if the resulting set M satisfies CondM. Otherwise,
a different set of monomials MNL must be chosen and so
until M satisfies CondM.

We follow [12] in the choice of the number l of monomials
as well as the number t of pi, which depend on the size of the
table to interpolate. Thus, as the choice of the set of monomials
MNL is independent of the table content, the compiler could
use pre-computed static sets of monomials for various table
sizes instead of computing a valid set at each new compilation.

The coefficients of each qi are then chosen randomly
and the equation ∀x : P [x] = table[x] gives a set of linear
equations, with pi’s coefficients as unknowns. The system
is solved to find the pi’s coefficients. There is a very high
probability that the system is full rank and has a solution due

6

to the random nature of the coefficients of each qi. In case the
system happens to have no solution, the algorithm chooses
different coefficients for the qi and starts a new search.

Once all the coefficients have been determined, the code
performing the evaluation of the interpolating polynomial can
be emitted.

3) Code generation: The approach presented above
gives an analytical expression of the polynomial. From this
expression, we construct a function that performs the masked
evaluation of the polynomial. A general purpose compiler
is highly effective at optimising the program structure and
computations, but domain-specific optimisations are much
harder to implement in such a compiler. Hence, instead of
emitting the code performing an evaluation of the polynomial
and mask it in 2 separated steps, we choose to emit directly
a code performing the masked evaluation of the polynomial.
Doing so enables us to apply algorithmic optimisations based
on the mathematical properties of the operations used in the
polynomial. More specifically, we know exactly the location
of the finite field multiplications, and we can then handle
them directly using the SecMult algorithm.

The code generation starts by emitting masked code for
each monomial in MNL using SecMult for each non-linear
multiplication. Then, the masked code of each qi and pi
is emitted, using squaring, multiplications by constants and
XORs. Finally, the SecMults and XORs necessary to multiply
the values of the qi and pi and to sum the results are emitted.

4) Optimisations of polynomial evaluation: In order to
make the polynomial evaluation faster, we reuse some existing
optimisations and bring new ones:
• some linear operations are grouped together and tabulated,
• some of the coefficients of the qi polynomials are set to

zero to make the evaluation of qi faster,
• the number of operations for finite field multiplication

using log/alog tables is reduced by expanding these tables.
a) Grouping of operations: The first optimisation,

proposed in [12], consists in grouping linear operations to
form larger linear expressions that are tabulated. Within
each polynomial pi and qi, all monomials that can be
derived from a same monomial from MNL through
squaring are grouped together. We will call such group of
monomials a class later on. Then, pi and qi are written as
a sum of subpolynomials

∑
j PSj

. For each subpolynomial
PSj [X] = akX

α+ak+1(Xα)2+ak+2(Xα)4 + ... , we define
the subpolynomial P ′Sj

[X] = akX+ak+1X
2+ak+2X

4 +
This enables to compute PSj

[X] in two steps:
1) By computing Y = Xα;
2) By evaluating the polynomial P ′Sj

[Y]

Xα is not linear w.r.t. XOR, but P ′Sj
is linear because it

is composed only of powers of 2, scalar multiplications, and
XORs. Consequently, once Y = Xα has been evaluated and
its shares y0 and y1 are known, one obtains the shares of the
result by evaluating P ′Sj

on both shares. Even though P ′Sj
is

only constituted of linear operations that are easy to mask,
the code is made faster by tabulating the result of P ′Sj

. This
enables to get P ′Sj

[y0] and P ′Sj
[y1] using 2 table lookups

once the shares y0 and y1 are known.

b) Choice of coefficients of qi: In the original approach,
coefficients of qi are random numbers, which allows the linear
equation system to be full rank with high probability. We
propose an optimisation in the choice of the coefficient of qi:
it consists in zeroing a large part of them to avoid some com-
putations. As all the operations related to a class are grouped
to form subpolynomials PSj , our algorithm either sets to zero
all the coefficients of a class, or sets them to random values.

We propose a heuristic to choose the coefficients of qi to
be zeroed. It is described in Algorithm 1. The user gives a
target sparsity sp for the algorithm, which corresponds to the
mean number of classes the user wants to be zeroed per qi.
Sparsity sp is not necessarily an integer, but it must be lower
to l − 1 in order to never zero all coefficients of a qi.

For each qi (variable qi in Algorithm 1), the algorithm first
chooses randomly its coefficients (setRandomly(qi)). Then
it randomly chooses a number nC in the interval [0,l−1[,
in a way that gives a theoretical mean of sp. This number
nC correspond to the number of classes randomly selected
among all classes and whose coefficients are zeroed by
setNClassesToZero(qi, nC).

Once the coefficients of qi have been chosen, the compiler
tries to solve the system of linear equations. The setting of
coefficients to zero can lead to unsolvable systems. In such
case, our compiler tries again setting to zero a different set
of coefficients, until it finds a solvable system.

The heuristic finds as many different sets of coefficients
that the user asks for (nbIt parameter). The heuristic then
selects the set of coefficients that will give the fastest resulting
implementation.

This heuristic has a probabilistic termination that depends
on sp. The closer to l−1 the value of sp is, the sparser the
set of coefficients is; and as a consequence, the faster the
resulting implementation. However, the compiler may need a
lot of attempts before finding a suitable set of coefficients. In
practice, the user can adjust sp and the number of iterations
depending on its needs. In addition, the algorithm could keep
the best seed (called it in Algorithm 1) of the PRNG to find
directly this efficient solution without iterating.

c) Optimisation of finite field multiplications with
log/alog tables: Finite field multiplication is used extensively
when computing the masked evaluation of the interpolating
polynomial: once for each linear multiplication and four times
for each non-linear multiplication carried out using SecMult.
Hence, finite field multiplication becomes an interesting
target for performance optimisations. We present here several
optimisations to accelerate its computation.

We chose to implement finite field multiplication using
log/alog tables. This approach relies on the property that any
element of the finite field, except 0, can be represented as a
power of the primitive element e of the finite field:

∀x 6= 0 : ∃p : x = ep (3)

Multiplying two elements x0 and x1 in a binary finite field
of 2n elements then consists in the following steps:
1) if any of the operands equals 0, return 0
2) for each xi, find expi such that xi = eexpi

3) compute expres = exp0 + exp1[2n − 1]

7

Algorithm 1: Heuristic for the optimisation of qi

coefficients
{qi, pi} ← optimisedPolynomialInterpolation(S, sp, nbIt)

Input: Lookup table to interpolate S
Input: Target sparsity sp
Input: Number of iterations nbIt
Output: Set of pi and qi that interpolate S

1 t = getNumberOfpi(S)
2 l = getNumberOfBasisExponents(S)
3 bestqipi = {}
4 lowestCost = +∞
5 for it = 0; it < nbIt; it += 1 do
6 srand(it) // initialize PRNG
7 piSet = ∅
8 do
9 qiSet = ∅

10 for i = 0; i < t - 1; i += 1 do
11 setRandomly(qi)
12 // choose an int randomly

in [0,l−1[with an average of sp

13 nC = randInt(0, sp, l - 1)
14 //

set to 0 nC classes in qi, other
coefficients are left random

15 setNClassesToZero(qi, nC)
16 qiSet.insert(qi)

17 // try to solve system;
return an empty set if no solution

18 piSet = solveSystem(qiSet, S)
19 while piSet == ∅
20
21 cost = estimateCost(piSet, qiSet)
22 if cost < lowestCost then
23 lowestCost = cost
24 bestqipi = {qiSet, piSet}

25 return bestqipi

4) compute xres such as xres = eexpres

The step 1 is necessary as 0 does not have any logarithm.
The steps 2 and 4 are implemented with two lookup tables:
the log table associating to a non-zero element in the finite
field its logarithm, and the alog table associating to a power
p the value of ep. We use the log and alog notations in the
following for these tables to differentiate them from the log
and alog mathematical functions.

To avoid leaking the operand values through execution
time, the implementation has to be constant time: the same
computation must be performed whether the operand is null
or not. Thus, a classical constant-time implementation of
finite field multiplication in C would be:

uint8_t mul(uint8_t a, uint8_t b) {
return ((a != 0) & (b != 0))
* alog[(log[a] + log[b]) % ((1<<n)-1)];

}

As previously proposed by [25], the modulo computation can
be optimised by doubling the size of the alog table and by
letting: ∀x ≥ (2n − 1) : alog[x] = alog[x− (2n − 1)].

We propose a further optimisation in order to entirely
remove all the code that handles the special case where one
operand is null. We notice that ∀x 6= 0 : log[x] ≤ (2n − 1).

Thus, ∀x 6= 0,∀y 6= 0 : log[x] + log[y] ≤ 2 · (2n − 1).
As a consequence, by modifying the log

table so that log[0] = 2n+1 − 1, we get: ∀x :
2 · (2n − 1) < log[0] + log[x] ≤ 2 · (2n+1 − 1). By

doubling the size of the alog table by setting
∀x > 2 · (2n − 1) : alog[x] = 0, we can remove the
code handling the case where one operand is null. The
implementation of the multiplication in C becomes:

uint8_t mul(uint8_t a, uint8_t b) {
return alog[log[a] + log[b]];

}

Note that one can choose for log[0] any value that is bigger
than any sum of the 2 logs.

D. Transformation of operations

The transformation of instructions (Fig. 1 step 5) is carried
out instruction per instruction. After each transformation, the
pass checks if a leakage appeared and if so adds a remasking
of the operands before the leaky instruction. This step is
explained in section IV-E.

1) Transformation of linear operations: Linear operations
are transformed by applying the same operation on both
shares. Examples of linear operations are: load from and store
to an address of type S1, XOR between 2 masked variables,
sign extend and zero extend of a masked variable, shift of
a masked variable, boolean AND between a masked variable
and a public variable, φ node that has 2 secret operands.

2) Transformation of non-linear operations: Non-linear
operations are transformed using operation-specific recipes.
Examples of non-linear operations are: XOR between a
masked variable and a public variable, boolean AND between
2 masked variables, boolean OR between 2 masked variables,
boolean OR between a masked variable and a public variable,
loads indexed by a secret.

The transformations are very diverse depending on the case:
1) XOR between a masked variable and a public variable

does not need any transformation
2) the boolean AND between 2 masked variables is masked

using the ISW scheme [16]
3) the boolean OR between 2 masked variables is masked

using the SecOr formula from [17]
4) the boolean OR between a masked variable and a public

variable is transformed using the following property:
a ∨ (s0 ⊕ s1) = (a ∨ s0)⊕ (¬a ∧ s1)

5) loads to a constant table indexed by a secret are replaced
by a function call to the function created for this table
(see section IV-C).

E. Remasking analysis

The remasking analysis determines if an instruction leaks
secret data. The analysis must operate after the transformation
of operations presented above, because the transformations
may introduce new instructions and new intermediate vari-
ables. A leakage appears if one of the result of the instructions
is not correctly masked. When it happens, a remasking (also
called mask refresh) of one operand of the leaky instruction

8

is needed. Note that the remasking is simultaneously applied
to one operand and its associated share in order to maintain
the correctness of the share decomposition.

Our remasking analysis is a forward data-flow analysis
(from input to output). It aims to conservatively compute,
for each SSA variable produced by a transformed instruction,
the potential lists of its masks. More precisely, this analysis
attaches to any such SSA variable v a set of potential lists of
masks for the variable as a whole denoted L(v) and a set of
potential lists of mask bits for each of its bits denoted Li(v)
for bit i. Maintaining these lists at the word level and at the
bit level is necessary to correctly handle and propagate the
masks in presence of shift or rotations, bit selections or sign
extensions.

We suppose that each function’s secret input is already de-
composed into two shares and that one of the share is a mask.
This enables to initialise, at the beginning of the analysis,
the set of the masks list of each input variable. The analysis
then follows mask propagation rules to determine, for each
instruction that manipulates one or several shares, the set of the
potential lists of masks L(r) and Li(r) of its result variable r.

In case of a boolean instruction with only one secret operand
a, L(r) and Li(r) are identical to L(a) and Li(a) respectively.
In case of shifts and sign extends, L(r) is set to L(a), and
Li(r) is a copy of the set of the corresponding bit of the input.

In case of a φ node r = φ((a,BB0), (b,BB1)). The set
L(r) (and Li(r) resp.) is set to the union of the set L(a)
and L(b) (Li(a) and Li(b) resp.). The φ node justifies the
computation of the set of the potential lists of masks for
each variable. Depending on the execution path taken by the
program, the result of the φ node will be masked either with
the masks of a or with the ones of b.

For instructions that have two secret operands a and b, L(r)
is set to the union of all the possible symmetric differences
of a list lmi in L(a) with a list lmj in L(b):

L(r) =
⋃

lmi∈L(a),lmj∈L(b)

{lmi4lmj}

The symmetric difference of two mask lists denoted lmi4lmj

equals to (lmi ∪ lmj) \ (lmi ∩ lmj). The same computation
enables to derive all the Li(r). If any list in L(r) or any Li(r)
gets empty, one of the source operands must be remasked.
The remasking will add a new mask (or a new bit mask resp.)
in all the lists of L(r) (Li(r) resp.). The set of masks lists
L(r) and Li(r) will then be recomputed.

Cyclic dependencies exist when a φ node depends on a
variable that depends on the result of the φ node. Such φ nodes
appear in the header of loops. When a φ node that has one
operand which exhibits such a cyclic dependency, our analysis
tries to determine a set of lists of masks for the result of the φ
node using Algorithm 2. In this algorithm, we call the initial
variable (iv) the operand of the φ node that does not have any
cyclic dependency, and cyclic variable (cv) the operand that
exhibits the cyclic dependency. The main idea of this algorithm
is to simulate the mask propagation, as if the following instruc-
tions were transformed, but without transforming them in order
to be able to compute the potential lists of masks for the cyclic

source
code

fr
on

t-
en

d

m
id

dl
e-

en
d

ba
ck

-e
nd

binary

IR
 o

pt
im

is
at

io
ns

M
as

ka
ra

ba
ck

-e
nd

op
tim

is
at

io
ns

m
od

ifi
ed

 IS
E

L

M
as

ka
ra

M
as

ka
ra

Fig. 5. Compilation flow to apply the countermeasure. The Maskara masking
pass is inserted at the end of the middle-end. The back-end is slightly
modified: the optimisation level of instruction selection (ISEL) is set to zero.

variable cv. The algorithm iterates while the set L(r) of the re-
sult of the φ node (denoted S in Algorithm 2) grows. When the
propagation does not add any new list of masks in this set, the
algorithm has found the set of all possible lists of masks for the
φ node (Alg. 2 line 7). However, the algorithm does not always
converge. As such, the number of iterations must be bounded
by the user (or with a default value). When the algorithm
reaches this limit, it returns an empty set, and the results of the
φ node will be remasked. This will update the φ node’s mask
at every iteration, ensuring the variable is correctly masked at
the price of a potential higher performance cost.

Algorithm 2: Construction of the set of lists of masks
for a φ node that has cyclic dependencies
S ← getPhiNodeMaskSet(inst, timeout)

Input: Instruction inst, integer timeout
Output: Set of Mask Lists S

1 // get the
operand which initialises the φ node value

2 iv = inst.getInitialVariable()
3 // get the

operand which exhibits cyclic dependency
4 cv = inst.getCyclicVariable()
5 S.addListsOf(getSetOfMaskLists(iv))
6 for i = 0; i < timeout; i += 1 do
7 // determine the mask lists

of all instructions until cv assuming
S is the set of φ node’s mask lists

8 propagateMaskListToInstructionsUntil(cv)
9 // test if mask lists from

this iteration are already all in S

10 if S.includes(cv.getSetOfMaskLists()) then
11 return S

12 else
13 // update S

14 S.addListsOf(getSetOfMaskLists(cv))

15 return emptyList()

V. IMPLEMENTATION WITHIN LLVM
We implemented our approach in a compiler pass, called

Maskara, within LLVM.
To use our pass, the user has to annotate its source code to

declare the secret variables and the functions to protect. The
pass then masks all the instructions that operate on secret
data in the target functions. The pass aborts and raises an
error if it finds instructions that manipulate secrets for which
no transformation rule is implemented.

9

Maskara is placed at the very end of the middle-end,
as presented in Figure 5. This insertion of the pass in the
middle-end makes the application of masking independent
of the target architecture, which greatly facilitates support of
different platforms. Moreover, the countermeasure is applied
after all the optimisation passes of the middle-end and can
then benefit from them (smaller and more efficient code).
Also, the application of the countermeasure before the back-
end takes advantage of the register allocation which optimises
the register use. This is particularly interesting for our
countermeasure, since the application of masking splits many
variables in shares, which increases the register pressure.

However, it is necessary to make sure that other back-end
optimisations and passes do not degrade the masked code
such that a leak appears. Thus, we investigated potential
sources of threats in the back-end by considering the ARM
back-end. Indeed, we chose to focus on the ARM back-
end since all experiments were made on this architecture,
including the formal verification. We found out that the
selection of instructions from the ARM back-end can hurt
the countermeasure when combining some instructions into
a unique one for performance and code size reasons. As
an example, the instruction selection can gather 2 one-byte
memory loads at contiguous addresses to form a single
two-byte (half-word) memory load. This is harmful when the
2 bytes to be loaded correspond to the two shares s0 and s1
of a secret value s. Indeed, the concatenation of 2 secrets
that have the same mask can induce a leakage.

As an example, if we model the leakage using the Hamming
weight of the value, and assume that s0 = s ⊕ rand and
s1 = rand:

HW (s0||s1) = HW (s0) + HW (s1)

= HW (s⊕ rand) + HW (rand)

where || corresponds to concatenation here.
If a variable is correctly masked, any Hamming weight

should be possible for any variable value. For s = 255, this
property does not hold, as we get a constant Hamming weight:

HW (s0||s1) = HW (¬rand) + HW (rand)

= 8−HW (rand) + HW (rand) = 8

Thus, the Hamming weight of the half-word has a
distribution that depends on the value of the secret: such a
pattern introduces a vulnerability in the masked code.

We solved this issue by disabling optimisations that
combine instructions in the instruction selection pass.

Apart from this optimisation, we did not detect other ARM
back-end optimisations that could alter the countermeasure.
We did not change the optimisation level for other back-end
passes, letting the user defined levels. Moreover, in the next
section, we show, using a formal verification approach, that
the ARM binaries produced using optimisation level -Oz
are well protected and thus confirm that the other back-end
passes did not harm the countermeasure.

VI. LEAKAGE ANALYSIS

The masking countermeasure at first-order aims at making
all intermediate computations statistically independent of the

secrets. If the countermeasure is correctly applied, there should
not be any leakage of secret information in the value-based
leakage model. We choose to formally check this property on
representative binaries generated by our hardening compiler.

We carry out the analysis using a tool implementing the
formal verification approach proposed in [5]. This verification
approach analyses the statistical distribution of the values
of masked expressions. It is based on a symbolic analysis
and inference rules. The computed distribution can be either
uniform (RUD), statistically independent of the secrets (ISD),
statistically dependent on the secrets (SDD), constant (CST),
or unknown (UKD). RUD, ISD and CST are leak-free.
UKD means either that the expression is not perfectly
masked, or that the verification was not able to determine the
distribution of the variable. SDD highlights a vulnerability.
The verification is performed on a per-function basis. The
verification tool first recomputes the expression of each result
of intermediate computation of the binary program. Then, it
performs the symbolic analysis to determine the statistical
distribution of the values of each intermediate computation
of the binary code. The composition of two verified functions
f ◦g is sound if each secret output of the first function (g) has
a uniform distribution (condition 1) and has at least one mask
that does not appear in any other secret output (condition 2).

We consider all the functions of an AES implementation
(Section VII-C): AddRoundKey, SubBytes, ShiftRows,
MixColumns and KeySchedule. We also analyse the function
InterpolatedSboxAccess, generated by the Maskara compiler
pass, that performs one masked evaluation of a polynomial
interpolating the AES S-box.

For all the functions, the formal verification tool concluded
that all intermediate computation results are statistically
independent of the secret. The analysis results are given in
Table I: for all functions but MixColumn, all the intermediate
computation results and all function outputs either have a
uniform distribution (RUD) or are constant (CST). For the
function MixColumn, all intermediate computation results
have either a uniform distribution (RUD), a distribution inde-
pendent of the secret (ISD) or are constant (CST). We checked
that the outputs of MixColumns have a uniform distribution
(RUD) (condition 1). Condition 2 is also systematically
satisfied since the masks used for the remaskings are always
fresh ones. We can then conclude that these functions can be
safely composed and that the whole AES implementation is
secure in the value-based leakage model. We can note that
these security results are similar to those obtained with an
approach using masked tables, as shown in [5].

We would like to point out that the first analysis
that we carried out revealed some leakage in the
InterpolatedSboxAccess function and so in the SubBytes and
KeySchedule functions that call it. The verification enabled us
to find a bug in the implementation of the compiler masking
pass. The results that we present here have been obtained
after we fixed our compiler pass implementation.

In the end, all the instructions manipulating secret
information were correctly masked by the compiler. Moreover,
the compiler back-end has not impaired the countermeasure.
This result allows us to be confident that the countermeasure

10

TABLE I
VERIFICATION RESULTS: NUMBER OF ARM ASSEMBLY INSTRUCTIONS

ANALYSED PER FUNCTION, AND BREAKDOWN OF THE COMPUTED
DISTRIBUTIONS FOR INSTRUCTION RESULTS

Distribution of instruction result
Function #inst CST RUD ISD SDD UKD
AddRoundKey 181 53 128 0 0 0
InterpolatedSboxAccess 707 211 496 0 0 0
SubBytes 11332 3396 7936 0 0 0
ShiftRows 54 2 52 0 0 0
MixColumn 346 30 273 43 0 0
KeySchedule 2971 858 2113 0 0 0

Fig. 6. Execution time speedup using our optimisations, compared to a
masking table approach. Our approach is faster than the masking table
approach on all test-cases.

is properly carried out by Maskara.

VII. EXPERIMENTAL EVALUATION

A. Experimental setup

We used a STM32VLDISCOVERY board from
STMicroelectronics, fitted with a Cortex-M3 core, 8 kB
of RAM, and 128 kB of flash memory. The execution time is
measured in clock cycles using the hardware counters.

B. Performance evaluation of lookup table accesses

In this section, we evaluate the impact of the countermea-
sure on execution time for lookup table accesses, as well as the
benefits of the optimisations proposed in Section IV-C4. As the
number of qi and of monomials involved in the interpolating
polynomial depends on the finite field that contains the table
elements, we chose tables that are built on different finite
fields with various number of elements. We choose 3 different
tables from widely used block ciphers as benchmarks: one
16-element S-box from PRESENT, one 64-element S-box
from DES, and one 256-element S-box from AES.

For each table, we compare the execution times obtained
using our optimisations and the polynomial interpolation
approach with the execution times obtained using a masked
table (MT) approach. To make a fair comparison between
masked table and polynomial interpolation, we consider that
masks are refreshed at every masked lookup table access, as it
is the case for polynomial interpolation by default. For masked
tables, this implies a table refresh after each access. The
resulting speedups are given in Figure 6 and discussed below.

We measure the execution time of one masked table access
and table refresh as a reference execution time denoted MT

TABLE II
EXECUTION TIME (PROC. CYCLES) OF THE EVALUATION OF SEVERAL

S-BOXES ACCORDING TO THE OPTIMISATIONS APPLIED AND SPEEDUPS
COMPARED TO THE POLYNOMIAL INTERPOLATION WITH ONLY THE

GROUPING OF OPERATIONS

Field mul Field mul
Field mul modulo modulo + zero

Ref modulo + zero + qi coefficients
S-box time time speedup time speedup time speedup

PRESENT 331 239 ×1.4 182 ×1.8 163 ×2.0

DES 920 685 ×1.3 484 ×1.9 417 ×2.2

AES 2185 1761 ×1.2 1448 ×1.5 1083 ×2.0

reference. The execution times obtained are 238 clock
cycles, 711 clock cycles and 2637 clock cycles for PRESENT,
DES and AES S-boxes respectively. We then enable loop un-
rolling that leads to a version denoted MT unrolled, which
approximately exhibits a ×1.3 speedup for all the test-cases.

For the polynomial interpolation approach, we add
progressively more optimisations. We start with an
implementation using only the grouping of operations
optimisation, called Poly reference in Figure 6. This
implementation was slower than both MT implementations
for PRESENT and DES S-boxes. However, it was already
faster than MT reference for the AES S-box. Adding
the optimisation of the modulo operation within the field
multiplication gives the implementations denoted Field
mul modulo, which are as fast or faster than the MT
reference implementation for all test-cases. Yet, the MT
unrolled implementation remains faster for both PRESENT
and DES. Optimising again the field multiplication to remove
the code handling the zero value makes the code, denoted
Field mul zero in Figure 6, as fast or faster than MT
unrolled for all the test-cases. Finally, the implementations
obtained by adding the optimisation of the coefficients of
qi, denoted qi coefficient in Figure 6, consistently
outperform the MT unrolled implementations. They are
1.13×, 1.31× and 1.81× as fast as the MT unrolled
implementations for PRESENT, DES and AES respectively.

While our optimisations enable the polynomial approach
to be consistently faster than the masked table approach, the
cost remains non-negligible. Table II presents the number
of clock cycles needed for the masked evaluation of the
interpolating polynomial for the 3 considered S-boxes.
Table II also shows the speedup obtained compared to Poly
reference as more optimisations are added. The execution
time depends a lot on the number of elements of the S-box:
the execution time for the AES S-box is way higher than the
one of the PRESENT S-box. Though, for all the test-cases,
comparing the number of clock cycles required for the Poly
reference and the qi coefficients implementations
shows that the proposed optimisations achieved a total
2× speedup approximately, which greatly improves the
interpolating polynomial evaluation.

C. Study on AES subfunctions

In this section, we study the impact of the countermeasure
more globally. We choose to measure the impact on execution

11

time for the functions that compose the AES block cipher, as
it is widely used, and as its functions perform very different
operations. We use a software unprotected implementation
of AES written in C, and manipulating only variables of
type uint8_t, similar to [26]. The binary code used for
this experimental evaluation is the same as the binary code
considered in Section VI.

We measure the execution time overhead for all the AES
subfunctions, and the ratio between the execution time with
the countermeasure and without. The results are presented
in Table III. The Table also gives the overhead obtained for
SubBytes and KeySchedule using a mask table approach with
unrolling instead of our approach. The overheads obtained
for our approach vary a lot depending on the considered
functions: from ×1.4 to ×130.7.

In order to explain the difference of the overheads, we count
and categorise the instructions that manipulate secret data
within each AES subfunction of our implementation. With
the exception of S-box accesses, all the instructions have a
moderate masking cost: typically, these instructions are linear
w.r.t. the XOR, which means that such instructions are executed
twice (once for each share) to compute the masked result.
The S-box accesses are however much more costly because
of the masked evaluation of an interpolating polynomial.

SubBytes gets the highest overhead because it contains
the highest number (16) of S-box accesses. KeySchedule is
the second biggest overhead because of its 4 S-box accesses.
Other functions do not contain any S-box access, and as
such their costs are much lower: between ×1.4 and ×2.0.
The difference of overheads of AddRoundKey, ShiftRows,
and MixColumns can be explained by the proportion of
instructions to be masked in these functions.

This study highlights the high variability of the cost of the
countermeasure: the masking overhead is quite low for some
operations, but it is very high for others. The overall overhead
of the full AES is highly impacted by the cost of the masked
S-box accesses: the total overhead is ×32.6. Without our
optimisations though, the overhead would be ×64.5 instead.

VIII. DISCUSSION

In this section we compare our work with other approaches
that leverage compilation to enforce masking [8]–[10].

The approach proposed by Moss et al. [8] is based
on a type system that extends types with confidentiality
information and associates an immutable list of masks to any
secret variable. However, immutable lists of masks prevent
the handling of control-flow structures; hence, the conversion
to an intermediate representation also unrolls loops. On the
contrary, in our approach, both the confidentiality and the
remasking analyses deal with control flow without requiring
any code transformation. Moreover, our confidentiality
analysis is able to propagate the confidentiality information
through loads and stores in presence of any pointer indirection
to secret as well as data structures with different confidentiality
levels. Finally, in [8], the confidentiality analysis is only
carried out at the granularity of variables since the compiler
only supports XORs and table accesses. Our confidentiality

analysis combines a word-level and a bit-level analysis to
support any boolean cryptographic implementation. This is
essential to avoid potential false negatives which can occur,
for example, with shift instructions manipulating secret data.

Agosta et al. [9] propose a vulnerability assessment of
program instructions in symmetric ciphers. The vulnerability is
quantified as the minimum number of key bits influencing the
output value of a sensitive instruction. Given a vulnerability
threshold, a boolean masking countermeasure is selectively
applied on the hardened program such that the performance
overhead is mitigated as compared to a fully masked imple-
mentation. The vulnerability analysis is achieved by data-flow
analysis (forward or backward), and leverages control-flow
transformations such as loop peeling and if-conversion. Loop
peeling is particularly efficient as it enables to separate loop
iterations where variables depend on a low number of key
bits from iterations where variables depend on a high number
of key bits. In our approach, we assume that any variable
that depends on a secret can leak sensitive information as
it would be required to not only target ciphers. Thus, our
approach does not require to modify the control flow: we
propose two data-flow algorithms that iterate over the code to
identify the sensitive instructions to mask and to find the set of
lists of masks associated to each variable. Our confidentiality
analysis is similar to the forward analysis proposed in [9]
while working at the variable level with uniform typing rules
for dealing with loads and stores. Moreover, we detail how
we transform the code and propose a fine-grained remasking
analysis, whereas [9] lacks information about these steps.
However, it would be possible to integrate the vulnerability as-
sessment proposed by Agosta et al. in our approach, and apply
the masking countermeasure accordingly, without changing
neither the transformation step nor the remasking analysis.

Bayrak et al. also propose a confidentiality analysis and
the application of boolean masking on software cryptographic
implementations [10]. The code hardening is applied to an
intermediate representation extracted by disassembling the
machine code of the target program. The approach features
two different kinds of confidentiality analysis: (1) a so-called
dynamic analysis, which links measurements with program
instructions to determine which instructions are the most
sensitive and must be masked, and (2) a static data-flow
analysis. The dynamic analysis highly depends on the
measurement setup, but it is very interesting as it allows to
specialise a masking counter-measure w.r.t. the intrinsic side-
channel properties of the target. The static analysis is quite
similar to our data-flow confidentiality analysis even though
[10] does not detail if it is capable of propagating information
though several memory loads and stores. The static analysis
requires to reconstruct enough information from the binary
program, in particular regarding secret variables. Binary
analysis on optimised code is generally known as a difficult
problem, since e.g. local data optimisation such as scalarisation
could prevent the correct identification of secret data
information. Bayrak et al. handle the mask collision problem
differently than we do: instead of detecting when to remask,
they consider a fix set of masks that they attribute to variables
using an edge-colouring algorithm. This approach can reduce

12

TABLE III
NUMBER AND NATURE OF THE OPERATIONS MANIPULATING A SECRET WITHIN EACH OF THE AES SUBFUNCTIONS, AND OVERHEADS OBTAINED.

THE OVERHEADS OBTAINED USING MASKED TABLES WITH UNROLLING INSTEAD OF MASKED POLYNOMIAL INTERPOLATION ARE ALSO GIVEN (MT).

Nature of the operations manipulating a secret Original Masked
sign and S-box implementation implementation

AES subfunctions xor load store extend shift immediate access time (cycles) time (cycles) overhead
AddRoundKey 16 32 16 0 0 0 0 174 354 x2.0
SubBytes

0 16 16 0 0 0 16 134
17509 x130.7

SubBytes (MT) 32533 x242.8
ShiftRows 0 16 16 0 0 0 0 38 55 x1.4
MixColumns 68 16 16 16 32 16 0 260 454 x1.7
KeySchedule

17 16 16 0 0 0 4 90
4533 x50.4

KeySchedule (MT) 8327 x92.2

the whole number of masks, but it also requires a mask rotation
for each masked operation. Our remasking analysis aims at
conservatively avoiding remasking at each operation and future
work will consider optimising the whole number of masks.

Last but not least, all these approaches use a masked table
approach to mask a table lookup indexed by secret data
whereas we use a polynomial interpolation approach, and we
additionally use a formal verification approach to check that
the binaries produced are correctly masked.

IX. CONCLUSION

We presented and detailed an approach to automatically
apply first-order boolean masking in the value based leak-
age model, during compilation at function level without any
restriction on the control-flow structure of the code. We
explained how to automate the approach based on interpolating
polynomial of constant lookup tables [12] and proposed sev-
eral optimisations to speedup its evaluation. We implemented
our approach in an LLVM pass named Maskara, at the
intermediate representation level, which makes our pass target-
independent. We then studied more specifically the ARM tar-
get, and highlighted the danger of back-end optimisations: the
optimisation level of the instruction selection pass had to be
changed to avoid introducing leakages. This motivated the use
of a formal verification approach at the binary level. Results of
the formal verification carried out on all the AES subfunctions
showed that the binaries generated by our compiler were
correctly masked w.r.t. our leakage model. Finally, execution
time evaluation results showed that the interpolating polyno-
mial approach, combined with our optimisations, enables to
significantly reduce the overhead of the countermeasure for
codes that have lookup table accesses indexed by a secret.

Future works will consider more complex leakage models,
as well as higher-order masking, and will also evaluate to
which extent the proposed optimisations may be combined
with other polynomial interpolation approaches such as [23].

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO. Springer, 1999.

[2] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in IEEE SP. IEEE, 2017.

[3] M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in CHES. Springer, 2010.

[4] G. Barthe, S. Belaı̈d, P.-A. Fouque, and B. Grégoire, “maskVerif:
a formal tool for analyzing software and hardware masked
implementations.” IACR Cryptology ePrint Archive, 2018.

[5] I. B. El Ouahma, Q. L. Meunier, K. Heydemann, and E. Encrenaz,
“Side-channel robustness analysis of masked assembly codes using a
symbolic approach,” JCEN, 2019.

[6] S. T. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen, “Secure
delivery of program properties through optimizing compilation,” in CC,
2020.

[7] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert,
“On the cost of lazy engineering for masked software implementations,”
in CARDIS. Springer, 2014.

[8] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted
masking,” in CHES. Springer, 2012.

[9] G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi, “Compiler-based
side channel vulnerability analysis and optimized countermeasures
application,” in DAC. IEEE, 2013.

[10] A. G. Bayrak, F. Regazzoni, D. Novo, P. Brisk, F.-X. Standaert, and
P. Ienne, “Automatic application of power analysis countermeasures,”
IEEE TC, 2013.

[11] M. Tunstall, C. Whitnall, and E. Oswald, “Masking tables—an
underestimated security risk,” in FSE. Springer, 2013.

[12] J.-S. Coron, A. Roy, and S. Vivek, “Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures,”
in CHES. Springer, 2014.

[13] L. Goubin and J. Patarin, “Des and differential power analysis the
“duplication” method,” in CHES. Springer, 1999.

[14] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer, 2008.

[15] E. Prouff and M. Rivain, “Masking against Side-Channel Attacks: A
Formal Security Proof,” in EUROCRYPT. Springer, 2013, pp. 142–159.

[16] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing
hardware against probing attacks,” in Annual International Cryptology
Conference. Springer, 2003, pp. 463–481.

[17] A. Biryukov, D. Dinu, Y. Le Corre, and A. Udovenko, “Optimal
first-order boolean masking for embedded iot devices,” in CARDIS.
Springer, 2017.

[18] J.-S. Coron, “Higher order masking of look-up tables,” in EUROCRYPT.
Springer, 2014.

[19] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain,
“Higher-order masking schemes for S-boxes,” in FSE. Springer, 2012.

[20] J.-S. Coron, F. Rondepierre, and R. Zeitoun, “High order masking of
look-up tables with common shares,” IACR TCHES, 2018.

[21] M. Tang, Z. Qiu, Z. Guo, Y. Mu, X. Huang, and J.-L. Danger, “A
generic table recomputation-based higher-order masking,” TCAD, 2017.

[22] A. Roy and S. Vivek, “Analysis and improvement of the generic
higher-order masking scheme of fse 2012,” in CHES. Springer, 2013.

[23] A. Mathieu-Mahias and M. Quisquater, “Mixing additive and
multiplicative masking for probing secure polynomial evaluation
methods,” TCHES, 2018.

[24] N. Belleville, K. Heydemann, D. Couroussé, T. Barry, B. Robisson,
A. Seriai, and H.-P. Charles, “Automatic application of software
countermeasures against physical attacks,” in Cyber-Physical Systems
Security. Springer, 2018.

[25] “Fast galois field arithmetic library in c/c++.” [Online]. Available:
http://web.eecs.utk.edu/∼jplank/plank/papers/CS-07-593/

[26] “Small portable AES128/192/256 in C,” https://github.com/kokke/
tiny-AES-c, Apr. 2020.

