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Abstract

Motivated by the COVID-19 pandemic, we introduce a mathematical description of the impact
of sociality in the spread of infectious diseases by integrating an epidemiological dynamic with a
kinetic modeling of population-based contacts. The kinetic description leads to study the evolution
over time of Boltzmann type equations describing the number densities of social contacts of suscept-
ible, infected and recovered individuals, whose proportions are driven by a classical compartmental
model in epidemiology. Explicit calculations show that the spread of the disease is closely related
to the mean number of contacts, thus justifying the lockdown strategies assumed by governments
to prevent them. Furthermore, the kinetic model allows to clarify how a selective control can be
assumed to achieve a minimal lockdown strategy by only reducing individuals undergoing a very
large number of daily contacts. This, in turns, could permit to maintain at best the economic
activities which would seriously suffer from a total closure policy. Numerical simulations confirm
the ability of the model to describe different phenomena characteristic of the rapid spread of an
epidemic. A last part is dedicated to fit numerical solutions of the proposed model with experi-
mental data coming from different European countries.
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1 Introduction

The recent spreading of the COVID-19 epidemic led in many countries to heavy lockdown measures
assumed by the governments with the aim to control and limit its effects on population. It is clear
that these severe social distancing measures have the main consequence to produce dramatic dam-
ages in the real economy and society, even if their precise quantification is an extremely difficult
problem which also requires the knowledge/estimation of a large number of variables and relation-
ships among them [5]. In this direction, a recent study of the economic consequences of this new
epidemic and the related lockdown measures on western economies has been done by resorting on
a coupling of a kinetic model for the wealth with a SIR model for the infectious disease [15]. This
model, while relying on few evident universal features, can be easily implemented to furnish an-
swers on possible scenarios as consequence of epidemic and permitted to show that indeed lockdown
measures may trigger an economic crisis leading to a drastic reduction of the middle class.

A very interesting aspect of mathematical modeling of infectious diseases is that, unlike other
classical phenomenological approaches, it allows a direct comparison with real data. This con-
sequently permits evaluation of control and prevention strategies by comparing their cost with
effectiveness and support to public health decisions [18, 44]. Most of the models present in literat-
ure make assumptions on transmission parameters [6,13] which are considered the only responsible
of the spread of the infection. However, special attention was recently paid by the scientific com-
munity to the role and the estimate of the distribution of contacts between individuals as also a
relevant cause of the potential pathogen transmission (cf. [3,16,20,38] and the references therein).

In this direction, the results reported in [3] can be of great help when designing partial lock-
down strategies. In fact, and optimal limitation of the pathogen transmission of the epidemic,
which limitates the number of daily contacts among people taking into account contact number
heterogeneity, permits probably to reduce the severe impact on economy and society that equal
distributed closure policies generate. In particular, the detailed analysis performed in [3] put into
evidence that the number of social contacts in the population is in general well-fitted by a Gamma
distribution, even if this distribution is not uniform with respect to age, sex and wealth. Gamma
distributions belong to the wide class of generalized Gamma distributions [35,46], which have been
recently connected to the statistical study of social phenomena [33, 43], and fruitfully described
as steady states of kinetic models in [14, 47], aiming to describe the formation of these profiles in
consequence of repeated elementary interactions.

Starting from the above consideration and inspired by the recent development of kinetic models
for describing human behaviors [14, 47], in this paper we develop a mathematical framework to
connect the distribution of social contacts with the spreading of a disease in a multi agent system.
This result is obtained by integrating an epidemiological dynamics given by a classical compart-
mental model [6,13,30] with an approach based on kinetic equations determining the formation of
social contacts. In this paper, from the epidemiological point of view we concentrate on the classical
so-called SIR dynamic. However, we stress that the ideas here described are clearly not reduced
to this model which represent an example, instead the methodology here discussed can be easily
extended to incorporate more complex epidemiological dynamics, like for instance the classical en-
demic models discussed in [6, 13, 30]. Resorting to SIR model means for instance that we abstract
away from disease related mortality. Clearly, this in some situation can be a strong hypothesis, as
it excludes demographic interaction. However, it is currently believed that the mortality rate of
COVID-19 is likely low enough to justify this assumption. Moreover, we are particularly interested
in how the epidemic spreads in a country and not on studying the consequences of this diffusion.
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Thus, in this context, mortality has a low impact on the dynamics of the number of infected people
and can be disregarded in first approximation. Other aspects, which certainly have a stronger
impact on how a virus spreads, are related to the presence of asymptomatic individuals [25] as well
as to a time delay between contacts and outbreak of the disease [10] which helps in the diffusion of
the illness. These possible modeling improvements are the subject of future investigations and they
will not be treated in this work. Besides this simplifying assumptions, we will show that the basic
features considered and detailed in the rest of the article are sufficient in many cases to construct
a model which well fits with the experimental data.

An easy way to understand epidemiology models is that, given a population composed of agents,
they prescribe movements of individuals between different states based on some matching functions
or laws of motion. According to the classical SIR models [30], agents in the system are split
into three classes, the susceptible, who can contract the disease, the infected, who have already
contracted the disease and can transmit it, and the recovered who are healed, immune or isolated.
Inspired by the model considered in [14] for describing a social attitude and making use of the
SIR dynamics, we present here a model composed by a system of three kinetic equations, each one
describing the time evolution of the distribution of the number of contacts for the subpopulation
belonging to a given epidemiological class. These three equations are further coupled by taking
into account the movements of agents from one class to the other as a consequence of the infection.
The interactions which describe the social contacts of individuals are based on few rules and can
be easily adapted to take into account the behavior of agents in the different classes in presence
of the infectious disease. Our joint framework is consequently based on two models which can
be considered classical in the respective fields. From the epidemic side, the SIR and its related
models are widely used in most applications (cf. [30] and the references therein). From the side
of multi-agent systems in statistical mechanics, the linear kinetic model introduced in [14, 47] has
been shown to be flexible and able to describe, with opportune modifications, different problems
in which human behavior plays an essential role, like the formation of social contacts.

The study of the effects of the intensity of social contacts in the epidemic diffusion, among
other consequences, allows to obtain in a rigorous way a variety of non-linear incidence rates of the
infectious disease as for instance recently considered in [34]. It is also interesting to remark that the
presence of non-linearity in the incidence rate function, and in particular, the concavity condition
with respect to the number of infected has been considered in [34] as a consequence of psychological
effects. Namely, the authors observed that in the presence of a very large number of infected,
the probability for an infective to transmit the virus further may decrease because the population
tend to naturally reduce the number of contacts. This fact will be embedded in the kinetic model
producing a change in the mean value of the number of daily contacts. The importance of reducing
at best the social contacts to countering the advance of a pandemic is a well-known and studied
phenomenon [18]. While in normal life activity, it is commonly assumed that a large part of agents
behaves in a similar way, in presence of an extraordinary situation like the one due to a pandemic,
it is highly reasonable to conjecture that the social behavior of individuals is strictly affected by
their personal feeling in terms of safeness. In this work, we focus on the assumption that it is
the degree of diffusion of the disease that changes people’s behavior in terms of social contacts,
in view both of the personal perception and/or of the external government intervention. More
generally, the model can be clearly extended to consider more realistic dependencies between an
epidemic disease and the social contacts of individuals. However, this does not change the essential
conclusions of our analysis, namely that there is a close interplay between the spread of the disease
and the distribution of contacts, that the kinetic description is able to quantify. The encouraging
results described in the rest of the article, finally suggest that a similar analysis can be carried out,
at the price of an increasing difficulty in computations, in more complex epidemiological models
like the SIDARTHE model [26, 27], recently used to simulate the COVID-19 epidemic in Italy to
validate and improve the eventual partial lockdown strategies of the government and to suggest
future measures.

The rest of the paper is organized as follows. Section 2 introduces the system of three SIR-
type kinetic equations combining the dynamics of social contacts with the spread of infectious
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disease in a system of interacting individuals. Then, in Section 3 we show that in a suitable
asymptotic procedure the solution to the kinetic system tends towards the solution of a system
of three SIR-type Fokker-Planck type equations with local equilibria of Gamma-type [3]. Once
the system of Fokker-Planck type equations has been derived, in Section 4 we close the SIR-type
system of kinetic equations around the Gamma-type equilibria to obtain a SIR model in which
the presence and consequently the evolution of the social contacts leads to a non-linear incidence
rate of the infectious disease satisfying the compatibility conditions introduced in [34]. Last, in
Section 5, we investigate at a numerical level the relationships between the solutions of the kinetic
system of Boltzmann type, its Fokker-Planck asymptotics and the SIR model. These simulations
confirm the ability of the model to describe different phenomena characteristic of the trend of social
contacts in situations compromised by the rapid spread of an epidemic, and the consequences of
various lockdown action in its evolution. A last part is sacred to a fitting of the model with the
experimental data by first estimating the parameters of the epidemic through data and successively
by using these parameters in the kinetic model.

2 The joint action of social contacts and epidemic

Our first goal is to build a kinetic system which suitably describes the spreading of an infectious
disease under a dependence of the contagiousness parameters on the individual number of social
contacts of the agents. As in classical SIR models [30], the entire population is divided into three
classes: susceptible, infected and recovered individuals.

Aiming to understand social contacts effects on the dynamics, we will not consider in the sequel
the role of heterogeneity in the disease parameters (such as the personal susceptibility to a given
disease), which could be derived from the classical SIR model, suitably adjusted to account for new
information [12, 39, 49]. Consequently, agents in the system are considered indistinguishable [41].
This means that the state of a person in each class at any instant of time t ≥ 0 is completely
characterized by the number of contacts x ≥ 0, measured in some unit.

While x is a natural positive number at the individual level, without loss of generality we will
consider x in the rest of the paper to be a nonnegative real number, x ∈ R+, at the population level.
We denote then by fS(x, t), fI(x, t) and fR(x, t), the distributions at time t > 0 of the number
of social contacts of the population of susceptible, infected and recovered individuals, respectively.
The distribution of contacts of the whole population is then recovered as the sum of the three
distributions

f(x, t) = fS(x, t) + fI(x, t) + fR(x, t).

As outlined in the Introduction, we do not consider for simplicity of presentation disease related
mortality as well as the presence of asymptomatic individuals. Therefore, we can fix the total
distribution of social contacts to be a probability density for all times t ≥ 0∫

R+

f(x, t) dx = 1.

As a consequence, the quantities

J(t) =

∫
R+

fJ(x, t) dx, J ∈ {S, I,R} (1)

denote the fractions of susceptible, infected and recovered respectively. For a given constant α > 0,
we also denote with mα(t) the moment of order α of the distribution of the number of contacts

mα(t) =

∫
R+

xα f(x, t) dx,

and the moments of order α for the distributions of the number of contacts for each class

mα
J (t) =

∫
R+

xαfJ(x, t) dx, J ∈ {S, I,R}.
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Unambiguously, we will indicate the mean values, corresponding to α = 1, by m(t) and, respectively,
mJ(t), J ∈ {S, I,R}.

In what follows, we assume that the evolution of the densities is built according to the classical
SIR model [30], and that the various classes in the model could act differently in the social process
constituting the contact dynamics. The kinetic model then follows combining the epidemic process
with the contact dynamics, as modeled in [14,47]. This gives the system

∂fS(x, t)

∂t
= −K(fS , fI)(x, t) +

1

τ
QS(fS)(x, t)

∂fI(x, t)

∂t
= K(fS , fI)(x, t)− γfI(x, t) +

1

τ
QI(fI)(x, t)

∂fR(x, t)

∂t
= γfI(x, t) +

1

τ
QR(fR)(x, t)

(2)

where γ is the constant recovery rate while the transmission of the infection is governed by the
function K(fS , fI), the local incidence rate, expressed by

K(fS , fI)(x, t) = fS(x, t)

∫
R+

κ(x, y)fI(y, t) dy. (3)

In (3) the contact function κ(x, y) is a nonnegative function growing with respect to the number of
contacts y of the population of infected, such that κ(x, 0) = 0. Then, the spreading of the epidemic
depends heavily on the function κ(·, ·) used to quantify the rate of possible contagion in terms of the
number of social contacts between the classes of susceptible and infected. The evolution of the mass
fractions J(t), J ∈ {S, I,R} then obeys to the classical SIR model by choosing κ(x, y) ≡ β > 0 [30],
thus considering the spreading of the disease independent of the intensity of social contacts. A
leading example is obtained by choosing a rank 1 matrix

κ(x, y) = β xαyα,

where α, β are positive constants, that is by taking the incidence rate directly proportional to the
product of the number of contacts of susceptible and infected people. When α = 1, for example,
the incidence rate takes the simpler form

K(fS , fI)(x, t) = β xfS(x, t)mI(t). (4)

In equations (2) the operators QJ , J ∈ {S, I,R} characterize the thermalization of the distribution
of social contacts in the various classes in terms of repeated interactions [14, 47]. The QJ , J ∈
{S, I,R} are integral operators that modify the distribution of contacts fJ(x, t), J ∈ {S, I,R}.
Their action on observable quantities is given by∫

R+

ϕ(x)QJ(fJ)(x, t) dx =
〈∫

R+

B(x)
(
ϕ(x∗J)− ϕ(x)

)
fJ(x, t) dx

〉
.

where B(x) measures the interaction frequency, 〈·〉 denotes mathematical expectation with respect
to a random quantity, and x∗J denote the post-interaction value of the number x of social contacts
of the J-th population. Last, the constant τ in front of the interaction integral measures the time
scale of the thermalization of the distribution of social contacts.

Remark 1. The relaxation constant τ plays an important role in the time evolution of the model
(2), since it relates the time scale of the epidemic evolution with that of the statistical formation
of social contacts. Small values of the constant τ will correspond to a fast adaptation of people to
a steady situation. Hence, since it is reasonable to assume that adaptation of people is faster that
the dynamics of epidemic, in what follows we will assume τ � 1.

The process of formation of the social contacts distribution is obtained by taking into account
the typical aspects of human being, in particular the search, in absence of epidemics, of oppor-
tunities for socialization. In addition to that, social contacts are due to the common use of public
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transportations to reach schools, offices and, in general, places of work and to basic needs of inter-
actions due to work duties. As shown in [3], this leads individuals to stabilize on a characteristic
number of daily contacts depending on the social habits of the different countries, (represented by
a suitable value x̄M of the variable x, which can be considered as the mean number of contacts
relative to the population under investigation).

Then, following a consolidated path in the kinetic theory of social phenomena, one aims in
obtaining the characterization of the distribution of social contacts in a multi-agent system (the
macroscopic behavior), starting from some universal assumption about the personal behavior of
agents (the microscopic behavior). Indeed, as in many other human activities, the daily amount of
social contacts is the result of a repeated upgrading based on well-established rules. To this extent,
it is enough to recall that the daily life of each person is based on a certain number of activities, and
each activity carries a certain number of contacts. Moreover, for any given activity, the number of
social contacts varies in consequence of the personal choice. The typical example is the use or not
of public transportations to reach the place of work or the social attitudes which scales with the
age. Clearly, independently of the personal choices or needs, the number of daily social contacts
contains a certain amount of randomness, that has to be taken into account. Also, while it is very
easy to reach a high number of social contacts attending crowded places for need or will, going
below a given threshold is very difficult, since various contacts are forced by working or school
activities, among others causes. This asymmetry between growth and decrease, as exhaustively
discussed in [14, 28, 29], can be suitably modeled by resorting to the value function description of
the elementary variation of the x variable.

Remark 2. It is important to outline that, in the presence of an epidemic, the characteristic mean
number of daily contacts x̄M reasonably changes in time, even in absence of an external lockdown
intervention, in reason of the perception of danger linked to social contacts that people manifest.
Consequently, even if not always explicitly indicated, we will assume x̄M = x̄M (t). Also, this time
dependent value can be different depending on the class to which agents belong.

A further non secondary aspect of the formation of the number of social contacts is that their
frequency is not uniform with respect to the values of x. Indeed, it is reasonable to assume that the
frequency of interactions is inversely proportional to the number of contacts x. This relationship
takes into account that it is highly probable to have at least some contacts, and the rare situation
in which one reaches a very high values of contacts x.

The choice of a variable interaction frequency has been fruitfully applied in a different context
in a different situation [23]. This was done to better describe the evolution in time of the wealth
distribution in a western society. There, the frequency of the economic transactions has been
proportionally related to the values of the wealth involved, to take into account the low interest
of trading agents in transactions with small values of the traded wealth. As discussed in [23],
the introduction of a variable kernel into the kinetic equation does not modify the shape of the
equilibrium density, but it allows a better physical description of the phenomenon under study,
including an exponential rate of relaxation to equilibrium for the underlying Fokker-Planck type
equation.

Following [14, 28, 29, 47], we will now illustrate the mathematical formulation of the previously
discussed behavior. In full generality, we assume for the moment that individuals in different
classes can have a different mean number of contacts. The microscopic updates of social contacts
of individuals in the class J , J ∈ {S, I,R} will be taken of the form

x∗J = x− Φε(x/x̄J)x+ ηεx. (5)

In a single update (interaction), the number x of contacts can be modified for two reasons, expressed
by two terms, both proportional to the value x. In the first one, the coefficient Φε(·), which can
assume both positive and negative values, characterizes the typical and predictable variation of the
social contacts of agents, namely the personal social behavior of agents. The second term takes into
account a certain amount of unpredictability in the process. The usual choice is to assume that
the random variable η is of zero mean and bounded variance, expressed by 〈η〉 = 0, 〈η2〉 = λ, with
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λ > 0. Small random variations of the interaction (5) will be expressed simply by multiplying η by
a small positive constant

√
ε, with ε� 1, which produces the new (small) variance ελ. Notice that

this formulation makes an essential use of the choice x ∈ R+. This scaled variable is the variable
ηε appearing in (5).

The function Φε plays the role of the value function in the prospect theory of Kahneman and
Twersky [31, 32], and contains the mathematical details of the expected human behavior in the
phenomenon under consideration. In particular, the hypothesis on which it is built is that it is
normally easier to increase the value of x than to decrease it, in relationship with the mean value
x̄J , J ∈ {S, I,R}. In terms of the variable s = x/x̄J we consider as in [14] the class of value
functions given by

Φεδ(s) = µ
eε(s

δ−1)/δ − 1

eε(sδ−1)/δ + 1
, s ≥ 0, (6)

where 0 < δ ≤ 1 and 0 < µ < 1 are suitable constants characterizing the intensity of the individual
behavior, while the constant ε > 0 is related to the intensity of the interaction. Hence, the choice
ε � 1 corresponds to small variations of the mean difference 〈x∗J − x〉 and making it common to
both effects, randomness and adaptation, permits to equilibriate their effects as can be seen in
Section 3. In (7), the value µ denotes the maximal amount of variation of x that agents will be
able to obtain in a single interaction. Note indeed that the value function Φεδ(s) is such that

−µ ≤ Φεδ(s) ≤ µ.

Clearly, the choice µ < 1 implies that, in absence of randomness, the value of x∗J remains positive
if x is positive. As proven in [14], the value function (6) satisfies

−Φεδ (1− s) > Φεδ (1 + s) ,

and
d

ds
Φεδ (1 + s) <

d

ds
Φεδ (1− s) .

These properties are in agreement with the expected behavior of agents, since deviations from the
reference point (s = 1 in our case), are bigger below it than above. Letting δ → 0 in (6) allows to
recover the value function

Φε0(s) = µ
sε − 1

sε + 1
, s ≥ 0. (7)

introduced in [28,29] to describe phenomena characterized by the lognormal distribution [2, 36].
Once the elementary interaction (5) is given, for any choice of the value function, the study

of the time-evolution of the distribution of the number x of social contacts follows by resorting to
kinetic collision-like models [8,41], that quantify at any given time the variation of the density of the
contact variable x in terms of the interaction operators. For a given density fJ(x, t), J ∈ {S, I,R},
the action on the density of the interaction operators QJ(f)(x, t) in equations (2) is fruitfully
written in weak form. The weak form corresponds to say that for all smooth functions ϕ(x) (the
observable quantities) the action of the operator QJ on ϕ is given by∫

R+

ϕ(x)QJ(f)(x, t) dx =
〈∫

R+

B(x)
(
ϕ(x∗J)− ϕ(x)

)
fJ(x, t) dx

〉
. (8)

Here expectation 〈·〉 takes into account the presence of the random parameter ηε in the microscopic
interaction (5). The function B(x) measures the interaction frequency. The right-hand side of
equation (8) quantifies the variation in density, at a given time t > 0, of individuals in the class
J ∈ {S, I,R} that modify their value from x to x∗J (loss term with negative sign) and agents that
change their value from x∗J to x (gain term with positive sign). In [14], the interaction kernel
B(x) has been assumed constant. This simplifying hypothesis, which is not always well justified
from a modeling point of view, is the common assumption in the Boltzmann-type description of
socio-economic phenomena [22, 41]. In particular, the role of a non constant collision kernel B(x)
has been analyzed in its critical aspects in [23].
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Following the approach in [23, 47], we express the mathematical form of the kernel B(x) by
assuming that the frequency of changes which leads to increase the number x of social contacts is
inversely proportional to x. Hence, we consider collision kernels in the form

B(x) = ax−b,

for some constants a > 0 and b > 0. This kernel assigns a low probability to interactions in which
individuals have already a large number of contacts and assigns a high probability to interactions
in which the value of the variable x is small.

The constants a and b can be suitably chosen by resorting to the following argument [47]. For
small values of the x variable, the rate of variation of the value function (6) is given by

d

dx
Φεδ

(
x

x̄J

)
≈ µ2ε x̄−δJ xδ−1. (9)

Hence, for small values of x, the mean individual rate predicted by the value function is proportional
to xδ−1. Then, the choice b = δ would correspond to a collective rate of variation of the system
independent of the parameter δ which instead characterizes the individual rate of variation of the
value function.

A second important fact is that the individual rate of variation (9) depends linearly on the
positive constant ε, and it is such that the intensity of the variation decreases as ε decreases. Then,
the choice

a =
1

ε
,

is such that the collective rate of variation remains bounded even in presence of very small values
of the constant ε.

With these assumptions, the weak form of the interaction integrals in (8), is given by∫
R+

ϕ(x)QJ(f)(x, t) dx =
1

ε

〈∫
R+

x−δ
(
ϕ(x∗J)− ϕ(x)

)
f(x, t) dx

〉
. (10)

Note that, in consequence of the choice made on the interaction kernel B(·), the evolution of the
density f(x, t) is tuned by the parameter ε, which characterizes both the intensity of interactions
and the interaction frequency. This choice implies

lim
ε→0

1

ε
Φεδ

(
x

x̄J

)
=

µ

2δ

[(
x

x̄J

)δ
− 1

]
, lim

ε→0

1

ε
〈η2ε 〉 = λ. (11)

Consequently, the actions of both the value function and the random part of the elementary inter-
action in (5) survive in the limit ε→ 0.

Remark 3. The approach just described can be easily adapted to other compartmental models in
epidemiology like SEIR, MSEIR [6,13,30] and/or SIDHARTE [26,27]. For all these cited models,
the fundamental aspects of the interaction between social contacts and the spread of the infectious
disease we expect not to change in a substantial way.

3 Asymptotic scaling and steady states

The limit procedure induced by (11) corresponds to the situation in which elementary interactions
(5) which produce an extremely small modification of the number of social contacts (quasi-invariant
interactions) are prevalent in the dynamics. At the same time, the frequency of these interactions
is suitably increased to still permitting to see their effect.

In kinetic theory, this is a well-known procedure with the name of grazing limit. We point the
interested reader to [11,21,41] for further details. Expanding the difference ϕ(x∗J)−ϕ(x) in Taylor
series, and then passing to the limit into the right-hand side of (10), one obtains, for J ∈ {S, I,R}

lim
ε→0

1

ε

〈∫
R+

x−δ
(
ϕ(x∗J)− ϕ(x)

)
fJ(x, t) dx

〉
=

∫
R+

QδJ(fJ)(x, t)ϕ(x) dx =

8



∫
R+

{
−ϕ′(x)

µx1−δ

2δ

[(
x

x̄J

)δ
− 1

]
+
λ

2
ϕ′′(x)x2−δ

}
fJ(x, t) dx

If we impose at x = 0 the boundary conditions

∂

∂x
(x2−δfJ(x, t))

∣∣∣
x=0

= 0, fJ(0, t) = 0, J ∈ {S, I,R}, (12)

and a suitable rapid decay of the densities fJ(x, t) at x = +∞ [22], the limit operators QδJ ,
J ∈ {S, I,R}, coincide with the Fokker–Planck type operators

QδJ(fJ)(x, t) =
µ

2δ

∂

∂x

{
x1−δ

[(
x

x̄J

)δ
− 1

]
fJ(x, t)

}
+
λ

2

∂2

∂x2
(x2−δfJ(x, t)), (13)

characterized by a variable diffusion coefficient and a time-dependent drift term. Indeed, in view
of Remark 2 we have x̄J = x̄J(t). Thus, system (2), in the limit ε→ 0 corresponds to the following
Fokker-Planck system in strong form

∂fS(x, t)

∂t
= −K(fS , fI)(x, t) +

1

τ
QδS(fS)(x, t),

∂fI(x, t)

∂t
= K(fS , fI)(x, t)− γfI(x, t) +

1

τ
QδI(fI)(x, t),

∂fR(x, t)

∂t
= γfI(x, t) +

1

τ
QδR(fR)(x, t).

(14)

The Fokker-Planck system (14) is complemented with the boundary conditions (12) at x = 0.
Clearly, the steady distributions satisfy the ordinary differential equations corresponding to

equations (14) with time derivatives set equal to zero. It is interesting to remark that the explicit
form of the equilibria is easily obtained when both β and γ are set equal to zero, and the contact
function κ(x, y) = 0, so that the incidence rate K(fS , fI) vanishes. In this simple case, by assuming
that the mean values x̄J , J ∈ {S, I,R} are constant, and by setting ν = µ/λ, the equilibria are
given by the functions

f∞J (x) = f∞J (x̄J)x̄2−δJ xν/δ+δ−2 exp

{
− ν

δ2

((
x

x̄J

)δ
− 1

)}
, (15)

J ∈ {S, I,R}. By fixing the mass of the steady state (15) equal to one, in agreement with [3], the
consequent probability densities are generalized Gamma f∞(x; θ, χ, δ) defined by [35,46]

f∞(x; θ, χ, δ) =
δ

θχ
1

Γ (χ/δ)
xχ−1 exp

{
− (x/θ)

δ
}
. (16)

characterized in terms of the shape χ > 0, the scale parameter θ > 0, and the exponent δ > 0 that
in the present situation are given by

χ =
ν

δ
+ δ − 1, θ = x̄J

(
δ2

ν

)1/δ

. (17)

It has to be remarked that the shape χ is positive, only if the constant ν = µ/λ satisfies the bound

ν > δ(1− δ). (18)

Note that condition (18) holds, independently of δ, when µ ≥ 4λ, namely when the variance of the
random variation in (5) is small with respect to the maximal variation of the value function. Note
moreover that for all values δ > 0 the moments are expressed in terms of the parameters denoting
respectively the mean x̄J , J ∈ {S, I,R}, the variance λ of the random effects and the values δ and
µ characterizing the value function φεδ defined in (6).

The standard Gamma and Weibull distributions are included in (15), and are obtained by
choosing δ = 1 and, respectively δ = χ. In both cases, the shape χ = ν, and no conditions are
required for its positivity.
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4 A SIR-type evolution of spreading

The Fokker-Planck system (14) contains all the information on the spreading of the epidemic
in terms of the distribution of social contacts. Indeed, the knowledge of the densities fJ(x, t),
J ∈ {S, I,R}, allows to evaluate by integrations all moments of interest. However, in reason of the
presence of the incidence rate K(fS , fI), as given by (3), the time evolution of the moments of the
distribution functions is not explicitly computable, since the evolution of a moment of a certain
order depends on the knowledge of higher order moments, thus producing a hierarchy of equations,
like in classical kinetic theory of rarefied gases [8]. We will come back to this question later on.

Before discussing the closure, we establish some choices in the model in order to obtain results
which are in agreement with the ones reported in [3]. We fix the value δ = 1, and the incidence
rate as in (4). In particular, the choice δ = 1 gives, for J ∈ {S, I,R}

Q1
J(f)(x) =

µ

2

∂

∂x

[(
x

x̄J
− 1

)
f(x)

]
+
λ

2

∂2

∂x2
(xf(x)).

In this case (17) imply χ = ν and θ = x̄J/ν, and the steady states of unit mass, for J ∈ {S, I,R},
are the Gamma densities

f∞J (x; θ, ν) =

(
ν

x̄J

)ν
1

Γ (ν)
xν−1 exp

{
− ν

x̄J
x

}
. (19)

With this particular choice, the mean value and the variance of the densities (19), J ∈ {S, I,R},
are given by ∫

R+

x f∞J (x; θ, ν) dx = x̄J ;

∫
R+

x2 f∞J (x; θ, ν) dx =
ν + 1

ν
x̄2J .

We now go back to the problem of modeling the time evolution of the densities fJ(x, t). We assume
that due to the presence of the epidemic, the population tends to reduce the typical average number
of contacts which exhibits in standard situations. This can happen due to two main reasons: on
voluntary basis for preventing contagion or by authorities decision through lockdown measures. This
average reduction effect can be introduced by assuming that the mean number of daily contacts
x̄J(t), J ∈ {S, I} depends on the proportion of infected

x̄J(t) = xJH(I(t)), (20)

where the function H(r) is decreasing with respect to r, 0 ≤ r ≤ 1, starting from H(0) = 1. In
particular, in our model, we do not consider a time-dependent mean number of social contacts for
the class of recovered. This is due to the fact that the behavior of epidemic does not depend on it.
For J ∈ {S, I,R}, and x̄J(t) as in (20), we now define

Q̄J(fJ(x, t) =
µ

2

∂

∂x

[(
x

x̄J(t)
− 1

)
f(x)

]
+
λ

2

∂2

∂x2
(xf(x))

With these notations, system (14) with δ = 1 reads

∂fS(x, t)

∂t
= −βx fS(x, t)mI(t) +

1

τ
Q̄S(fS)(x, t),

∂fI(x, t)

∂t
= βx fS(x, t)mI(t)− γfI(x, t) +

1

τ
Q̄I(fI)(x, t),

∂fR(x, t)

∂t
= γfI(x, t) +

1

τ
Q̄R(fR)(x, t).

(21)

Integrating both sides of equations in (21) with respect to x, and recalling that the Fokker-Planck
type operators are mass-preserving, we obtain the system for the evolution of the proportions J(t)

10



defined in (1), J ∈ {S, I,R}
∂S(t)

∂t
= −β mS(t)mI(t),

∂I(t)

∂t
= β mS(t)mI(t)− γI(t),

∂R(t)

∂t
= γI(t).

(22)

As anticipated, unlike the classical SIR model, system (22) is not closed, since the evolution of the
mass fractions J(t), J ∈ {S, I,R} depends on the mean values mJ(t).

Similarly to the derivation of macroscopic equations in kinetic theory, the closure of system
(22) can be obtained by resorting, at least formally, on a limit procedure. In fact, as outlined in
the Introduction, the typical time scale involved in the social contact dynamic is τ � 1 which
identifies a faster adaptation of individuals to social contacts with respect to the evolution time
of the epidemic disease. The choice of the value τ � 1 pushes the distribution function fS(x, t)
towards the Gamma equilibrium density with a mass fraction S(t) and momentum

mS(t) = x̄SS(t)H(I(t)), (23)

as it can be easily verified from the differential expression of the interaction operator Q̄S .
Indeed, if τ � 1 is sufficiently small, one can easily argue from the exponential convergence of

the solution of the following expression

∂fS(x, t)

∂t
=

1

τ
Q̄S(fS)(x, t) (24)

towards the equilibrium f∞S (x; θ, ν) (see [48] for details), that the solution fS(x, t) remains suffi-
ciently close to the Gamma density with mass S(t) and momentum given by (23) for all times. This
equilibrium distribution f∞S (x; θ, ν) can be plugged into the first equation of (21) and then one can
integrate it with respect to the variable x. This procedure gives formally the first equation of (22).
Analogous analysis and formal limit procedure can be done with the second equation in system
(21), which leads to relaxation towards a Gamma density with mass fraction I(t) and momentum
given by

mI(t) = x̄II(t)H(I(t)). (25)

Consequently, we obtain the closure

∂S(t)

∂t
= −β̄ S(t) I(t)H2(I(t)),

∂I(t)

∂t
= β̄ S(t) I(t)H2(I(t))− γI(t),

∂R(t)

∂t
= γI(t).

(26)

In system (26) we defined β̄ = βx̄I x̄S . This identifies the classical transmission parameter of the
SIR model, where however now the difference is that this quantities are not postulated but instead
derived starting from microscopic considerations. In the following, we refer to this model as the
social contact-SIR model (S-SIR).

Remark 4. The outlined closure strategy can be obtained also by resorting to the splitting method,
a very popular numerical approach for the Boltzmann equation [24,40]. If at each time step (t, t+
∆t) we consider sequentially the population-based interaction and relaxation operators in the first
equation in (14), during this short time interval we recover the evolution of the density from the
joint action of relaxation

∂fS(x, t)

∂t
=

1

τ
Q̄S(fS)(x, t) (27)

11



and SIR interaction
∂fS(x, t)

∂t
= −βx fS(x, t)mI(t) (28)

We recall once again that the typical time to consider is τ � 1, which identifies a faster adaptation
of individuals to social contacts with respect to the evolution time of the epidemic disease. Since
the operator Q̄S is mass preserving, in the considered time interval the relaxation (27) with a value
τ � 1 pushes the solution of equation (24) towards the Gamma equilibrium density with the same
mass fraction S(t) of the initial datum, and momentum

mS(t+ ∆t) = x̄SS(t)H(I(t)), (29)

as it can be easily verified from the differential expression of the interaction operator Q̄S.
Indeed, if τ � 1 is sufficiently small, one can easily argue from the exponential convergence of

the solution to (24) towards the equilibrium [48], that the solution fS(x, t+ ∆t) is sufficiently close
to the Gamma density with mass S(t) and momentum given by (29), and this density can be used
into the SIR step (28) to close the splitted system (24)-(28). Analogous procedure can be done with
the second equation in system (21), which leads to relaxation towards a Gamma density with mass
fraction I(t) and momentum given by

mI(t+ ∆t) = x̄II(t)H(I(t)). (30)

Consequently, substituting into system (22) we obtain the closed system (26).

It remains to quantify the action of the social contacts on the evolution of the epidemic. For
this reason, let us introduce for a given constant N � 1 the decreasing function [34]

H(r) =
1√

1 +Nr
, 0 ≤ r ≤ 1, (31)

which describes a possible way in which, in presence of the spread of the disease, the susceptible
and the infected population tend to reduce the mean number of daily social contacts x̄J , J ∈ {S, I}.
This choice produces a SIR model with global incidence rate

D(S, I)(t) =

∫
R+

K(fS , fI)(x, t) dx = β̄S(t)
I(t)

1 +N I(t)
, (32)

that fulfils all the properties required by the non-linear incidence rates considered in [34]. Indeed,
D(S, 0) = 0, and the function D(S, I) satisfies

∂D(S, I)

∂I
> 0,

∂D(S, I)

∂S
> 0 (33)

for all S, I > 0. Moreover D(S, I) is concave with respect to the variable I, i.e.

∂2D(S, I)

∂I2
≤ 0, (34)

for all S, I > 0. In addition to the form (31), we can also consider the following function

H(t, r) =
1√

1 +Nr(t)

∫ t

0

r(s)ds

, 0 ≤ r ≤ 1. (35)

This function satisfies the same properties than (31) in terms of the incidence rate requests detailed
in [34] and takes into account memory effects on the population’s behavior. In fact, people may
adapt their life style in terms of possible daily contacts to answer to the actual pandemic situation as
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Figure 1: Test 1. Initial data and convergence of the Boltzmann dynamics towards the equilibrium
state of the corresponding Fokker-Planck equation.

expressed by (31), however further effects based on the global dynamics of the disease can influence
the choices of the population.

To conclude, let us introduce the basic reproduction number R0 of this model, i.e. the av-
erage number of secondary cases produced by a single infected agent introduced into an entirely
susceptible population. This is given by

R0 =
1

γ
lim

I→0,S→1

∂D(S, I)

∂I
=
β̄

γ
, (36)

where γ is the recovery rate of infected. According to the analysis of [34], an autonomous compart-
mental epidemiological model with the non-linear incidence rate (32) under the constant population
size assumption is stable. Such system has either a unique and stable endemic equilibrium state or
no endemic equilibrium state at all. Since the incidence rate D(S, I) satisfies the conditions (33)-
(34), if R0 > 1, then the endemic equilibrium state Q∗ = (S∗, I∗) of system (26) is asymptotically
stable. If R0 ≤ 1, then there is no endemic equilibrium state, and the infection-free equilibrium
state is asymptotically stable.

5 Numerics

In addition to analytic expressions, numerical experiments allow us to visualize and quantify the
effects of social contacts on the SIR dynamics used to describe the time evolution of the epidemic.
More precisely, starting from a given equilibrium distribution detailing in a probability setting the
daily number of contacts of the population, we show how the coupling between social behaviors
and number of infected people may modify the epidemic by slowing down the number of encounters
leading to infection. In a second part, we discuss how some external forcing, mimicking political
choices and acting on restrictions on the mobility, may additionally improve the reduction of the
epidemic trend avoiding concentration in time of people affected by the disease and then decreasing
the probability of hospitalization peaks. In a third part, we focus on experimental data for the
specific case of COVID-19 in different European countries and we extrapolate from them the main
features characterizing the contact function H(·).

5.1 Test 1: On the effects of the social contacts on the epidemic dynamics

The starting point is represented by a population composed of 99% of susceptibles and 0.01% of
infected. The distribution of the number of contact is described by (15) with ν = 4, δ = 8 and
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Figure 2: Test 1. Top: distribution of the social contacts at equilibrium over time for the two choices
of the function H. Middle: SIR dynamics corresponding to the different choices of the different mean
number of daily contact (left constant case, right as a function of the epidemic). Bottom left: final
distribution of the number of daily contact for the susceptible and recovered agents. Bottom right:
time evolution of the contact function H.
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Figure 3: Test 1. SIR dynamic corresponding to different choices for the mean number of daily contacts
(left constant case, right as a function of the epidemic) with parameters k(x) = 0.2/xJx and γ = 1.

xJ = 15 while the epidemic parameters are k(x) = 0.8
xJ
x and γ = 0.8. The kinetic model (14) is

solved by a splitting strategy together with a Monte Carlo approach where the number of samples
used to described the population is fixed to M = 106. The time step is fixed to ∆t = 10−2 and
the scaling parameter is τ = 10−2. These choices are enough to observe the convergence of the
Boltzmann dynamics to the Fokker-Planck one as shown in Figure 1 where the analytical equilibrium
distribution is plotted together with the results of the Boltzmann dynamics. We considered also
uniform initial distribution

f0(x) =
1

c
χ(x ∈ [0, c]), c = 30, (37)

being χ(·) the indicator function. In the introduced setting, we then compare two distinct cases: in
the first one we suppose that the social contacts do not affect the solution, meaning H(I(t)) = 1,
while the second includes the effects of the function H(I(t)) given in (31) with N = 10. The results
are depicted in Figure 2. The top right images show the time evolution of the distribution of the
number of contacts for the two distinct cases, while the middle images report the corresponding
evolution of the epidemic. For this the second case, the function H(I(t)) as well as the distribution
of contacts for respectively the susceptible and the recovered are shown at the bottom of the same
figure. We clearly observe a reduction of the peak of infected in the case in which the dynamics
depends on the number of contacts with H(I(t)) given by (31).

We now repeat the same simulation by only changing the considered epidemic parameters. In
particular, we consider a lower infection and recovery rate given by k(x) = 0.2/xJx and γ = 1,
respectively. In Figure 3, we show the evolution of two epidemic profiles in time for the case in
which social contacts do not affect the solution and for the case in which H(I(t)) is a function of
the number of infected as for the previous situation. Results show the same qualitative behavior:
peak reduction and spread of the number of infected over time is observed when sociality is taken
into account. The total number of infected is also reduced in the second case.

5.2 Test 2: Forcing a change in the social attitudes.

Next, we compare the effects on the spread of the disease when the population adapts its habits
with a time delay with respect to the onset of the epidemic. This kind of dynamics corresponds to a
modeling of a possible lockdown strategy whose effects are to reduce the mobility of the population
and, correspondingly, to reduce the number of daily contacts in the population.

The setting is similar to the one introduced in Section 5.1 and we consider a switch between
H = 1 to H(I(t)) = 1/

√
1 +NI(t) when the number of infected increases. The social parameters
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are ν = 4, δ = 8 and xJ = 15, as before, while the epidemic parameters are k(x) = 0.4/xJx and
γ = 0.6, the final time is fixed to T = 15. The initial distribution of contacts is also assumed to be
of the form (37).

We consider three different settings, in the first one H = 1 up to t < T/4, in the second one up
to t < T/2 while in the third one we prescribe a lockdown for a limited amount of time (1 < t < 2)
and then we relax back to H = 1. The results are shown in Figure 4 for both the distribution
of daily contacts over time and the SIR evolution. We can identify three scenarios. The first on
the top gives a slightly change to the standard epidemic dynamics. Indeed, we can observe around
t = 7.5 a reduction of the speed of the infection. For the second, we observe an inversion in the
trend of the epidemic around t = 4, while for the third case we first observe inversion and then the
resurgence of the number of infected when the lockdown measures are relaxed.

5.3 Test 3: Extrapolation of the contact function from data

In this part, we consider data about the dynamics of COVID-19 in three European countries:
France, Italy and Spain. For these three countries, the evolution of the disease, in terms of re-
ported cases, evolved in rather different ways. The estimation of epidemiological parameters of
compartmental models is an inverse problem of generally difficult solution for which different ap-
proaches can be considered. We mention in this direction a very recent comparison study [37]. It
is also worth to mention that often the data are partial and heterogeneous with respect to their
assimilation, see for instance discussions in [1, 7, 9, 45]. This makes the fitting problem challenging
and the results naturally affected by uncertainty.

The data concerning the actual number of infected, recovered and deaths of COVID-19 are
publicly available from the John Hopkins University GitHub repository [17]. For the specific case of
Italy, we considered instead the GitHub repository of the Italian Civil Protection Department [42].
In the following, we present the adopted approach which is based on a strategy with two optimisation
horizons (pre-lockdown and lockdown time spans) depending on the different strategies enacted by
the governments of the considered European countries.

In details, we considered first the time interval t ∈ [t0, t`], being t` the day in which lockdown
started in each country (Spain, Italy and France) and t0 the day in which the reported cases hit
200 units. The lower bound t0 has been imposed to reduce the effects of fluctuations caused by
the way in which data are measured which have a stronger impact when the number of infected is
low. Once the time span has been fixed, we then considered a least square problem based on the
minimization of a cost functional J which takes into account the relative L2 norm of the difference
between the reported number of infected and the reported total cases Î(t), Î(t) + R̂(t) and the
evolution of I(t) and I(t) +R(t) prescribed by system (26) with H ≡ 1. In practice, we solved the
following constrained optimisation problem

minβ,γJ (Î , R̂, I, R) (38)

where the cost functional J is a convex combination of the mentioned norms and assumes the
following form

J(Î , R̂, I, R) = p
‖Î(t)− I(t)‖2
‖Î(t)‖2

+ (1− p)‖Î(t) + R̂(t)− I(t)−R(t)‖2
‖Î(t) + R̂(t)‖2

We choose p = 0.1 and we look for a minimum under the constraints

0 ≤ β ≤ 0.6, 0.04 ≤ γ ≤ 0.06.

In Table 1 we report the results of the performed parameter estimation together with the resulting
attach rate R0 defined in (36).

Once that the contagion parameters have been estimated in the pre-lockdown time span, we
successively proceeded with the estimation of the shape of the function H from the data.To estimate
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Figure 4: Test 2. Comparisons of different lockdown behaviors. Top: late lockdown. Middle: early
lockdown. Bottom: early lockdown and successive relaxation.
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Figure 5: Test 3. Fitting of the parameters of model (26) where β, γ > 0 were estimated before the
lockdown measures assuming H ≡ 1. The parameters characterizing the function H(·) in (26) have
been computed during and after lockdown at regular interval of time, up to July 15. The lockdown
measures change in each county (dashed line).

France
Mar 5-Mar 17

Italy
Feb 24-Mar 9

Spain
Mar 5-Mar 14

β 0.300686 0.317627 0.370362

γ 0.040000 0.058391 0.043168

R0 7.5172 5.4397 8.5795

Table 1: Test 3. Model fitting parameters in estimating attack values for the COVID-19 outbreak
before lockdown in various European countries.

this latter quantity, we solved the following optimization problem

minHJ (39)

in terms of H where J is the same functional of the previous step and where in the evolution of
the macroscopic model the values β, γ have been fixed as a result of the first optimization in the
pre-lockdown period. The parameters chosen for (39) are p = 0.1 while the constraint is

0 ≤ H ≤ 1.

The second optimisation problem has been solved up to last available data for each country with
daily time stepping h = 1 and over a time window of three days. This has been done with the
scope of regularizing possible errors due to late reported infected and smoothing the shape of H.
Both optimisation problems (38)-(39) have been tackled using the Matlab functions fmincon in
combination with a RK4 integration method of the system of ODEs.

In Figure 5, we present the result of such fitting procedure between the model (26) and the
experimental data. The evolution of the estimated H(t), t ∈ [t`, T ], is instead presented in the left
column of Figure 6. From this figure, it can be observed in the case of Italy how, even if the daily
number of infected decreases after May 1st, the estimated H remains quite stable after this day.
This behavior cannot be reproduced by using a function H(I(t)) as the one given in (31). Instead,
a function H(t, I(t)) of the form (35), which takes into account both the instantaneous number of
confirmed infections NI(t) and the total number of infected in the population N

∑
s<t I(s) up to

time t, is able to better better fit the observed results. In fact, it appears that taking into account
possible memory effects on the contact function is a good path to follow. In the right column
of Figure 5, the two discussed contact functions have been denoted with H1 = H1(NI(t)) and
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H1 France
Mar 18 - Jul 15

Italy
Mar 10 - Jul 15

Spain
Mar 15 - Jul 15

a 3 · 10−5 9.038 · 10−5 1.749 · 10−5

b 0.7168 0.5808 1.249

R2 0.7096 0.7542 0.5795

H2 France
Mar 18 - Jul 15

Italy
Mar 10 - Jul 15

Spain
Mar 15 - Jul 15

a 1.41 0.01744 0.5201

b 0.1055 0.2566 0.1211

R2 0.7007 0.7959 0.9899

Table 2: Fitting parameters for the estimate of the contact functions Hi, i = 1, 2 in different countries
based on the evolution of H(t) solution of the optimisation problem (39). The corresponding R2

coefficient is also reported.

H2 = H2(t,NI(t)
∑
s<t I(s)). Both are assumed of the form

Hi(r) =
1

(1 + ar)b
, i = 1, 2.

A least square minimization approach has been finally developed to determine a > 0, b ∈ R that
best fit the estimated curve whose results are presented in Table 2. We can easily observe in the
right column of Figure 6 how the function H2 is capable to better explain the estimated values of H
especially after the epidemic peak. To evaluate the goodness of fit we can finally use the so-called
coefficient R2, as reported in Table 2. Results show that the function H2 appears more suitable in
terms of the fitting results for all tested situations. This fact may indicate that people are rather
fast to apply social distancing, and therefore to reduce their average number of contacts, whereas
they tend to restore the pre-pandemic average contact rate more slowly, possibly due to further
memory effects.

5.4 S-SIR model with fitted contact function

In this last part, we discuss the results of the S-SIR model when the contact function has the shape
extrapolated in the previous paragraph. In particular, we devoted it to show whether the obtained
extrapolated function H, which depends on the product between the current number of infected
and the total number of infected, produces qualitative trends that are in agreement with the data.

As discussed in Section 5.3, it appears that the curve of infection may be better explained in
the case in which the contact function is both a function of the instantaneous number of infected
and of the total number of people that contracted the disease up to time t. In order to compare
qualitatively the observed curve of infected and the theoretical one, we consider the following setting
for the three countries under study: ν = 4, δ = 8 and xJ = 15, ∆t = 0.01, τ = 0.01, M = 105.
Moreover, we suppose S(t = 0) and I(t = 0) to match the relative number of susceptible and
infected of each country at the time in which we start our comparison. Finally, we consider

H

(
t,NI(t)

∑
s<t

I(s)

)
=

1

(1 + aNI(t)
∑
s<t I(s))b

, (40)

where we use the parameters of Table 2 that we recall here for the seek of clarity: (a, b) = (1.41, 0.15)
in the case of France, and (a, b) = (0.017, 0.25) in the case of Italy. The case of Spain will be
discussed later.
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Figure 6: Test 3. Estimated shape of the function H in several European countries (left plots) and
its dependency on the variables NI(t) and NI(t)

∑
s<t I(s) (right plots).
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Figure 7: Test 4. Left: relative number of infected over time for the S-SIR model when memory
effects are taken into account in the contact function. Right: corresponding contact function over
time. Top: the French case. Bottom: the Italy case.

In Figure 7 we show the profiles of the infected over time together with the shape of the function
H again over time. The results show that with the choices done for the contact function, it is possible
to reproduce at least qualitatively the shape of the trend of infected during the pandemic observed
in Italy and in France.

It is worth to remark that the considered social parameters have been estimated only the in
the case of France, see [3], and we assumed that the initial contact distribution is the same for the
Italian case. We now consider the case of Spain. For this country, according to Figure 5, the trend
of infected undergoes a deceleration during the lockdown period. This can be also clearly observed
in Figure 6 where the extrapolated shape of the contact function H is shown. Let also observe that
while the global behavior of this function is captured by the fitting procedure, we however lose the
minimum which takes place around end of April. This minimum is responsible of the deceleration
in the number of infected and can be brought back to a strong external intervention in the lifestyle
of Spain country with the scope of reducing the hospitalizations. This effect can be reproduced by
our model by imposing the same behavior in the function H. To that aim, the Figure 8 reports
finally the profile of the infected over time together with the shape of the function H again over
time for this last case. The results show that also in this case, the S-SIR model is capable to
qualitatively reproduce the data.
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Figure 8: Test 4. Left: relative number of infected over time for the S-SIR model when memory
effects are taken into account in the contact function. Right: corresponding contact function over
time. Spain case.

Conclusions

The development of strategies for mitigating the spreading of a pandemic is an important public
health priority. The recent case of COVID-19 pandemic has seen as main strategy restrictive meas-
ures on the social contacts of the population, obtained by household quarantine, school or workplace
closure, restrictions on travels, and, ultimately, a total lockdown. Mathematical models represent
powerful tools for a better understanding of this complex landscape of intervention strategies and
for a precise quantification of the relationships among potential costs and benefits of different op-
tions [18]. In this direction, we introduced a system of kinetic equations coupling the distribution
of social contacts with the spreading of a pandemic driven by the rules of the SIR model, aiming
to explicitly quantify the mitigation of the pandemic in terms of the reduction of the number of
social contacts of individuals. The kinetic modeling of the statistical distribution of social contacts
has been developed according to the recent results in [3], which present an exhaustive description
of contacts in the France population, divided by categories. The numerical experiments then show
that the kinetic system is able to capture most of the phenomena related to the effects of partial
lockdown strategies, and, eventually to maintain pandemic under control.
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