Fine-tuning Siamese Networks to Assess Sport Gestures Quality
Mégane Millan, Catherine Achard

To cite this version:

HAL Id: hal-02933258
https://hal.sorbonne-universite.fr/hal-02933258
Submitted on 8 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fine-tuning Siamese Networks to Assess Sport Gestures Quality

Mégane Millan1 and Catherine Achard1

1Institut des Systèmes Intelligents et de Robotique, Sorbonne University, 4 place Jussieu, Paris, France

\{millan, achard\}@isir.upmc.fr

Keywords: Deep Learning, Siamese Network, AQA, Fine-tuning

Abstract: This paper presents an Action Quality Assessment (AQA) approach that learns to automatically score action realization from temporal sequences like videos. To manage the small size of most of databases capturing actions or gestures, we propose to use Siamese Networks. In the literature, Siamese Networks are widely used to rank action scores. Indeed, their purpose is not to regress scores but to predict a value that respects true scores order so that it can be used to rank actions according to their quality. For AQA, we need to predict real scores, as well as the difference between these scores and their range. Thus, we first introduce a new loss function to train Siamese Networks in order to regress score gaps. Once the Siamese network is trained, a branch of this network is extracted and fine-tuned for score prediction. We tested our approach on a public database, the AQA-7 dataset, composed of videos from 7 sports. Our results outperform state of the art on AQA task. Moreover, we show that the proposed method is also more efficient for action ranking.

1 INTRODUCTION

Skill assessment is fundamental during learning. Indeed, getting a feedback about performance is a key towards improvement, and it can provide information about the progression curve. Furthermore, for some sports, such as diving or gymnastics, performance assessment is mandatory to determine the winner of a competition.

However current quality assessment is usually done manually, which renders the process tiresome and time-consuming. Moreover assessment is relevant only if it is done by an expert in the field. In sports, for instance, a training coach has the knowledge and experience to assess one’s performance. However, learning sports or other actions, has been democratized thanks to the internet and tutorial videos. The problem of only learning with How-to’s videos, is that no feedback is given to improve one’s skills. Automatic Quality Assessment (AQA) is a solution for trainees to get information about their performance without the assistance of an expert and the resulting workload.

In this context, the goal of the proposed approach is to automatically score instances done by trainees (Figure 1).

To automatize the process, a model is usually trained on many realizations of an action. This requires an annotated database with a large number of instances. Nowadays only a few public annotated datasets exist, with a limited number of samples. This complicates the model training.

To overcome this problem, many solutions have been proposed in the literature. A well-known one is the use of Siamese architectures. They learn to compare two inputs and determine which one is the best, instead of directly evaluating action quality. Hence Siamese networks lead to action ranking, rather than score regression, i.e Siamese branches output measures that respect scores order and not true scores. A limitation of ranking is that it does not allow to know if actions are well done or not. The only extracted information is how the action is ranked compared to a wide range of the same action.

In this article, Siamese Networks are adapted in order to predict true scores instead of just trials rank. A new loss function is introduced to estimate performance gap between two achievements of an action. Only changing the loss does not allow the network to
predict real scores, as an additive constant is present. Thus, a single branch of the Siamese Network is extracted and the last fully connected layer is fine-tuned to regress true scores. The approach is generic enough to be used in a large number of applications and from various signals such as videos, kinematic data or any other temporal sequences.

The proposed method has been tested on the AQA-7 database (Parmar and Morris, 2018) composed of videos from 7 Olympic sports. Results the proposed method outperform state of the art ones on the action quality assessment task. Moreover, we show that even if the method has been designed to predict action score, it also outperforms state of the art methods in action ranking.

2 RELATED WORK

Automatic skill assessment consists in rating how well an action has been performed. In sports, only a handful of studies evaluate gesture quality on multidimensional signals. Two kinds of approaches are used: with a priori knowledge and without a priori knowledge as explained in (Lei et al., 2019).

2.1 Automatic Skill Assessment with a priori Knowledge

Among the approaches using a priori knowledge, Burns et al. (Burns et al., 2011) designed kinematic descriptors inherent to a specific sport. Those descriptors are then used to analyze trials and provide an interactive training tool for novices. This tool is dedicated to a specific gesture and has to be redesigned for every new gesture. Pirsiavash et al. (Pirsiavash et al., 2014) designed an approach to automatically compute performance scores in diving and figure skating. Two kinds of features are designed: low-level ones that capture gradients and velocities from raw pixels, and high-level ones based on human pose trajectories. Once features were extracted, a linear support vector regressor (L-SVR) is trained to predict scores. Works from Komura et al. (Komura et al., 2006) explore the evaluation of motions in martial arts. For instance, gestures evaluation during a defense, is done by exploiting motion energy, i.e less movements from the defender equals an efficient defense. For classical ballets, inter-limbs angles can be extracted, and afterwards used to compare techniques (Ward, 2012).

2.2 Automatic Skill Assessment without a priori Knowledge

Approaches that do not use a priori knowledge usually create a database of expert movements and afterwards compute a metric to compare novice gestures to expert ones.

Morel et al. (Morel et al., 2017) propose to use Dynamic Time Warping (DTW) (Morel et al., 2018) to build a model of experts gestures, and to afterwards realign an unknown gesture with this model by computing spatial and temporal errors.

Deep-learning-based methods have recently emerged for skill assessment.

In surgery, Convolutional Neural Network (CNN) have been designed to extract features from 1-D multidimensional signals and predict skill level among three possible ones: Novice, Intermediate and Expert (Wang and Fey, 2018) (Fawaz et al., 2018). These end-to-end networks are trained on the JIGSAWS database (Gao et al., 2014), one of the only annotated public datasets available for skill assessment in surgery. Using videos available in this dataset, Funke et al. (Funke et al., 2019) design a 3D-CNN to classify stacks of frames according to skill level. Afterwards, all stacks belonging to the same video are gathered, and their predictions are aggregated to obtain overall classification results.

In sports, Parmar et al. (Parmar and Morris, 2017) predict scores of Olympic events, using videos. Features are first extracted from videos using a 3D-CNN trained on another sports dataset (Tran et al., 2015). Afterwards, these features sequences are used as inputs of a LSTM model trained to predict the score associated with the video. LSTM layer have also been used to develop networks that assess performance in basketball (Bertasius et al., 2016). Using first person point-of-view videos, a convolutional LSTM layer can detect events that are then used to build Gaussian mixtures. These Gaussian mixtures are then aggregated to form spatiotemporal features.

However the limited amount of annotated data is an issue when automatizing skill assessment. To solve this problem, data augmentation can be used. It has been done for surgery. Each trial of the JIGSAWS dataset has been divided into small clips using a fixed-size sliding window (Wang and Fey, 2018). Annotation for each clip is identical to the class label of the original trial. Using this strategy considerably increases the number of examples, even if they are no longer uncorrelated.

Another way to manage small databases is to create global models by mixing sports or gestures in the learning set. Some sports share sub-actions, such as
somersault that can be found in gym and diving. Thus, training a global model is relevant and enables the learning of more general features (Parmar and Morris, 2018).

Other solutions can be found in the literature related to few-shot learning.

2.3 Few-Shot Learning

To train efficient neural networks with small datasets, solutions have been proposed in literature (Chen et al., 2019). In a classification context, generating new data by transforming existing ones using geometric or colorimetric transformations is possible. More elaborated methods have also been developed, such as Generative Adversarial Network (GAN) (Ledig et al., 2017) to create new data. Data augmentation is successful and easy to implement with images, but extending it to videos is tedious.

A other solution frequently used in literature is to fine-tune an already existing model: network weights are initialized by training a model on a problem close to the one to solve and where larger databases are available (Kim, 2014).

Both previous approaches are very popular when the learning is based on images where data augmentation is easy to implement and very large databases with a lot of classes are available. Unfortunately, data augmentation on video sequences is not so easy. Moreover, the variety of gestures, actions or movements is so large that there are currently no generic databases, dealing with all videos types. The fine-tuning to a particular application cannot be used on videos.

Few shot learning using small databases, without data-augmentation or fine-tuning can be done using distance-metric-learning methods. A direct application of those methods is the few-shot classification problem, where the method learns to compare (Sung et al., 2018), instead of directly estimating the score. (Doughty et al., 2018) use Siamese Networks to compare two video inputs and predict which one is the best. They test their approach on a wide range of actions, from dough rolling to surgery. Following this work, an improved model has been developed (Doughty et al., 2019). Attention modules were added to the already existing model to use solely the skill-relevant part of the input.

In a similar fashion, (Li et al., 2019) developed a Siamese neural architecture with a spatial attention module in a hand manipulation tasks context.

3 METHODOLOGY

In this section, the global framework used to assess action quality – or score – is presented. Let us first introduce some notations. For a given task, we consider a set of K trials \(T = \{ t_i, 1 < i < K \} \) and their scores \(s_i \).

We propose to use Siamese network to assess action quality. This kind of architecture is popular for tasks where relationships exist between two inputs. For instance, in face recognition, face verification (Taigman et al., 2014), signature verification (Bromley et al., 1993) or even person re-identification (Chung et al., 2017), Siamese networks are efficient solutions since, during training, they learn to rank inputs, or to discriminate inputs.

Indeed, Siamese networks are composed of two identical sub-networks, each one processing one input. These sub-networks share parameters and weights and lead to two measures \(f(t_i) \) and \(f(t_j) \) associated to input trials \(t_i \) and \(t_j \).

Outputs of the two branches are then joined to
form the final output of the Siamese network, as it is shown in Figure 2.

Usually, Siamese networks are trained using a pairwise ranking framework where annotations are easy to obtain since they do not require a real evaluation of each sample but only a comparison of samples:

\[
D(t_i, t_j) = \begin{cases}
1 & \text{if } t_i \text{ performs better than } t_j \\
-1 & \text{if } t_j \text{ performs better than } t_i \\
0 & \text{if no preference.}
\end{cases}
\]

Using this output and pairs such that \(D(t_i, t_j) = 1\), the pairwise loss function is defined by (Li et al., 2019), (Doughty et al., 2019), (Yao et al., 2016), (Wang et al., 2014):

\[
L = \sum_{i} \max(0, m - f(t_i) + f(t_j)) \tag{1}
\]

where \(m\) is the Siamese margin.

By removing the constraint \(D(t_i, t_j) = 1\) and working on all pairs \((t_i, t_j)\), this loss function can be rewritten:

\[
L = \sum_{i} \max(0, m - \text{sign}(s_i - s_j)(f(t_i) - f(t_j))) \tag{2}
\]

This loss allows to estimate a measure \(f(t_i)\) associated to each trial \(t_i\) that respects true scores order. The problem is that the estimated measure \(f(t_i)\) can be far from the real score \(s_i\) given by annotators. Furthermore, once \(f(t_i) - f(t_j) > m\), the pair \((t_i, t_j)\) stops contributing to the loss.

As our goal is to estimate the scores \(s_i\), we propose in this article to estimate the score gap between \(t_i\) and \(t_j\), \(\Delta_i = s_i - s_j\) rather than the order between inputs, using the Siamese network. To achieve this, we use the Mean Square Error (MSE) loss function:

\[
L = \sum_{i} (f(t_i) - f(t_j) - \Delta_{i,j})^2 \tag{3}
\]

Once the Siamese model has learned to regress score differences \(\Delta_{i,j}\), the predicted measure \(f(t_i)\) can be shifted (additive constant) from the true score \(s_i\). To solve this problem, a branch is extracted from the Siamese architecture and fine-tuned over single inputs with their scores. The loss function used to train this last layer is the MSE loss function as represented in Figure 3. During this second learning, weights of the sub-network branch are frozen.

4 EXPERIMENTS

The approach presented in Section 3 was tested on the publicly available dataset AQA-7. The two metrics used to evaluate our results are:

- The Spearman’s Rank Correlation between \(s_i\) and \(\hat{s}_i\) that is defined by:

\[
\rho = 1 - \frac{6 \sum_d d_i^2}{N(N^2 - 1)} \tag{4}
\]
where \(d_i = rank(s_i) - rank(\hat{s}_i) \) is the rank difference for trial \(t_i \) and \(N \) is the number of trials. This metric is relevant for score ranking evaluation.

- The Root Mean Square Error (RMSE) defined by:

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i} (s_i - \hat{s}_i)^2}
\]

(5)

This metric is relevant for score prediction evaluation.

Each experiment was run ten times to ensure the relevance of the statistical analysis of the average.

4.1 Dataset: AQA-7

This dataset includes videos from 7 sports: single 10m diving, gymnastic vault, big air skiing, big air snowboarding, synchronous 3m diving, synchronous 10m diving and trampoline. All videos were recorded either during Winter or Summer Olympics. The database comprises a total of 1106 videos. Snapshots from the dataset are presented in Figure 4.

Except trampoline, each video shows only one figure and the score depends on the performance. For this reason, trampoline was excluded from our tests as it was done in (Parmar and Morris, 2018). All videos from the dataset have a fixed length of 103 frames. Concerning scores, each sport has its own scale. In order to compare them, they have been standardized to have zero-mean and a standard deviation of 1.

4.2 Sub-Network Overview and Training Details

Training the model on videos would be inefficient, considering the dataset size. Indeed, to efficiently train a neural network on videos, millions of trials are needed. Here, only hundreds of videos are available per sport, so training the model using videos is not viable. To solve this problem, we first extracted meaningful features from 16-frame-length slices of videos using the C3D-Network (Tran et al., 2015), as in (Parmar and Morris, 2018). C3D-Network has proven its effectiveness in preserving temporal and spatial information in videos, since it outperforms 2-CNN, when used in video classification tasks (Tran et al., 2015). Furthermore, this model was trained on the Sports-1M dataset (Karpathy et al., 2014), which includes many sports that are also present in the AQA-7 dataset used to test our method.

The architecture used for the sub-network is based on LSTM (Hochreiter and Schmidhuber, 1997) that has shown promising results in many sequence-related tasks, such as machine translation, speech recognition or even automatic text scoring, and also in video-related task. Here we only use the last output of the 256-cell LSTM layer, which can be considered as a global representation of the whole sequence. A fully connected layer is then added to predict a score from this global representation. The network is presented in Figure 5.

C3D Network weights are frozen during training. Weights of both layers (LSTM and FC) are initialized with a zero-mean Gaussian noise with stan-
A network is trained for each sport and methods presented above are compared according to metrics defined in equation \ref{eq:4} and \ref{eq:5}. Results are presented in Table \ref{tab:1}. RMSE was computed using standardized scores in order to get a meaningful average of the RMSE.

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
\hline
 & Regression & Single branch Siamese network & Single branch Siamese network MSE loss (Ours) \\
 & ρ & RMSE & & \\
\hline
Diving & 0.70 & 0.71 & 0.69 & \\
 & 0.71 & 1.09 & 1.13 & \\
Gym Vault & 0.70 & 0.72 & 0.64 & 0.72 & \\
 & 0.65 & 1.06 & 0.77 & \\
Ski & 0.59 & 0.64 & 0.59 & 0.64 & \\
 & 0.74 & 1.31 & 0.77 & \\
Snowboard & 0.52 & 0.54 & 0.54 & 0.54 & \\
 & 0.74 & 1.13 & 0.86 & \\
Sync Dive 3m & 0.81 & 0.89 & 0.81 & 0.91 & \\
 & 0.83 & 0.83 & 0.83 & 0.86 & \\
Sync Dive 10m & 0.83 & 0.83 & 0.83 & 0.87 & \\
 & 0.80 & 1.03 & 0.83 & 0.53 & \\
Average & 0.69 & 0.72 & 0.69 & 0.73 & \\
 & 0.68 & 1.04 & 0.78 & \\
\hline
\end{tabular}
\caption{Comparison of 2 networks trained in a Siamese architecture with different loss functions and a single-branch network.}
\end{table}

Considering Spearman’s Rank Correlation ρ must be maximum, a simple regression leads to the worst results. Rank correlation is improved by training the same network in a Siamese architecture. During testing, a single branch of the network is used. The MSE loss function presented in this article achieves better results than the pairwise loss function usually used.
to train Siamese architectures. Thus, predicting score gaps helps the network for the task of trial ranking. Considering the Root Mean Square Error (RMSE), the model trained to regress the score using a classical network achieves significantly the best results. Indeed, networks extracted from a Siamese architecture estimate either ranks or score gaps. Thus scores are estimated up to an additive constant.

To improve RMSE obtained with Siamese Networks, one of the branch of the network is fine-tuned to regress scores, as proposed in Section 3. This allows to fix the additive constant problem. The compared methods are the following:

- A simple score regression using a MSE loss function, i.e a single branch network;
- A fine-tuned branch extracted from a Siamese network trained with the pairwise loss function (equation 2);
- A fine-tuned branch extracted from a Siamese network trained with the MSE loss function (equation 3).

Results are presented in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Regression</th>
<th>Fine-tuned Siamese network</th>
<th>Fine-tuned Siamese network (Ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ</td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>Diving</td>
<td>0.70</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.71</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td>Gym Vault</td>
<td>0.70</td>
<td>0.68</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Ski</td>
<td>0.59</td>
<td>0.63</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.74</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Snowboard</td>
<td>0.52</td>
<td>0.54</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.74</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>Sync Dive 3m</td>
<td>0.81</td>
<td>0.81</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Sync Dive 10m</td>
<td>0.83</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Average</td>
<td>0.69</td>
<td>0.70</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>0.68</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.61</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Table 2: Comparison of 2 networks fine-tuned from a Siamese architecture with different loss functions and a single-branch network.

By fine-tuning, ranking abilities of the networks are kept. Indeed, both fine-tuned models lead to better correlation results than the regression model. Furthermore fine-tuning a branch of a Siamese architecture significantly improves RMSE compared to non fine-tuned branch. However, using a pairwise loss function to train a Siamese Network does not decreases the RMSE compared to the same network directly trained in regression. The same network trained in a Siamese architecture with a MSE loss function and fine-tuned afterwards, leads to the best RMSE results. Thus, both in score ranking and in score regression, the Siamese architecture trained with MSE as a loss function, associated with fine-tuning of the last fully connected layer leads to the best results.

Previous works on this AQA-7 database are limited, and only focused on one metric: Spearman’s rank correlation (Parmar and Morris, 2018). This metric allows non-linearity between the real score and the predicted score since it only consider ranking. Thus, it does not really provide information on the true score prediction. Comparison results using this metric are given in Table 3.

As we can see in Table 3, the proposed methods outperforms state-of-the-art methods in rank correlation on this datasets.

5 CONCLUSION

In this paper, a new approach to assess action quality has been introduced. The approach is based on Siamese Networks which enable networks to deal with small datasets. Already used in automatic assessment, Siamese Networks usually rank trials instead of regressing true score or score differences. Here, we propose to predict real scores of trials. Thus, a first modification in Siamese Network is introduced by using a loss function allowing to regress the gap difference between two input samples, rather than a ranking loss function as usually done. This change provides predicted values with the same scale of variation than real values but with and additive offset. To remove this offset the last layer of the Siamese Sub-network is fine-tuned to predict real scores. This two changes rescale and recenter outputs of the network towards true scores.

The approach was tested on a sport-videos database. To deal with such data, sub-networks of the Siamese Networks are composed of LSTM cells. Results are encouraging since the proposed method outperforms state of the art results, both in score regression and score ranking.

This work is only a step towards automatic feedback for action learning. In our future works, we plan to give a constructive feedback to learner during task training in order to accelerate the learning.

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Diving</th>
<th>Gym Vault</th>
<th>Ski</th>
<th>Snowboard</th>
<th>Sync Dive 3m</th>
<th>Sync Dive 10m</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-action</td>
<td>0.79</td>
<td>0.68</td>
<td>0.52</td>
<td>0.4</td>
<td>0.59</td>
<td>0.91</td>
<td>0.69</td>
</tr>
<tr>
<td>C3D-SVR [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-action</td>
<td>0.6</td>
<td>0.56</td>
<td>0.46</td>
<td>0.5</td>
<td>0.79</td>
<td>0.69</td>
<td>0.62</td>
</tr>
<tr>
<td>C3D-LSTM [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finetuned All-action</td>
<td>0.74</td>
<td>0.59</td>
<td>0.6</td>
<td>0.44</td>
<td>0.74</td>
<td>0.81</td>
<td>0.65</td>
</tr>
<tr>
<td>C3D-LSTM [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finetuned</td>
<td>0.69</td>
<td>0.72</td>
<td>0.65</td>
<td>0.55</td>
<td>0.91</td>
<td>0.86</td>
<td>0.73</td>
</tr>
<tr>
<td>Siamese Network trained with MSE (ours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Performance of state of the art model [Parmar and Morris, 2017], [Parmar and Morris, 2018] and our Siamese approach.

