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Abstract

Standard neuroeconomic decision theory assumes that choice is based on a value compari-

son process, independent from how information about alternative options is collected. Here,

we investigate the opposite intuition that preferences are dynamically shaped as options are

sampled, through iterative covert pairwise comparisons. Our model builds on two lines of

research, one suggesting that a natural frame of comparison for the brain is between default

and alternative options, the other suggesting that comparisons spread preferences between

options. We therefore assumed that during sequential option sampling, people would 1)

covertly compare every new alternative to the current best and 2) update their values such

that the winning (losing) option receives a positive (negative) bonus. We confronted this

“covert pairwise comparison” model to models derived from standard decision theory and

from known memory effects. Our model provided the best account of human choice behav-

ior in a novel task where participants (n = 92 in total) had to browse through a sequence of

items (food, music or movie) of variable length and ultimately select their favorite option.

Consistently, the order of option presentation, which was manipulated by design, had a sig-

nificant influence on the eventual choice: the best option was more likely to be chosen when

it came earlier in the sequence, because it won more covert comparisons (hence a greater

total bonus). Our study provides a mechanistic understanding of how the option sampling

process shapes economic preference, which should be integrated into decision theory.

Author summary

According to standard views in neuroeconomics, choice is a two-step process, with first

the valuation of alternative options and then the comparison of subjective value estimates.

Our working hypothesis is, on the contrary, that the comparison process begins during

the sequential sampling of alternative options. To capture this idea, we developed a

computational model, in which every new alternative is compared with the current best,
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so as to better contrast their values. This model provided the best account of choice behav-

ior exhibited by participants (n = 92 in total) performing three variants of a novel multi-

alternative decision task. Thus, our findings unravel a covert pairwise comparison process,

occurring while participants collect information about alternative options, before they are

requested to make their choice. They also provide explanations about when this covert

process is implemented (when resampling is too costly), why it is implemented (to better

discriminate the best options) and how it can bias decisions (because it favors first-

encountered valuable options).

Introduction

In everyday modern life, people often make choices between multiple options they can browse

through, for instance when shopping for groceries, on the internet or at the supermarket. Even

when options are readily available, located next to each other, they cannot be attended all at

once. Sampling options is therefore a sequential process that unfolds across time, breaking

equity between options by assigning them a serial position. This sequential allocation of atten-

tion is typically neglected in standard decision theory [1–3], for which economic choice is con-

strued as the selection of the option maximizing expected utility. Thus, according to standard

decision theory, the way information about alternative options is collected, in particular their

position in the sampling sequence, should not have an impact on the eventual choice. Our

working hypothesis is, on the contrary, that option sampling is not just passive information

gathering, but an active process that covertly updates the utility function on which the eventual

choice is based.

Several choice biases induced by sequential option sampling have already been reported.

One notable bias is the so-called primacy effect, i.e. the fact that the first encountered option is

more likely to be selected in a variety of choices, from picking a wine to joining a social group

[4–7]. The primacy effect on choice has been classically interpreted as a by-product of memory

functional properties, the first item in a series being more easily retrieved [8]. The reverse

serial-position effect, namely the recency effect (i.e., the tendency to select the last encountered

option) has been observed in choice as well [9] and again interpreted as a memory bias, in this

case favoring the last item of the series [10]. The primacy and recency effects show that the

position of options in a sequence can impact the final choice, but provides no evidence that

decision making is already engaged during option sampling, as they are independent from

preferences between options.

The aim of the present study was to test the intuition that people start comparing options as

soon as they engage in the sequential sampling process. The purpose of these covert compari-

sons would be to provide a better contrast between options, such that preferences are easier to

derive when the final choice must be made. For the sake of simplicity, and because it might

reflect a true cognitive limitation of the human brain, we assumed that people compare options

two-by-two. A natural frame for these pairwise comparisons would oppose the current best

(or default) option to any new alternative. This decision frame has already been extensively

investigated in foraging theory [11], for which the two key options in ecological choices are

staying on the same patch versus switching to a new patch [12,13]. More recently, we provided

evidence that a default versus alternative representational frame is also used when deciding

between two goods [14], the default choice being defined by prior preferences (before further

consideration of available options).
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Thus, our hypothesis is that during naturalistic choice, where the number of options available

is not known in advance but unveiled sequentially, people would compare at every step the cur-

rent best to the newly sampled option. To investigate this hypothesis, we needed behavioral signa-

tures of the covert pairwise comparison process. We reasoned that covert choice might spread

preferences for compared options, as it has been shown with overt choice in research on cognitive

dissonance [15–18]. The spread of alternatives has been shown in paradigms where participants

first rate the likeability of a set of items, then items with similar ratings are paired and participants

choose their favorite one within each pair, and last they rate every item in the list again. The classi-

cal observation is that the difference in likeability between chosen and unchosen items is greater

in the last (post-choice) set of ratings than it was in the initial (pre-choice) set. Both behavioral

manipulations and computational analyses have shown that the choice-induced spread of alterna-

tives go beyond what could be expected from a statistical regression to the mean [19–21].

Instead of utility or preference, we employ here the term value to designate the subjective

estimate of how good an outcome would be for the decision-maker, as is common in neuroe-

conomics [22,23]. If our hypothesis is correct, the covert pairwise comparison implemented at

every step of option sampling should therefore enhance the subjective value assigned to the

better option and decrease the subjective value attached to the worse option. The prediction is

that the eventual (overt) choice distribution should reflect these (covert) subjective value

updates. In addition, confidence in the choice, defined as the subjective belief that the (overtly)

chosen option was indeed the best, should also reflect (covert) subjective value updates. This

second prediction stems from previous reports that confidence increases with the distance in

subjective value between chosen and unchosen options [24], as it does with the distance in

stimulus strength for perceptual decisions [25]. Crucially, our model implies that the sequence

in which options are sampled will have an impact on the final choice: if the best option is

encountered earlier in the series, it will win more covert comparisons, which should further

boost its subjective value and hence the likelihood that this option will be selected in the end,

as well as the confidence that this option was indeed the best.

We compared our model to alternative models, derived from pure economic decision the-

ory (softmax function of option values) or memory accounts (additive bias depending on serial

position). We also tested more subtle alternatives, such as the progressive elimination of losing

options in covert choices, instead of value updating. These models were compared on the basis

of behavioral choice data collected in a novel task requiring participants to sample a set of 3 to

6 goods displayed on the screen, then selecting their favorite option in the presented set and,

finally, reporting their confidence on a rating scale. In three successive experiments, we imple-

mented variants of this design to better specify the context in which the covert comparison

process might occur. Results show that our model provides the best account of choice data

when going back to previously sampled options is made impossible or at least costly.

Methods

Ethics statement

The research was approved by the Ethics Committee for Biomedical Research (‘Comité de Pro-

tection des Personnes’) of the Pitié-Salpêtrière Hospital in Paris, France. All participants gave

written informed consent before participating in the study. All studies were conducted follow-

ing French rules and regulations.

Participants

Three groups of participants (sample size: 30, 29, 33; gender: 18/12, 13/16, 21/12 female/male;

age ± SEM: 24.3 ± 0.6, 24.8 ± 0.9, 25.1 ± 0.7, respectively) were recruited from a volunteer
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database (the RISC, a local online cognitive science information relay platform for subject

recruitment in the region of Paris, France) to participate in experiments 1 to 3. The recruit-

ment criterion were healthy subjects between 20 to 40 years old, right-handed, no history or

current treatment of neuropsychological disorders, and no particular dietary constraints.

The sample size was based on educated guess rather than formal power calculation, as we

could not know in advance whether the effect of serial position would be present or not. A pos-

teriori, given the observed size of the bonus parameter and its standard deviation across partic-

ipants, a formal estimation indicated that a group of n = 20 participants would have been

sufficient to test the effect with significance at 0.05 and power at 0.9.

Participants received a fixed gratification of 30 €, plus a randomly drawn item among all

chosen options during their experiment, which was endowed to make sure that choice trials

were incentive-compatible. To ensure that the payoff rule was plausible, participants were

exposed to a large subset of potential rewards that were stored in the testing room. They were

then informed about the random lottery implemented at the end of the task in order to deter-

mine their prize.

Stimuli and apparatus

We used a total of 430 items in Exp 1 and 180 items in Exp 2 & 3 which were presented as stan-

dardized photos (400 x 300 pixels) on a computer screen. To avoid boredom, we selected items

from different categories: processed food (sweet and salty snacks), unprocessed food (vegeta-

bles and fruits), films, music albums and readings (newspapers or magazines). The five catego-

ries were used in Exp 1, only three in Exp 2 and 3 (unprocessed food and reading categories

were discarded).

The majority of food items were from the French INSEAD food database, the other items

were created in the lab. Food products were photographed frontally over a black background,

with some of the contents displayed in front of the packaging. Items from the music category

(album cover with name of singer as it is popularized in the French market) and from the read-

ing category (journal or magazine logo over a black background) were recycled from previous

studies. Films were selected among the most popular ones in France during the past 10 years,

according to an online film database, and the corresponding images were created in the lab

from the French version of movie posters. Although we intended to present familiar items, it

remained possible that a participant never heard of a particular film or music album. In this

case, the participant was asked to evaluate its likeability on the basis of previous experience

with items of a similar kind.

All experimental stimuli were presented with Matlab_R2017a (https://www.mathworks.

com/) running Psychophysics Toolbox-3 [26] (http://psychtoolbox.org) and additional custom

scripts. The experiment was run on a 20-inch touch screen Windows-based PC with a resolu-

tion of 1920 � 1080.

Behavioral task

The tasks are not numbered in chronological order: Exp 3 (the control experiment) was in

practice conducted between Exp 1 and Exp 2 (the test experiments). Instead, for the sake of

readability, they are ordered following the difficulty of resampling the options, which was

made impossible in Exp 1, costly in Exp 2 and free in Exp 3 (Fig 1).

In Exp 1, the five categories of stimuli were divided into five sessions. Each session was

composed of a rating task and a choice task using items from the same category. In the rating

task, participants were asked to assign likeability ratings to each of the 86 items. They were

instructed to move a cursor along a visual analog scale on the computer touch screen. The
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Fig 1. Behavioral tasks. Each task session used one category of items (food, music, film or magazine) and was divided into two stages. In the first stage,

participants had to rate the likeability of items presented one by one on the screen, by placing a cursor on a visual analog scale. In the second stage, participants

had to browse through a set of 3 to 6 options, by pressing the space bar on the keyboard, then click on their favorite option at the end of the sequence, and last,

rate their confidence in their choice by placing a cursor on another visual scale. An additional third stage was included in Exp 2 and 3, with a second likeability

rating task identical to the first one (presenting the same items). Beyond details regarding the number of items and categories, key differences between

experiments regarded the choice phase: after being sampled, options remained masked (with no possibility of unmasking) in Exp 1, remained unmasked (with

a time consuming possibility of resampling) in Exp 2, and were simply unmasked all together in Exp 3. Option sampling was self-paced, participants

proceeding to the next option by pressing the space bar. At each step, a new option was revealed while the previous one was masked again. The location of the

options appearing on screen was randomized but their identity was prearranged on the basis of likeability ratings (see methods). Choice was prompted by

displaying question marks on masks (Exp 1 and 2) or by unmasking all options together (Exp 3). A feedback showing the chosen option alone was provided

before the confidence rating.

https://doi.org/10.1371/journal.pcbi.1007920.g001
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scale was extended from ‘not at all’ to ‘extremely’ in response to the question ‘how much do you
like this item’. The rated items were then ranked according to the subject-specific likeability

ratings. Should two items have the same rating, we would compare the corresponding

response time and assign a higher ranking to the one with a quicker response time. We then

grouped the ranked items into choice trials in a way that balanced the position of the best item

in the sequence (the highest initial rating compared to other items of a same trial). Note that

rankings were only used to control the position of the best item in the sequence, never for data

analysis or computational modeling, which instead were based on likeability ratings (i.e., cardi-

nal and not ordinal values).

There were 72 trials per choice session. Choice trials began with a fixation cross (2 seconds),

followed by six equally distanced empty squares (three on the upper half and three on the

lower half of the screen). Then, the sequential sampling phase started. At each step of the

sequence, a new option was displayed at a random location among the six placeholder squares.

Participants sampled three to six options before they were asked to make a choice. The associa-

tion between placeholder squares and options was fixed for the entire trial. Participants could

sample the following options one-by-one in a self-paced manner. Each time when they pressed

the space key, a new option showed up on the screen. Meanwhile, the previous one was

masked by a filled square. The length of the sequence was not known to them before they

reached the end of the trial. After sampling all options of a given trial, they were cued with a

choice prompt (‘make your choice’), followed by question marks placed on all filled squares

masking the available options. Participants could then choose their favorite option by clicking

on the corresponding square. Thereupon, a feedback screen appeared with the selected option

unmasked for 1 second. At the end of the trial, participants were asked about their level of con-

fidence. The question was ‘how certain are you that you have made the best choice’ (in the sense

of a choice corresponding to their own subjective preference). Confidence ratings were pro-

vided by placing a cursor on a visual analog scale graduated from ‘not at all’ to ‘extremely’.
Within a session, every item appeared in four different trials, each time paired with a different

set of items. Choices, response times and confidence ratings were recorded for further analysis.

At the end of the experiment, one out of all the trials was selected randomly and the chosen

item at the selected trial was given to the participant, on top of the fixed payment.

Exp 2 had a similar setup as Exp 1, apart from the following changes. The critical change

was that before finalizing their choice, participants had the opportunity to unmask any of the

options, just by clicking on it. They could then confirm their selection by pressing the space

bar, or revisit other options by clicking on other locations. Only one option would appear on

the screen at a time: if one was unmasked, the previous one was masked again, such that press-

ing the space bar designated the option on screen as the final choice.

A more minor change was the adaptation of the visual presentation, such that instead of

having one option revealed right after the fixation cross, participants would see six empty

squares. Therefore, they needed to press the space key to reveal the first option, whose expo-

sure time was thus better controlled. Other secondary changes pertain to the number of items

and how they were organized into choice trials. Due to practical constraints related to testing

time and potential fatigue (Exp 1 lasted about 3 hours), we reduced the number of options that

participants had to rate and compare. Given that in Exp 1, different trial lengths did not result

in different predictions or observations, we removed most of the trials with six options. Two

such trials were kept per repetition, to avoid participants anticipating the end of the sequence,

but were not included in the analyses. These catch trials were composed of items with the six

lowest and six highest ratings, because extreme ratings might be bounded by the scale and thus

less accurately estimated. We further removed the reading and unprocessed food categories,

reducing the set of items to three categories only. Each of the items was presented six instead
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of four times in the corresponding choice session, while ensuring that they were paired with

different items at each repetition. In total, there were 60 items in a rating session, for a total of

84 choice trials (72 in data analysis) per session.

More importantly, we systematically controlled for the distance, in both likeability rating

and serial position, between best and second-best options in a given trial. According to our

predictions, preference reversals should be more easily observed in trials where the best and

second-best options were close in value and far apart in the sequence (the best coming at the

end, and the second-best at the beginning). Accordingly, the difference in value was kept

under a maximum of three ranks, based on likeability ratings. We also avoided minimal differ-

ences in serial position in longer sequences (with 4 items and more), like consecutive display

of best and second-best for trials including four or five options.

Exp 3 used the same set of options, with the same grouping scheme as introduced in Exp 2,

resulting the same number of trials, and the same visual display, except for one critical change.

During the choice phase, the masks were removed such that participants were able to see all

the available options again before selecting their favorite option. This setup corresponds to a

simultaneous presentation of alternative choice options as used in standard behavioral eco-

nomics experiments. It can therefore be seen as a control for the effects observed in Exp 1

and 2.

Aside from adaptations in the choice task, we also included a second likeability rating ses-

sion, after the choice session, in Exp 2 and 3. This second rating session was identical to the

first one and served to assess the persistence of choice-induced effects on subjective value.

Computational modeling

The central questions of the modeling work are whether and how sequential option sampling

affects decision making.

We first formalized the null hypothesis (H0), which assumes that there is no update of

value or pre-commitment to a choice during the option sampling process. Hence, at the time

of choice, participants recall or reassign option values, which on average should be equal to

their initial likeability ratings. These option values are then compared in a noisy selection pro-

cess captured with a softmax function. In every trial, selection probabilities under H0 are

therefore:

Pi ¼
eb�Vi

Po
j e

b�Vj
ð1Þ

Where Pi is the probability of choosing item i given its value Vi, and the value Vj of all the

options o displayed in the trial (including i). In model H0, all option values correspond to ini-

tial likeability ratings. There is only one free parameter to be fitted in this model, the inverse

temperature β, which captures the weight of values (relative to pure noise) in choices. While

selection probabilities are independent from option serial position in H0, the other models

assume different mechanisms predicting an effect of the sequence order.

In H1 (primacy model), the sequence order affects option values through memory effects.

For the sake of simplicity, we used a bias parameter that follows an inverse function of the

serial position. According to H1, value updating at every step of option sampling is given by

the following rule:

Viðt1Þ ¼ Viðt0Þ þ
l

si
ð2Þ

where Vi is the value of item i, λ is the magnitude of the bias parameter, which is discounted by
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the option serial position Si. As in H0, selection probabilities are calculated with the softmax

function (1), now using updated values Vi(t1) instead of initial ratings. The same model can be

used to capture a primacy bias (if λ> 0) or a recency bias (if λ< 0).

To give the best chance to the hypothesis of a primacy bias, we also implemented other pos-

sible decay functions. In variant H1a, the bias was a power function of serial position:

Viðt1Þ ¼ Viðt0Þ þ l
si ð3Þ

While in variant H1b, the bias was not additive but multiplicative:

Viðt1Þ ¼ Viðt0Þ � 1þ
l

si

� �

ð4Þ

In H2 (bonus model), the sequence order affects option values through iterative covert pair-

wise comparison between the current best and the new option. At every step, the option with

higher value receives a bonus and becomes the current best for the next comparison. Symmet-

rically, the option with lower value receives a negative bonus of the same magnitude. This sym-

metrical update ensures that values would keep the same mean throughout the sampling

process. According to H2, the updating rule can be described as follows:

ViðtniÞ ¼ Viðtni� 1Þ þ d ð5Þ

VjðtnjÞ ¼ Vjðtnj� 1Þ � d ð6Þ

where values of options i and j are updated after a number of covert comparisons tni-1 and tnj-1,
respectively. Assuming that option i has a higher value than option j at the time of the new

comparison, a bonus of size δ is added to option i and subtracted from option j. Option i is

then set as the new default (current best option) for the next step.

In H1 and H2 models, just as in H0, selection probabilities for the choice phase are calcu-

lated with the softmax function (1), using updated values Vi(tni) instead of initial ratings Vi(t0).
We also implemented a variant of H2 where the bonus δ is added to the first presented option,

as if it was winning against a fictive option of null value (anything is better than nothing). This

modified model was labeled H2.1, to make the link with H1, as it also incorporates a notion of

primacy bias (applied to the first option only).

In H3 (pruning model), the sequence order affects selection probabilities by eliminating

options instead of updating values, after each pairwise covert comparison. At every step, the

probability of keeping the current best versus the new option is calculated as in (1), through a

softmax function of their values, which remain equal to initial ratings. Therefore, the global

likelihood that an option is eventually chosen can be estimated by the multiplication of all con-

ditional probabilities along the corresponding branch in a probability tree diagram.

To identify differential predictions of models H0 to H3, we simulated datasets under Exp 1

design. Ratings were generated using a uniform distribution ranging from 0 to 100, slightly

left-skewed towards 0, as was observed in a pilot study showing a subset of stimuli to an inde-

pendent sample of subjects. The inverse temperature was extracted at first from a pilot experi-

ment with similar designs, and then readjusted with the inverse temperature parameter fitted

on choice data collected in Exp 1. The other parameters (λ and δ) were varied to examine their

effects on choices. Trial-by-trial selection probabilities were generated for every simulated sub-

ject and averaged over 200 simulated datasets of 30 subjects. A critical difference across models

was identified in the relationship between the probability of selecting the best option and its

position in the sequence (Fig 2 and S1 Fig under the settings of Exp 1 and Exp 2–3, respec-

tively). This relation was flat under H0, decreasing under H2, and increasing under H3.
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Fig 2. Computational models and simulations of choice data. A) Graphical depiction of computational models. For each model, a trial with four options, initially

rated R1 to R4 (with R3> R4> R1> R2), are illustrated. Progressive choice preparation should be read from bottom to top, horizontal dashed lines representing

transitions between steps of sequential option sampling (each time a new option is revealed). In H0 (null model), option sampling is neutral, such that choice

probabilities are given by a softmax function applied to initial ratings, as in standard decision theory, using one free parameter β (inverse temperature). In H1 and H2,

option values are updated, either according to their serial position in the sequence (primacy model) or according to pairwise covert comparison between current best
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Regarding H1, it was decreasing with a positive bias (primacy model) and increasing with neg-

ative bias (recency model). Among the models with a negative relation, the shape was convex

with model H1, concave with model H2, and linear with model H2.1, providing qualitative sig-

natures. For a more quantitative assessment, we used Bayesian model comparison (see below).

Statistical analyses

All analyses were run with Matlab_R2018b (www.mathworks.com). Effect sizes are provided

as means and standard errors of the mean (SEM). Model-free analyses used linear regressions

at the individual level, followed by two-tailed t-tests on regression coefficients, at the group

level. Computational models were inverted using a Variational Bayes approach under the

Laplace approximation. Model inversions were implemented using Matlab VBA-

toolbox (available at http://mbb-team.github.io/VBA-toolbox/). This iterative algorithm pro-

vides a free-energy approximation for the model evidence, which represents a natural trade-off

between model accuracy (goodness of fit) and complexity (degrees of freedom). Additionally,

the algorithm provides an estimate of the posterior density over the free parameters, starting

with Gaussian priors. Log model evidences were then taken to group-level random-effect anal-

ysis and compared using a Bayesian model selection (BMS) procedure. This procedure results

in an exceedance probability (Ep) that measures how likely it is that a given model is more fre-

quently implemented than the others in the population [27].

Results

We recruited three different groups of participants (n1 = 30, n2 = 29, n3 = 33) for the three

experiments. There were no significant differences in gender, age or education level between

groups. Three participants were excluded from the analyses (one in Exp 1 and two in Exp 2),

either because they quitted the experiment before the end or gave invariant rating to every

item. The analyses were conducted on the remaining participants (n1 = 29, n2 = 27, n3 = 33).

Model-free analysis

Choice behavior. To assess the qualitative predictions of our computational model, we

tested the relationship between P(best), the probability of choosing the best option (defined as

the option with highest initial rating), and the serial position of that best option. The linear

regression was done separately for each trial length (number of options) in each participant.

Regression coefficients were then averaged, to obtain one value per individual and experiment,

and tested at the group level (Fig 3A). Regression coefficients were significantly negative in

Exp 1 (b = - 0.015 ± 0.0052, t(28) = -2.86, p = 0.0079) and Exp 2 (b = - 0.020 ± 0.0084, t(26) = -

and new options (bonus model). Grey circles represent updated values. In model H1, the positive parameter λ is used as a bias added to option value, whose magnitude

decreases as the inverse function of the serial position in the sequence, in accordance with the notion of primacy effects. Note that the same model with negative λ would

produce recency effects. In model H2, the positive parameter δ is a bonus added to the winning option, and subtracted from the losing option, in covert pairwise

comparison. Winning and losing options are simply determined by their initial likeability ratings prior to the comparison. Model H2.1 applies the same logic to the first

option (illustrated in diamond), which automatically benefits from the additive bonus δ as if it was winning the first comparison (against nothing), hence including a

sort of primacy effect. In H3 (pruning model), covert pairwise comparisons are used to select the winning option, and eliminate the losing option, with a probability

provided by a softmax function of their values. The winning option is the one compared to the new option in the next step. As the outcome of covert comparisons is

probabilistic, the figure illustrates only one of many possible trees. B) Results of model simulations (under Exp 1 setup). Graphs show simulated choices as the

probability of selecting the best option (y axis), depending on its serial position in the sampling sequence (x-axis), which was varied across trials. The same softmax

function is used in all models to derive choice probabilities from option values, with an inverse temperature β = 0.081, corresponding to the posterior estimates obtained

from fitting the best model (H2.1) to choice data collected in Exp 1. Each of the plots is an average over 200 simulated datasets of 30 subjects implementing the

corresponding model, for various (color-coded) number of options. Shaded areas indicate the average inter-participant SEM, across all datasets. Values of λ and δ are

indicated on the plots. Note that only H1 (with positive λ) and H2 (including H2.1) predict a decreased probability of choosing the best option when it is presented later

in the sequence.

https://doi.org/10.1371/journal.pcbi.1007920.g002
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2.32, p = 0.028) but not in Exp 3 (b = - 0.0042 ± 0.0063, t(32) = - 0.67, p = 0.50). The conclusion

is the same if we regress P(best) against the factor that was controlled in Exp 2 and 3, i.e. the

relative serial position between best and second best (S2A Fig): regression coefficient was sig-

nificantly negative in Exp 2 (b = - 0.010 ± 0.0042, t(26) = - 2.46, p = 0.021), but not in Exp 3 (b

= -0.0011 ± 0.0029, t(32) = - 0.375, p = 0.71).

The negative linear link observed in Exp 1 and 2 is consistent with the predictions of the

extended bonus model H2.1, while the flat relationship observed in Exp 3 corresponds to the

null model H0 (see Fig 3B and S2B Fig). Exp 2 can be seen as similar to Exp 1, to the extent

that participants rarely resampled the options once they were masked (only in 12% of trials),

suggesting that they were sensitive to time costs. Thus, the order of option sampling was

roughly that programmed in the sequence of option display. However, in Exp 3, participants

had the liberty to resample the options at no cost (just by moving their eyes), meaning that we

lost track of the sequential order, compared to what was programmed by design. Thus, Exp 3

can be taken as a control that the link between probability and position observed in Exp 1 and

2 was not artefactual.

Fig 3. Comparison of behavioral results to model simulations. A) The upper graphs show the observed probability of choosing the best option, as a

function of its serial position, for different (color-coded) number of options. Shaded areas indicate inter-participant SEM. Dotted lines show linear

regression fit across all trials (with different numbers of options). Stars denote significance of t-test comparing regression slopes to zero. � p<0.05, ��

p<0.01. B) The bottom graphs show the simulated probability of choosing the best option, as a function of its serial position. Choice behavior in each

condition was simulated using the best-fitting model with the posterior means for free parameters (see values of the inverse temperature β and bonus δ
indicated on the plots). Each of the plots is an average over 200 simulated datasets of 30 subjects implementing the corresponding model, for various

(color-coded) number of options. Shaded areas indicate the average inter-participant SEM. across all datasets.

https://doi.org/10.1371/journal.pcbi.1007920.g003
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Apart from the impact of serial position, there were clear differences in choice data between

Exp 1 and the two others, related to changes in the design. An important change was that the

difference in value was kept minimal between best and second-best options in Exp 2 and 3.

The consequence was that, in the two last experiments, the best option was less frequently cho-

sen (Exp 1: 0.66, Exp 2: 0.57, Exp 3: 0.52), while the second-best option was more frequently

chosen (Exp 1: 0.21, Exp 2: 0.36, Exp 3: 0.37). For the other options, choice rate was lower,

which explains why adding more (low-value) items in the sequence had a lesser effect in Exp 2

and 3.

A possible confound for the effect of serial position is exposure time, which has been found

to bias decision-making in previous studies [28,29]. Here, we could only assess the impact of

exposure time in Exp 2, because in Exp 1 the first option was shown before any key press, mak-

ing it different from the next options, and in Exp 3 all options remained visible on screen,

making exposure time difficult to estimate without tracking gaze fixation. When choice proba-

bility was regressed against a logistic model that contained both decision value (DV) and expo-

sure time (ET), the two regressors were found to have a significant influence (DV:

b = 0.030 ± 0.0019, t(26) = 15.68, p< 0.001; ET: b = 0.34 ± 0.13, t(26) = 2.69, p = 0.012). The

dissociation between exposure time and option value is not easy to operate however, because

participants tend to look longer at options they like better in the first place.

In any case, we checked that the putative impact of exposure time could not contribute to

the observed effect of serial position. This would occur if the best option was looked longer

when presented earlier in the sequence. It was not the case: when regressing exposure time

against the best option serial position, just as we did for choice probability, the slopes were not

different from zero (b = 0.0026 ± 0.012, t(26) = 0.22, p = 0.83). Therefore, even if longer expo-

sure time indeed contributed to a higher choice rate, this effect was orthogonal to our main

research interest (i.e., the impact of serial position during sequential sampling).

Confidence and response time. If we define confidence as the selection probability of the

chosen option (given by the softmax function of option values), then model H2.1 also predicts

a lower confidence when the best option arrives later in the sequence, at least when that best

option is chosen. To test this prediction, we estimated regression slopes between confidence

ratings (in trials where best option was chosen) and best option serial position, as we did for

choices. Consistent with the prediction, this regression slope was significantly negative (b = -

0.65 ± 0.28, t(28) = - 2.30, p = 0.029) in Exp 1. We reasoned that the decrease in confidence

(with best option serial position) should be paralleled by an increase in response time. Yet

response time should be interpreted with caution in our experimental design, because it is con-

founded with target location, which affects the distance to touch screen. We nonetheless

observed a trend (see S3 Fig) for a positive relationship between response time and best option

serial position (b = 0.012 ± 0.0066, t(28) = 1.95, p = 0.061). From these observations we may

conclude that the putative covert pairwise comparison process not only increased the best

option choice rate, but also increased confidence and decreased response time. However, these

trends (decreased confidence and increased response time) were not observed in Exp 2, possi-

bly because in this version of the task, participants could control their confidence level by

resampling the options.

We therefore explored resampling behavior in more details, in Exp 2 where we could track

it, although it remained rare (12% of trials on average). There was no clear spatial or temporal

pattern: options presented at a given location on screen or at a given position in the sequence

were not resampled more often than the others. However, compared to base rate (33, 25 and

20% for 3-, 4- and 5-item sequence), the best and second-best options were resampled signifi-

cantly more often (t(25) = 5.74, p< 0.001 and t(25) = 3.04, p = 0.0054, respectively). We also

compared confidence rating between trials with and without resampling: it was significantly
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lower after resampling (from 77.53 ± 1.83 to 63.22 ± 2.61%, t(50) = -4.53, p<0.001). This

result does not support the idea that resampling increased confidence, but it is hard to con-

clude on this point, because we have no access to their confidence level before participants

start resampling. Thus, the data remain consistent with the possibility that participants resam-

pled when their confidence was low, under the impression that they missed or forgot some

information, with this resampling behavior not restoring their usual confidence level (even if it

helped). However, no strong conclusion about resampling should be drawn here, because it

was only observed in a limited subset of trials and subjects.

Model-based analysis

Within-trial effects. The negative relationship between best-option choice rate and serial

position is compatible not only with model H2.1 but also models H2 (with bonus only) and

H1 (with primacy bias only). To further disentangle between these models, we implemented a

Bayesian model comparison based on choice data.

In order to give the best chance to the primacy model, we first compared, after Exp 1, the

different possible functions relating the primacy bias to the option serial position (i.e., H1, H1a

and H1b). The results of Bayesian model selection suggested that H1 was the most plausible

function (Ef = 0.76, Ep> 0.99). In the model space, we therefore included the null, primacy

and bonus models (H0, H1, H2, and H2.1), but not the pruning model (H3), since it predicted

a trend opposite to that observed in the data. For similar reasons, we bounded the prior of the

bias parameter in the primacy model (H1) to be positive, because we did not observe any trend

in the data that would reflect a recency bias.

To examine whether these models can be distinguished through Bayesian comparison, we

conducted a model recovery analysis. Obviously, recovery success depends on computational

parameters, since for instance, model H1 with a null λ parameter is nothing but H0. What we

intended to check is whether a winning model, with an exceedance probability over 0.95,

could be confused with another in the model space, given the observed choice data. We there-

fore used the observed likeability ratings, and computational parameters fitted on our choice

data, to simulate virtual groups of participants. Bayesian model comparison was then con-

ducted on simulated data in the exact same manner as with observed data. Recovery rate was

good (see S4 Fig), except that H0 was winning when H1 was simulated. This is likely related to

the fact that the bias parameter λ of model H1 was too small in our participants, making this

model similar to model H0, which has the advantage of having one parameter less. Note that

the impact of λ diminishes with the number of items, while the impact of δ is cumulative. The

critical point was that when H2.1 was winning, the simulated model was H2.1 in a majority of

cases and H2 in the others, thus validating the hypothesis of a covert pairwise comparison

process.

The results of group-level random-effect Bayesian model selection are reported sepa-

rately for the three experiments (Fig 4). Model H2.1 (bonus + primacy model) was identi-

fied as the best model in Exp 1 (Ef = 0.63, Ep = 0.94) and Exp 2 (Ef = 0.76, Ep > 0.99).

Although exceedance probability did not reach 0.95 in Exp 1, we note that its only competi-

tor with non-zero exceedance probability was H2, meaning that in any case the hypothesis

of covert pairwise comparison was the most plausible. It is also worth noting that, in Exp 2,

model H2.1 won the comparison whether based on just the imposed sequential sampling

steps or on all the actual sampling steps, including when participants took the opportunity

to resample options after the sequential presentation. In Exp 3, the null model provided the

best account of choice data (Ef = 0.97, Ep > 0.99), discarding the possibility of a primacy

bias that would be purely based on the option serial position. As control analyses, we
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included the pruning model (H3) and the recency model (same as primacy model but with

a bias parameter bounded to be negative) in the model space. Results of the Bayesian model

comparison were unchanged (see S5 and S6 Figs), making the conclusions robust to varia-

tions in the model space. We also checked that models such as H3, predicting a trend oppo-

site to that observed in the data, was perfectly identifiable (at a 100% rate) from all the

others in the recovery analysis.

To confirm that covert pairwise comparison was improving the fit of choice data, we tested

the mean of posterior estimates obtained for the bonus parameter δ with the winning model

(H2.1, assuming that the same bonus is applied to the first option and to winners of covert

comparisons). When fitting model H2.1, the parameter δ was not constrained to be positive,

so its sign can be interpreted as evidence for a bonus added to the winning option (and sub-

tracted from the losing option). The posterior means (± SEM) for δ were 0.59 (± 0.089) in Exp

1 and 0.29 (± 0.11) in Exp 2. They were both significantly positive (Exp 1: t(28) = 6.62, p

<0.001; Exp 2: t(26) = 2.75, p = 0.011), confirming that the model was applying a positive

Fig 4. Bayesian model comparison results. All parameters have been fitted on choice data, separately for the three experiments. Models

correspond to the different hypotheses (H0 to H2.1). The bias parameter λ in model H1 was bounded to be positive, in order to capture primacy

effects. The bonus parameter δ in model H2 and H2.1 was not bounded, such that a positive posterior provides evidence for the existence of

covert pairwise comparison. The recency bias model (H1 with negative parameter) and the pruning model (H3) were not included because they

predicted a qualitatively opposite trend (increased probability of selecting the best option when presented later in the sequence), compared to

what was observed in choice data. Exceedance probability is the likelihood that the considered model is more represented than the others, in the

population from which participants were recruited. Dash lines represent chance level for expected frequency (0.25 because there are four

models) and significance level for exceedance probability (0.95 because of the standard statistical criterion to reject random distributions).

https://doi.org/10.1371/journal.pcbi.1007920.g004
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bonus to options winning covert pairwise comparisons, and a negative bonus to losing

options. The values of all fitted parameters are listed in S1 Table.

We then extended our computational analyses to assess whether model H2.1 would remain

the most plausible compared to other variants.

First, we compared model H2.1 to a model in which the best option simply captures atten-

tion, receiving a bonus related to its saliency, as was proposed for salient attributes in choices

between lotteries [30,31]. This saliency model was equivalent to H0 except for the bonus γ
attributed to the best option:

Vbest ¼ Vbest:ð1þ gÞ ð7Þ

This new model tests the possibility that the bonus may be independent from the serial posi-

tion of the best option, and therefore cannot explain the link between best-option choice rate

and serial position observed in our data. Expectedly, model H2.1 won the comparison with the

saliency model in both Exp 1 (Ef = 0.58, Ep = 0.81) and Exp 2 (Ef = 0.98, Ep> 0.99). This con-

firms that the order of sequential sampling matters for the probability of choosing the best

option.

Second, we compared model H2.1 to a model H1.1 where the first item gained an extra

bonus λ1, relative to all subsequent items:

Viðt1Þ ¼ Viðt0Þ þ l1 þ
l

si
if Si ¼ 1 and Viðt1Þ ¼ Viðt0Þ þ

l

si
if Si > 1 ð8Þ

The idea was to reduce the difference between models H1 and H2.1 to the critical impact of

covert pairwise comparison. This model H1.1 would not produce a linear relationship between

best-option choice rate and serial position, but simply accentuate its convexity. Expectedly,

model H2.1 won the comparison with model H1.1 in both Exp 1(Ef = 0.96, Ep> 0.99) and

Exp 2 (Ef = 0.62, Ep = 0.91). Because H1.1 might have been penalized for having one more

parameter, we also tried a variant of H1.1 with λ1 replaced by λ (so the bonus for the first

option is now 2λ), but the model comparison yielded similar results.

Third, we compared H2.1 to a model that we call probabilistic H2.1, because the outcome

of covert pairwise comparison is probabilistically determined by a second softmax function,

with a second inverse temperature parameter βc (different from the β parameter used in the

softmax function that generates the probabilities of overt choices). This probabilistic version of

H2.1 would be more coherent, as there is no reason to assume that covert choice is determin-

istic (meaning that the best option is always winning the comparison), while overt choice is

known to be probabilistic. This makes the computations much heavier, as there are many

paths in the tree of possible combinations (8, 16 and 32 for 4-, 5- and 6-item trials, respec-

tively). For each possible path, values are updated in the same manner as in the deterministic

model H2.1, and passed through the same final softmax function to generate choice probabili-

ties. Then, for every option, the overall selection probability is obtained by summing the prod-

uct of path and choice probabilities over all possible paths. These computations are detailed

and illustrated in S1 Methods.

The deterministic version of H2.1 won the comparison with the new probabilistic one, in

both Exp 1 (Ef = 0.87, Ep > 0.99) and Exp 2 (Ef = 0.92, Ep> 0.99). The fitted inverse tempera-

ture parameters suggest that indeed, covert choices were more deterministic than overt choices

(Exp 1: βc = 0.24 ± 0.047, β = 0.082 ± 0.0065; Exp 2: βc = 0.22 ± 0.049, β = 0.10 ± 0.009). How-

ever, the bonus parameters were in the same range as with the deterministic model H2.1, and

significantly different from zero in both experiments (Exp 1: δ = 0.57 ± 0.13; Exp 2: δ =

0.41 ± 0.14). Thus, even if using a softmax function for covert choice is theoretically more
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grounded, our choice dataset was not sensitive enough to benefit from this additional parame-

ter. In any case, the impact of covert pairwise comparisons (the bonus added to the winning

option and subtracted from the losing option) was significant in both the deterministic and

probabilistic version of model H2.1.

Across-trial effects. Lastly, we assessed whether the shift in preference, captured with the

bonus parameter in model H2.1, was confined to the ongoing trial or extended throughout

subsequent trials of the experiment. We used the repetition of options, which were presented

several times with different groupings in our design, to compare between a local model, where

all trials start with initial ratings, and a global model, where trials start with updated ratings

(see illustration in Fig 5). Thus, in the global model, the positive and negative bonus applied to

winning and losing options is carried over to subsequent trials. Bayesian model comparison

suggested that local model H2.1 provided a better account of choice data than global model

H2.1 in both Exp 1 (Ef = 0.96, Ep> 0.99) and Exp 2 (Ef = 0.98, Ep > 0.99).

However, cognitive dissonance studies have suggested that choice-induced preference shift

can last for quite a long time (18). We therefore assumed that, on top of the bonus gained

through covert pairwise comparisons, there might be another bonus assigned to the option

that was overtly chosen at the end of the trial. To assess this possibility, we developed a two-

level H2.1 model, with two distinct bonus parameters, one due to covert comparisons and

applied locally to the ongoing trial, and one due to overt choice and applied globally to all sub-

sequent trials. Bayesian model comparison with local model H2.1 showed that two-level model

H2.1 provided a better account of choice data in both Exp 1 (Ef = 0.98, Ep> 0.99) and Exp 2

Fig 5. Graphical illustration of local versus global effects of value updating following covert comparisons. The initial values of item 1 to n are indicated as a V0

1
to V0

n
vector. Each item was presented several times during the choice task, each time paired with a different set of other items. After the first round, each item value is updated

according to the covert pairwise comparison process (model H2.1), generating the V1

1
to V1

n vector. Likewise, after the second round, the vector of item values is updated

to V2

1
to V2

n. (A) The local model presumes that the updated values after covert comparisons are not stable and cannot carry over to subsequent trials. Thus, when a later

trial presents the same item, its value has reversed back to the initial value (i.e., the likeability rating). (B) The global model assumes that the updated values are stable

and thus can be passed on from one round to the next. The updated value from a previous trial can serve as a starting point for a new update in the next trial presenting

the same item.

https://doi.org/10.1371/journal.pcbi.1007920.g005
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(Ef = 0.98, Ep> 0.99). For completeness, we have included local H2.1, global H2.1 and two-

level H2.1 in a single Bayesian model comparison performed in each experiment, separately

(Fig 6). Results confirmed that two-level H2.1 was the overall best model in all experiments

(Exp 1: Ef = 0.98, Ep> 0.99; Exp 2: Ef = 0.98, Ep > 0.99; Exp 3: Ef = 0.98, Ep> 0.99).

Note that in Exp 3, the fitted parameter δ for covert comparison was close to zero. Consis-

tently, the two-level H2.1 model was outperformed by a hybrid model having just one bonus

parameter for updating value following overt choice (Ef = 0.84, Ep> 0.99). This hybrid model

also outperformed the global H0 model (Ef = 0.99, Ep> 0.99), confirming the bonus arising

from overt choice, even when there was no bonus for covert choice. In the two other experi-

ments (Exp 1 and Exp 2), where two-level model H2.1 was the winner, the posterior mean of

the covert bonus parameter was much smaller than the overt bonus parameter (mean ± SEM:

0.48 ± 0.11/ 0.35 ± 0.13 compared to 24.73 ± 0.82 / 14. 08 ± 0.63 in Exp 1 / 2). Thus, although it

provides a proof of concept for the process of covert pairwise comparison, the shift of prefer-

ence induced during option sampling was less substantial than that induced by choice itself.

Fig 6. Bayesian model comparison between variants of model H2.1. All parameters have been fitted on choice data,

separately for the three experiments. The model H2.1 implemented in previous comparisons is what we call here local

model H2.1, which compared to two variants: the global model H2.1, in which value updates related to covert pairwise

comparisons are carried over to all subsequent trials, and a two-level model H2.1, in which value updates induced by

covert comparisons remain local, whereas value updates induced by overt comparisons (actual choices) are carried

over to subsequent trials. Note the two-level model uses different bonus parameters for updating values after covert

and overt comparisons. In the graph, gray dash lines represent chance level for expected frequency (0.33 because there

are 3 models) and significance level for exceedance probability (0.95 because it corresponds to standard statistical

criterion).

https://doi.org/10.1371/journal.pcbi.1007920.g006
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Discussion

In this study, we suggested a choice model where the selection is prepared during sequential

option sampling, through value updates induced by covert pairwise comparisons. Compared

to a standard decision-making function, this model provided a better account of choice data

collected in novel tasks where participants had to browse through a set of items before picking

their favorite option. An important consequence is that the order in which options are sam-

pled is not neutral: a good option presented early in the sequence will win more covert com-

parisons and hence will be more likely selected.

Alternative models would not make this prediction. In models typically used in decision

neuroscience (softmax function of likeability ratings), designated here as the null model,

choice is simply independent of serial positions. In memory accounts, choice only depends on

serial positions, favoring either early or late options (according to primacy and recency

effects). In our model, choice is influenced by an interaction between the option value and its

position in the sequence: an early position is facilitating for good but not for bad options, and

vice-versa for a late position. We also tested a variant of our covert pairwise comparison

model, called the pruning model, where the worse options are just eliminated instead of being

devaluated. However, this model makes the opposite key prediction: an early position would

be a disadvantage, even for a good option, because it would mean that it has to survive a high

number of covert comparisons, which decrease its probability of being chosen, due to selection

noise at every step.

This raises the question of why people implement these pairwise covert comparisons. The

pruning model has a clear benefit: it would save space in working memory, as only one option

identity, and not a set of option values, would be retained for the eventual choice. Indeed, in all

models but the pruning model, choice probability is given at the end of sequential sampling by

a softmax function of updated option values. Our suggestion is that spreading the alternatives,

through the positive / negative bonus assigned to winning / losing options, increases the likeli-

hood of selecting the best option and saves time when choice is to be made. A related conse-

quence of covert value updating is a higher confidence (in making the right choice), which we

argue is in fact what is maximized during decision-making [32]. This is trivial in perceptual

decision-making, where one wants to be correct by instruction, and could apply as well in eco-

nomic choice, where being correct means getting the best of alternative options, according to

subjective preferences (24). The notion of confidence is tightly linked to choice response time,

at both an empirical and theoretical level, the typical decision-maker being slower when less

confident [33]. In economic choice, both confidence and response time depend on the dis-

tance in value between options, such that a spread of alternatives is beneficial [34]. Here, we

have observed such trends: just as the likelihood of choosing the best option decreased with its

serial position, confidence tended to decrease and response time to increase. However, our

design was not optimized for these measures to be sensitive.

Another question pertains to the context in which the covert pairwise comparison process

is implemented. Model predictions on choices were observed in Exp 1 and 2 but not in Exp 3,

where options were all unmasked at the time of choice. Exp 3 can therefore be taken as a con-

trol for the impact of the imposed sequence of option sampling in Exp 1 and 2, because partici-

pants could visually resample all the options in an idiosyncratic order. Since we did not

control for gaze direction, we could not keep track of their resampling pattern, which might

have induced additional value updates, in accordance with our model. Another possibility is

that participants did not implement the covert comparison process during sequential sampling

in Exp 3—they just saved time by quickly browsing through options, and made their choice at

the end, when all options were simultaneously unmasked. Exp 2 presents the interest of being
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more ecological than Exp 1, as options were not made definitely invisible, but could only be

resampled at the cost of losing time, as when surfing on the internet. In this case, we could

track the order of option resampling, because participants had to click on the touch screen.

When including the resampling process in our model, it still provided the best account of

choice data. However, the resampling process was quite rare and thus, on average, the order of

option sampling was not far from that programmed by design. Further experiments are

needed to assess whether our computational account still holds in more natural settings, where

the sampling sequence could be freely determined by subjects.

Although our covert pairwise comparison model was supported here by both model-free

and model-based analyses, the evidence remains indirect. More direct evidence could be

searched using neuroimaging techniques to track covert choices. Previous studies have shown

that covert decisions to postpone a choice (during sequential sampling of information), which

were inferred from computational analyses, could be uncovered from EEG signals [35]. Thus,

it might be possible to decode neural representations of the current best option, such as its spa-

tial location, either in a perceptual or in a motor format. Also, commitment to a choice (versus

postponement), in the course of sequential sampling, has been related to decision-value signals

recorded with fMRI, in brain regions such as the ventromedial prefrontal cortex [36]. Thus, it

might be possible to assess the existence of value updates, following covert comparisons, by

monitoring the activity of these brain regions. In this endeavor, our model might provide the

computational probes needed to identify neural mechanisms operating covert choices.

Finally, we tested whether the eventual overt choice would also lead to value updating, as it

has been repeatedly shown in studies using a rating-choice-rating paradigm [36]. We found

that indeed, on top of the bonus arising from covert choice, the option that was overtly chosen

received an additional bonus that was much larger and also more persistent. This additional

effect of overt choice has been typically interpreted as resulting from the need to exhibit consis-

tent behavior, possibly for social reputation management [37,38]. Although the consistency goal

might have played a role for the effect of overt choice in our data, the fact that we also observed

value updating for covert choice suggests the existence of a more implicit and automatic mecha-

nism, as we previously argued [21]. Indeed, during debriefing interview, participants did not

spontaneously report having adopted any strategy like iterative pairwise comparisons. Thus,

action-induced spread of preference might encompass (at least) two sort of processes: an

implicit one that is simply enhancing the contrast between option values, and an explicit one

that intends to maintain apparent consistency. We note that in both cases, the additive model

that we have been using, for the sake of simplicity, is unlikely to describe the true mechanisms

producing the observed effects, since it provides no end to the increase in value every time an

option is chosen. Unfortunately, a potential saturation in value updating could not be tested

here, given the small number of presentations for a same option in our design.

In conclusion, we have provided evidence that sequential order of option sampling is not

neutral for decision-making, which invites a reconsideration of standard decision theory. To

this endeavor, we have suggested a first computational account that certainly needs to be

refined in future research. The intention is of course not to suggest ways to manipulate choices,

but to uncover systematic biases that may implicitly shape our preferences. Yet, this bias could

be used in public policy to nudge people into choosing the option they prefer, by making sure

it is encountered early when browsing across the available alternatives.
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S1 Methods. Supplementary methods.
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S1 Fig. Simulations of choice data (under the settings of Exp 2 & 3). Graphs show simulated

probability of choosing the best option under the experimental setup of Exp 2 and 3, depend-

ing on the serial position of the best option in the sampling sequence (x-axis). Each of the plots

is an average over 200 simulated datasets of 30 subjects implementing the corresponding

model, for various (color-coded) number of options. Shaded areas indicate the average inter-

participant SEM, across all datasets. Values of λ and δ are indicated on the plots. The inverse

temperature parameter was fixed to β = 0.10, which corresponds to the posterior estimates of

the best model (H2.1) fitted to choice data in Exp 2. The simulations show that predictions

about the link between P(best) and its serial position are similar to those made under Exp 1 set-

tings. In particular, only H1 (with a positive bias) and H2 (including H2.1) predict a decreased

choice rate when the best option is presented later in the sequence.

(TIF)

S2 Fig. Comparison of behavioral results to model simulations in Exp 2 & 3. (A) The upper

graphs show the observed probability of choosing the best option, as a function of its serial

position relative to that of the second-best option. A positive relative position means that the

best was presented after the second-best option. Shaded areas indicate inter-participant SEM.

Dotted lines show linear regression fit across all trials (with different numbers of options).

Stars denote significance of t-test comparing regression slopes to zero. � p<0.05, �� p<0.01.

(B) The bottom graphs show the simulated probability of choosing the best option, as a func-

tion of its serial position relative to that of the second-best option. Choice behavior in each

condition was simulated using the best-fitting model with the posterior means for free parame-

ters (see values of the inverse temperature β and bonus δ indicated on the plots). Each of the

plots is an average over 200 simulated datasets of 30 subjects implementing the corresponding

model, for various (color-coded) number of options. Shaded areas indicate the average inter-

participant SEM. across all datasets.

(TIF)

S3 Fig. Model-free results about confidence and response time (Exp 1). Graphs show the

observed confidence rating (between 0 and 100) and response time (in seconds), as a function

of the serial position of the best option (in Exp 1), for different (color-coded) number of

options, averaged over trials in which the best option was chosen. Shaded areas indicate inter-

participant SEM. Dotted lines show linear regression fit across trials (with different numbers

of options). Star and circle denote significance or borderline significance of t-test comparing

regression slopes to zero: � p<0.05,˚ p<0.1.

(TIF)

S4 Fig. Model recovery analysis (Exp 1). Choice data have been simulated using the likeability

ratings and the posterior parameters of participants in Exp 1. Recovery rate has been estab-

lished on the basis of 50 simulations, each including a group of 30 random participants. Cells

of the confusion matrix indicate the rate at which the model in row wins Bayesian comparison

when the model in column was simulated. Bayesian comparison was applied to simulated data

at the group level, between the four considered models, following the exact same procedure

applied to observed data. Only winning models with exceedance probability > 0.95 have been

included in the count. Note that when H2.1 model wins the comparison, the simulated model

is either H2 or H2.1.

(TIF)

S5 Fig. Bayesian model comparison results for an extended model space including the

pruning model. All parameters have been fitted on choice data, separately for the three experi-

ments. Models correspond to the different hypotheses (H0 to H3). The H3 model in the plot is
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the pruning model, which eliminates the option losing covert pairwise comparison at each

step of the sampling process. Exceedance probability is the likelihood that the considered

model is more represented than the others, in the population from which participants were

recruited. Dash lines represent chance level for expected frequency (0.25 because there are

four models) and significance level for exceedance probability (0.95 because of the standard

statistical criterion to reject random distributions).

(TIF)

S6 Fig. Bayesian model comparison results for an extended model space including the

recency model. All parameters have been fitted on choice data, separately for the three experi-

ments. Models correspond to the different hypotheses (H0 to H2.1). The H1 primacy model in

the plot is the same as in the main figure, with a bias parameter bounded to be positive, thus

capturing primacy effects. The H1 recency model corresponds to model H1 with a bias param-

eter bounded to be negative. Exceedance probability is the likelihood that the considered

model is more represented than the others, in the population from which participants were

recruited. Dash lines represent chance level for expected frequency (0.25 because there are

four models) and significance level for exceedance probability (0.95 because of the standard

statistical criterion to reject random distributions).

(TIF)

S1 Table. Fitted computational parameters (posterior mean ± SEM).

(DOCX)
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34. Domenech P, Redouté J, Koechlin E, Dreher JC. The Neuro-Computational Architecture of Value-

Based Selection in the Human Brain. Cereb Cortex. 2018; 28(2):585–601. https://doi.org/10.1093/

cercor/bhw396 PMID: 28057725
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