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Many living systems use assemblies of soft and slender structures whose deflections allow them to mechani-
cally probe their immediate environment. In this work, we study the collective response of artificial soft hair 
assemblies to a shear flow by imaging their deflections. At all hair densities, the deflection is found to be 
proportional to the local shear stress with a proportionality factor that decreases with density. The measured 
collective stiffening of hairs is modeled both with a microscopic elastohydrodynamic model that takes into 
account long-range hydrodynamic hair-hair interactions and a phenomenological model that treats the hair 
assemblies as an effective porous medium. While the microscopic model is in reasonable agreement with the 
experiments at low hair density, the phenomenological model is found to be predictive across the entire density 
range.

Many living systems use assemblies of soft and slender
structures to mechanically probe their immediate environ-
ment. In animals, their deflection triggers the response of
mechanosensitive nervous endings embedded at their base
that convert mechanical stresses into a neural response [1].
Rodents, in particular, use their facial whiskers to spatially
localize objects and discriminate their texture by contact
[2]. Spiders and crickets have legs covered with hairs that
can detect minute changes in an air flow [3,4]. Fish have
a lateral line that consists of an assembly of hair structures
(neuromasts) allowing them to orient themselves in a flow
and detect the presence of prey and predators in their vicinity
[5]. The human tongue itself is covered with filiform papillae
that are deformed during food mastication and participate in
in-mouth texture perception [6–8]. At smaller length scales,
that of cells, slender structures (primary cilia) play an im-
portant role in mechanosensation processes [9]. Given such
ubiquity, numerous biomechanical models have been devel-
oped to predict the deformation of elongated structures when
submitted to contact [10,11] and viscous stresses [12–14]. To
test these models within simplified frameworks, artificial hairy
systems have been used. These usually consist of slender pil-
lars anchored to a substrate, whose deflections are monitored
optically under controlled stresses [15–17].

The deflection of an isolated pillar in a viscous flow
has been successfully predicted using elastohydrodynamics
[13,14,18]. In biological systems, however, hairs are usually
densely packed and their mechanical behavior is likely sub-
jected to hydrodynamic interactions. Indeed, the presence of
a pillar in a flow disturbs the velocity field around it and
produces a long-range flow perturbation. When two pillars

are sufficiently far apart, these perturbations decay sufficiently
fast and hydrodynamic interactions are negligible. As pillars
get closer, hydrodynamic interactions play an increasing role
and modify the deflection of pillars. Understanding mechan-
otransduction processes of hair assemblies thus requires one
to take into account the hydrodynamic couplings. Such inter-
actions have been explored in the context of cell locomotion
[19], fish schools [20], and bird flocks [21], but are barely
studied for anchored and passive fiber assemblies.

In a previous work [18], we have shown that deflections of
an isolated elastomeric pillar submitted to a shear flow are pro-
portional to the local shear stresses. In the context of in-mouth
texture perception, we concluded that filiform papillae could
act as sensitive stress sensors. In this Rapid Communication,
we extend our biomimetic approach to assemblies of pillars
at varying surface densities. We probe experimentally and
theoretically how the density of pillars changes their collective
deflections.

We used a minimal biomimetic setup sketched in Fig. 1(a)
(see [18] and Supplemental Material [22]). Briefly, it consists
in mimicking soft hair assemblies with a pool made of an
elastomer, whose bottom is decorated with cylindrical pillars
of diameter 2a = 100 μm and length L = 435 ± 7 μm. The
pool is placed at the bottom of a rheometer (MCR 302, Anton
Paar) whose PP40 planar rotating tool is used to impose the
flow. This rheometer has built-in fluorescence microscopy
capabilities allowing one to image at 100 frames/s (fps) the
pillars tips through the optically transparent pool. This is
done thanks to fluorescent particles embedded at the tips.
Soft hair assemblies were fabricated using micromilling and
elastomer molding techniques. Two types of patterns were
drilled on the same mold, a first one consisting of isolated
holes serving as references, and a second one comprising
a square pattern of densely distributed holes of mesh size
d . Hair assemblies were obtained by pouring in the molds
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FIG. 1. (a) Sketch of the experimental setup (side view along
a diameter). (b) Composite image of a PDMS substrate with a
density of pillars n ≈ 4 mm−2 obtained with fluorescence imaging.
The green color indicates the presence of green fluorescent particles
on the pillar’s tips. (c) Typical fluorescence snapshots of a pillar’s
summit at rest (left panel) and in steady flow (right panel). The green
dashed line circles delimit the perimeter of the pillar. (d) Semilog-
arithmic plot of the displacement δ of a single pillar versus time
during a typical experiment after a sudden start of the rheometer’s
tool at t = 0 s. Inset: sketches of sectional views of a pillar at rest
(left panel) and subject to a steady shear liquid flow (right panel).

a liquid PDMS (polydimethylsiloxane; Sylgard 184, Dow
Corning, USA)–crosslinker mixture, followed by a curing
in an oven (12 h, T = 65◦C) and unmolding. Figure 1(b)
shows an example of a resulting substrate imaged using
a macroscope with fluorescence imaging capabilities. The
Young’s modulus of the PDMS elastomer was measured to
be E = 2.7 ± 0.8 MPa. Solutions of glycerol (Sigma-Aldrich)
mixed in Millipore deionized water at different concentrations
were used. Their dynamic viscosities η were measured with
the rheometer operating in a plate-plate geometry. Pillar tip
deflections δ were measured [18] by correlating images of
a pillar in its deformed state with a reference image where
the pillar is at rest [Fig. 1(c)]. From the two-dimensional
correlation function, we extract the maximum displacement
δ with a spatial resolution of about 20 nm [Fig. 1(d)].

Experiments were carried out as follows. First, a substrate
with a given number density of pillars n = 1/d2 was posi-
tioned on the rheometer’s base. Accurate determination of the
gap H (i.e., distance from the base of the pool to the lower sur-
face of the rotating plate) was determined. The pool was then
filled with the liquid. The rotating plate was finally brought
550 μm above the pillars summits (yielding H = 1 mm)
and set in motion at a constant angular velocity ω, causing
pillars deflection. Each experiment consisted of 11 successive
10-s-long measurements. The first one was performed without
any flow to provide an unperturbed reference state, while the
ten subsequent measurements were done with increasing ω

distributed on a logarithmic scale. Their values were chosen
so that δ ranges from 1 to 10 μm. The analysis of the dis-
placements was performed in the steady-state regime, yielding
δ as a function of the shear stress σ = ηγ̇ with γ̇ = ρω/H the
shear rate and ρ the radial coordinate of the pillar [Fig. 1(a)].
Given the error on the gap H thickness (typically 20 μm [18]),

10-1 100 101 102

 (Pa)

10-1

100

101

 /
0 (

P
a)

Isolated papilla

n = 1 mm-2

n = 4 mm-2

n = 10 mm-2

1

1

FIG. 2. Log-log plot of the normalized displacement, δ/κ0, of a
single pillar’s tip in steady state versus the local shear stress σ for
four different pillars number densities, n = 0.04 mm−2 (referred to
as an isolated pillar; diamonds), n = 1 mm−2 (circles), n = 4 mm−2

(squares), and n = 10 mm−2 (stars). For these experiments, the
angular velocity ω was varied and different pillar’s radial posi-
tions ρ and viscosities η were used (ρ = 5.6, 7.0, 7.5 mm and η =
0.458, 0.320, 0.468 Pa s for n = 1, 4, 10 mm−2, respectively). Solid
lines are linear fits.

the relative error on σ is about 2%. Over the whole range of
shear rates γ̇ , the Reynolds number Re = ρL2γ̇ /η varies from
10−4 to 10−1, and thus the flow remains laminar in all cases.
For each density n, six independent experiments were carried
out to measure the deflections of three different isolated pillars
and three pillars in the dense region.

As shown previously [18], in steady state, the maximum
displacement of an isolated pillar δ0 increases linearly with σ

(Fig. 2, diamonds), in agreement with the model of [13] and
writes

δ0 = K0
L5

a4E

ηρω

H
= κ0σ (1)

with K0 a numerical factor whose value is determined ex-
perimentally. Note that depending on the substrate, κ0 can
vary from 0.5 to 5 μm/Pa due to slight sample to sample
variations of L and E . This explains why we used composite
pools consisting of two regions with isolated and dense pillars.

At all n, we still measure a linear relationship between δ

and σ with δ = κσ (Fig. 2). Note that we normalized the
deflection by κ0 to take into account sample to sample vari-
ability. The slope of these normalized curves is then κ/κ0 =
δ/δ0. It is smaller than 1 and decreases with n, implying
that denser pillars bend less than isolated ones. Figure 3(a)
shows, for all combined experiments, the dependence of δ/δ0

with n normalized by a characteristic density n0 = 1/L2 ≈
5.3 mm−2. Note that the reference point at n = 0.04 mm−2

(n/n0 = 7 × 10−3) has been added on the graph with δ/δ0 =
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FIG. 3. (a) Dimensionless pillar tip deformation δ/δ0 versus
normalized pillars density n/n0 with n0 = 5.3 mm−2 (squares). Each
point is an average over nine experiments and error bars are taken
as the standard deviation over these nine measurements. The green
dashed (respectively, blue dash-dotted) line is the prediction of
Eq. (6) with the five nearest neighbors [respectively, Eq. (7) in the
continuum limit]. The red solid curve is a fit with Eq. (9) based
on the phenomenological model of [23] where the value of α has
been fitted. Points surrounded by dashed line circles correspond to
those in Fig. 2 with the same color code. Inset: Log-linear plot of
the main graph. (b) Sketch of the hair assembly system with the
geometrical characteristics used in the dilute model. The upper rigid
plate positioned at a distance H from the bottom of the pool is
sheared along the x direction with a velocity V.

1. Clearly, within error bars, δ/δ0 decreases nonlinearly
with n.

Theoretically, the bending of an isolated elastic cylindrical
pillar subject to a given flow has been derived in [13]. In
steady state, the balance between bending and the drag force
from the fluid yields (in units of L)

d4δ

dy4
= −ux(y), (2)

where ux is the flow velocity along the x direction and y
the pillar’s longitudinal coordinate [Fig. 3(b)]. Equation (2)
can be solved with boundary conditions δ(0) = 0, δ′(0) = 0

(clamped pillar at its base) and δ′′(1) = 0, δ′′′(1) = 0 (free
pillars tips), where prime symbols stand for spatial deriva-
tives with respect to y. For instance, for an isolated cylin-
drical pillar subjected to a shear flow, one obtains Eq. (1).
As a first attempt to model our data, we have derived an
exact calculation of the induced flow perturbation by all
pillars at the location of a given pillar. A pillar’s defor-
mation along the flow direction u = V y/H [with V the
upper plate velocity; see Fig. 3(b)] is due to the drag
force from the fluid. In turn, the pillar exerts an opposite
force with the same magnitude in the −u direction. Conse-
quently, this force tends to decrease the effective total flow
in the u direction acting on all other pillars. One thus expects a
reduction of δ in pillar assemblies, i.e., a collective stiffening.
Below, we first compute the flow field induced by a single
pillar and then sum up all individual pillars contributions to
obtain the net flow from the whole assembly.

The flow induced by one pillar is calculated as resulting
from the superposition of point forces along the pillar. For a
point force located at a distance h above the flat bottom sur-
face, and assuming no-slip boundary conditions, the flow can
be obtained using the hydrodynamic image method [24,25].
At a given location rpq from the point force Fp, the flow can
be computed analytically in the dilute limit (|rpq| � L) as

up→q(rpq) = 3h

4πη

(Fp · epq)epq

|rpq|3 y, (3)

where epq = rpq/|rpq|. The whole net flow induced by one
pillar p can be computed by the superposition of the force
per unit length on the fluid fp along the length of the pillar. In
the limit of small deformations, it may be written as

unet
p→q(rpq) = 3

4πη

( ∫ L
0 hfp(h)dh

) · epq

|rpq|3 yepq. (4)

Taking fp = −4πηu(h)ex as a viscous force density and ap-
proximating the background flow as a shear flow u(h) = γ̇ h,
one obtains

unet
p→q(rpq) = −(γ̇ y)

L3

|rpq|3 (ex · epq) epq. (5)

The collective deformation in the dilute limit is obtained
by summing up on all pillars these hydrodynamic interac-
tions. The total flow acting on pillar q is therefore uq =∑

p�=q unet
p→q(rpq). The deflection δq of the tip of pillar q is

obtained by solving Eq. (2) with the total flow given by
the sum of the background flow plus perturbations, u + uq,
yielding

δq

δ0
=

∣∣∣∣∣∣ex − L3
∑
p�=q

1

|rpq|3 (ex · epq)epq

∣∣∣∣∣∣. (6)

The right-hand side of Eq. (6) can be computed analytically
for both square and hexagonal lattices of pillars (see Supple-
mental Material [22]). In both cases, we obtain that this term
does not depend on the orientation of the lattice with respect
to ex. Alternatively, we may estimate this term by taking the
continuous limit. In cylindrical coordinates centered on pillar
p, with er and eθ the unit vectors, and r the position of the



pillar, Eq. (6) becomes

δq

δ0
=

∣∣∣∣ex −
2π

0

∞

d
n

cos θer

r3
r dr dθ

∣∣∣∣ = 1 − π (nL2)3/2.

(7)
Predictions of Eq. (6), taking into account the five near-

est neighbors to match with our experimental system, are
plotted in Fig. 3(a) with the dashed line. The result from
the continuous limit approximation of Eq. (7) is plotted with
the dot-dashed line. The theoretical results agree with the
experiments in the small n/n0 limit, as expected from the
dilute approximation.

To go beyond our microscopic model valid in the dilute
limit, we use the model of Alvarado et al. [23]. In that work,
the authors computed the shear flow in a dense assembly of
high aspect ratio cylindrical pillars treated as a porous medium
of effective height he. Solving both Stokes’ equation for the
flow above the pillar bed and Brinkman’s equation for the flow
in the bed, they obtain the flow velocity u(y) valid for 0 < y <

he as

u(y) = V
� sinh(y/�)

(H − he) cosh(he/�) + � sinh(he/�)
, (8)

where V = ρω is the velocity of the upper plate [Fig. 3(b)], �
the pore size, and H the gap between the plates. For small
deformations δ 	 L, and thus he 
 L. To compute pillars
bending, we solved Eq. (2) with ux given by Eq. (8), yielding

δ

δ0
= 120

11

β5S − β4 − 1

2
β3S + 1

3
β2C

(1 − L/H )C + β(L/H )S
(9)

with β = �/L, S = sinh(β−1), and C = cosh(β−1). Taking
the pore size as � = α/

√
n = αd , the data of Fig. 3 have

been fitted with Eq. (9) with α as a free parameter. This
model captures our data on the whole range of n/n0 [Fig. 3(a)]
with α = 0.35 ± 0.02 and thus a pore size � of the order
of the mesh size d . The parameter α relates the mesh size
of the lattice to the pore size of the hair assembly. A similar
value of 0.46 was obtained for turbulent flow over carbon
nanotube forests by Battiato et al. [26].

Soft hair assemblies are ubiquitous in biology [14]. Re-
cently, Pellicciotta et al. [27] have studied the collective beat-
ing of active motile cilia of brain cells subjected to oscillatory
flows. They demonstrated an enhanced hydrodynamic screen-
ing with the number of cilia which reduces their synchroniza-
tion with the external flow. Similarly, in flagellar systems,
pairs of beating flagella of unicellular micro-organisms can
be synchronized solely through hydrodynamic interactions in
the far field [28]. However, for micro-organisms bearing few
flagella, this synchronization is more complex and involves
an elastic basal coupling in addition to hydrodynamics inter-
actions [29]. Overall, there is, however, a lack of quantitative
studies of how dense assemblies of pillars deform in flows.
Coq et al. [30] investigated the dynamics of a bed of magnetic
microcilia distributed on a square lattice and submitted to a
precessing magnetic field. They showed that at high surface
density, the collective beating yields a symmetry breaking
of the circular precession. Like us, they interpreted their
results using the models of Refs. [24,25]. They derived an

expression for the dependence of the amplitude of the hy-
drodynamic interactions versus density, which is very similar
to our Eq. (6) (see Supplemental Material of [30]). However,
they do not test experimentally its dependence with the pillars
density. Moreover, it is only valid at low pillars density
when n 	 1/L2 and thus cannot apply to their experimental
results for which nL2 ≈ 20. In another context, Bhushan
[31] has also reported drag reductions in microtextured chan-
nels with undeformable pillars. However, the reduction re-
sults from superhydrophobicity effects and not hydrodynamic
interactions.

Our study provides a complete experimental test of this
model over a wide range of n. We demonstrate that the bend-
ing of pillars remains proportional to the shear stress at any n.
We also show that in the dilute limit, our microscopic model is
in reasonable agreement with our data. The collective bending
of the hair assemblies decays typically over a density of order
1/L2. In addition, we demonstrate that hydrodynamical inter-
actions do not depend on the topology of the lattices (square
or hexagonal) nor on its orientation with respect to the flow.
At higher n, typically nL2 � 0.5, our data show discrepancies
with the dilute model. This could result from the fact that,
to compute Eq. (3), we neglected the near-field terms in 1/r5

which are expected to have important contributions at large n.
To describe our measurements over the whole pillar density
range, we have thus used the recent phenomenological model
of [23] describing the pillar assemblies as a porous medium.
In [23], the authors have successfully tested their model, how-
ever limited to three different densities (all above n0), and they
did not probe the deflections of pillars induced by such flows.
We show here that solving Eq. (2) with their flow field allows
one to reproduce faithfully the pillars deflections at any den-
sity with the porosity as a single fit parameter. We find again
that the characteristic density is of order 1/L2. This analytical
method complements the very recent numerical predictions of
Stein and Shelley [32]. Interestingly, an asymptotic expansion
of Eq. (9) at very high density (n � n0) yields δ/δ0 ∼ 1/n, in
agreement with [32].

In many biological systems, the deformation of soft hair
assemblies is the primary mechanical input measured by
mechanoreceptors. We have shown that at high density of
pillars, their effective deformation can be significantly re-
duced. In the particular case of mammalian tongues for in-
stance, filiform papillae are densely packed with a typical
density nL2 that ranges from 0.1 to 1. Our work shows
that at these densities, the reduction of papillae deflections
should reach about half of their nominal deflection if papillae
were isolated. Biologically, this mechanism could induce an
enhanced protection of the sensory structure by avoiding
large deformations. We have also shown that this collective
stiffening is independent of spatial organization and orien-
tation of the lattice with respect to the flow. It therefore
suggests that such sensory systems are robust to flow di-
rection. Beyond the particular case of vertebrate tongues,
our results should be also applicable to a wide range of
biological systems.
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