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O P T I C S

Distortion matrix concept for deep optical  
imaging in scattering media
Amaury Badon1, Victor Barolle1, Kristina Irsch2,3, A. Claude Boccara1,  
Mathias Fink1, Alexandre Aubry1*

In optical imaging, light propagation is affected by the inhomogeneities of the medium. Sample-induced aberrations 
and multiple scattering can strongly degrade the image resolution and contrast. On the basis of a dynamic correction 
of the incident and/or reflected wavefronts, adaptive optics has been used to compensate for those aberrations. 
However, it only applies to spatially invariant aberrations or to thin aberrating layers. Here, we propose a global 
and noninvasive approach based on the distortion matrix concept. This matrix basically connects any focusing 
point of the image with the distorted part of its wavefront in reflection. A singular value decomposition of the 
distortion matrix allows to correct for high-order aberrations and forward multiple scattering over multiple 
isoplanatic modes. Proof-of-concept experiments are performed through biological tissues including a turbid 
cornea. We demonstrate a Strehl ratio enhancement up to 2500 and recover a diffraction-limited resolution 
until a depth of 10 scattering mean free paths.

INTRODUCTION
For decades, optical microscopy has been a vital tool in biomedical 
research to observe live specimens with a submicrometer resolution 
and with minimal invasiveness. Yet, imaging conditions required 
for these exquisite performances are rarely gathered. For instance, 
both the resolution and the contrast drop as the imaging depth in-
creases inside a biological tissue. This observation is a consequence 
of the spatial variations of the specimen’s refractive index that 
distort the wavefront of both the incoming and outgoing light. 
When these variations exhibit low spatial frequencies, we use the 
term aberrations while scattering describes the effect of the higher 
spatial variations. Both these effects limit the use of conventional 
microscopy to shallow depths or to semitransparent specimens. 
Imaging deeper requires to simultaneously compensate for these 
detrimental phenomena.

To mitigate the aberrations induced by the specimen, the concept 
of adaptive optics (AO) has been adapted to microscopy from astronomy 
where it was developed decades ago (1, 2). Astronomers faced the 
same impediment as fluctuations in the atmosphere severely distort 
the wavefront of the light coming from stars and prevent to obtain 
a diffraction-limited stellar image. Astronomers then proposed to 
measure these distortions using a wavefront sensor and to counter-
balance it with a dynamic programmable element such as deformable 
mirrors. Following this concept and the development of deformable 
mirrors with increasing number of elements, AO already demon-
strated its benefits in various imaging techniques such as digital holog-
raphy (3, 4), confocal microscopy (5, 6), two-photon microscopy 
(7–10), or optical coherence tomography (OCT) (11, 12). Unfortunately, 
AO methods usually require a guide star or are based on an image 
sharpness metric. In addition, they are limited to a small region 
called the isoplanatic patch (IP), the area over which the aberrations 
can be considered as spatially invariant. Therefore, there is a need to 

extend the field of view of AO methods by tackling the case of multiple 
IPs. This issue is particularly decisive for deep imaging where IP 
size becomes extremely tiny: <10 m beyond a depth of 1 mm (13). 
Note that multiconjugate AO can deal with multiple IPs, but this is 
at the price of a much more complex optical setup (14–16).

On the other hand, multiple scattering was long thought to be 
too complex to be compensated. For deep imaging, a gating mecha-
nism is generally used to reject the multiply scattered photons and 
capture only the ballistic light. This gating can be spatial (17) as in 
confocal microscopy or temporal (18) as in OCT, but they are still 
depth limited as they rely on the exponentially attenuated ballistic 
light. In a pioneering experiment, Vellekoop and Mosk (19) demon-
strated in 2007 the possibility to restore a diffraction-limited spot 
through a scattering medium by properly shaping the incoming 
light. Subsequently, a matrix approach of light propagation through 
complex media was developed (20). Relying on the measurement of 
the Green’s functions between each pixel of a spatial light modulator 
(SLM) and of a charge-coupled device (CCD) camera across a scatter-
ing medium, the experimental access to the transmission matrix 
allows taking advantage of multiple scattering for optimal light 
focusing (20) and communication across a diffusive layer (21, 22) or 
a multimode fiber (23, 24). However, a transmission configuration is 
not adapted to noninvasive and/or in vivo imaging of biological 
media. An epidetection geometry should thus be considered (25). 
During the last few years, the reflection matrix R had been investigated 
to perform selective focusing/detection (26, 27) or energy delivery 
(28, 29) through strongly scattering media. With regard to the specific 
purpose of imaging, the matrix approach has been recently used to 
implement AO tools in postprocessing. The single scattering com-
ponent of the reflected wave field through biological tissues has been 
enhanced in depth by compensating for high-order aberrations (30, 31).

Here, we propose to go beyond a matrix approach of AO by in-
troducing a novel operator: the so-called distortion matrix D. Un-
like previous works that investigated R either in the focal plane (27) 
or the pupil plane (26, 30, 31), we here consider the medium response 
between those dual bases (32, 33). Unlike R, the D-matrix does not 
consider the reflected wave field as a building block but its deviation 
from an ideal wavefront that would be obtained in the absence of 
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aberrations and without multiple scattering. This operation may 
seem trivial but it markedly highlights the input/output correlations 
of the wave field. While the canonical reflection matrix exhibits a 
random feature in a turbid medium, the distortion matrix displays 
strong field-field correlations over each IP. Thanks to this new 
operator, some relevant results of information theory can thus be 
fruitfully applied to optical imaging. A singular value decomposi-
tion (SVD) of D allows a partition of the field of illumination (FOI) 
into orthogonal isoplanatic modes (IMs) and extracts the associated 
wavefront distortion in the pupil plane. The Shannon entropy ℋ of 
the singular values allows one to define the effective rank of the 
imaging problem. A combination of the ℋ first eigenstates yields an 
image of the focal plane with an excellent contrast and a diffraction-
limited resolution as if the medium ahead was made perfectly transparent.

Several experiments with an increasing order of complexity are 
presented to demonstrate the benefits of the D-matrix for optical 
imaging in turbid media. For the sake of simplicity, the first experi-
ment involves the imaging of a single IP through a thick layer of 
biological tissues. This configuration allows us to lay down the 
D-matrix concept and highlight the physics behind it. Then, a second 
proof-of-concept experiment considers a thin but strong aberrating 
layer introduced between the microscope objective (MO) and a 
resolution target. This imaging configuration involves a spatially 
varying aberration across the FOI (i.e., several IPs). Last, we de-
scribe an imaging experiment through a turbid nonhuman primate 
cornea that induces high-order aberrations (including forward multiple 
scattering) and a strong diffuse multiple scattering background. 
The D-matrix decomposes the imaging problem into a set of IMs 
whose degree of complexity increases with their rank (i.e., smaller 
spatial extent in the focal plane and higher phase distortion in the 
pupil plane). This last experiment demonstrates the ability of our 
matrix approach to discriminate between forward multiple scatter-
ing paths, which can be taken advantage of for imaging, and the 
diffuse background, which shall be removed from the final image.

RESULTS
Time-gated reflection matrix
The D-matrix concept first relies on the measurement of the time-
gated reflection matrix R from the scattering sample. Until now, 
optical transmission/reflection matrices have always been investi-
gated either in the k-space (plane-wave basis) (20, 30) or in the real 
space (focused basis) (27). Here, the R-matrix will be defined between 
those dual bases. This choice is dictated by our will to go beyond the 
study of restricted isoplanatic fields of view and tackle space-variant 
aberrations. Waves produced by nearby points inside a complex medium 
can generate highly correlated, but tilted, random speckle patterns in 
the far field (34). In a focused basis, this corresponds to a spatially 
invariant point spread function (PSF) over an area called the IP. As we 
will see, only a dual-basis matrix can highlight these angular correla-
tions that persist over a restricted spatial domain in the focal plane.

The experimental setup has already been described in a previous 
work (27) and is displayed in fig. S1. The experimental procedure is 
detailed in Materials and Methods. In a few words, the sample is 
illuminated through a MO by a set of focused waves (input focusing 
basis; see Fig. 1A). For each illumination, the amplitude and phase 
of the reflected wave field is recorded by phase-shifting interferometry 
on a CCD camera placed in the pupil plane (output pupil basis). A 
coherent time gating is also applied to select ballistic and snake photons 

while eliminating a (large) part of the diffuse photons. A set of time-
gated reflection coefficients, R(uout, rin), is lastly measured between 
each virtual source in the focal plane identified by the vector rin at 
the input and each point of the pupil plane identified by the vector 
uout at the output. These coefficients form the reflection matrix R 
(see Fig. 1D).

The first imaging problem that we consider in this paper deals 
with an experiment through biological tissues (see Fig. 1A). A positive 
U.S. Air Force (USAF) 1951 resolution target placed behind an 
800-m-thick rat intestinal tissue is imaged through an immersion 
objective [40×, NA (numerical aperture), 0.8; Nikon]. The rat intes-
tinal tissue displays a refractive index n ∼ 1.4, a scattering mean free 
path 𝓁s of the order of 150 m and an anisotropy factor g ≃ 0.9 (35). 
The reflection matrix R is measured over a FOI  ×  = 41 × 41 m2 
with Nin = 729 input wavefronts, a spatial sampling rin = 1.6 m, 
and an input pupil aperture ​​D​ in​​ × ​D​ in​​ = 1.7 × 1.7  ​mm​​ 2​​. This 
reduced pupil diameter corresponds to the size of the illumination 
beam (see fig. S2). At the output, the wave field is recorded over a 
pupil size of ​​D​ out​​ × ​D​ out​​ = 4.5 × 4.5  ​mm​​ 2​​ with Nout = 6084 pixels 
and a spatial sampling uout = 68 m. The corresponding field of 
view is 60 × 60 m2. This experimental configuration corresponds 
to an imaging condition for which time gating guarantees that the 
reflection matrix contains a fraction of ballistic or snake photons 
reflected by the resolution target (see fig. S3). However, aberrations are 
so intense that the full-field image of the resolution target is dominated 
by the diffuse multiple scattering background (see Fig. 1A4).

Figure 1B1 displays examples of reflected wave fields for several 
virtual sources rin. Each wave field is stored along a column vector 
and forms the reflection matrix R = [R(uout, rin)]. R exhibits a 
four-dimensional (4D) structure but is concatenated both at the 
input and output to be displayed in 2D (see fig. S4). The phase of R 
is displayed in Fig. 1C1. Its spatial and angular correlations in the 
focal and pupil planes are displayed in Fig. 1 (C2 and C3, respectively). 
As it could be conjectured from the column vectors displayed in 
Fig. 1B1, the matrix R only displays short-range correlations. This is 
quite unexpected as the object to be imaged is deterministic and 
contained in a single IP. To understand this seemingly randomness of R 
and reveal its hidden correlations, we now investigate its theoretical ex-
pression. The reflection matrix can be expressed as follows (see fig. S5)

	​ R = T​H​ in​​​	 (1)

or, in terms of matrix coefficients
	​ R(​u​ out​​, ​r​ in​​ ) = ∫ T(​u​ out​​, r ) γ(r ) ​H​ in​​(r, ​r​ in​​ ) dr​	 (2)

Hin = [Hin(r, rin)] is the input focusing matrix. Its columns are 
none other than the input focal spots centered around each focus-
ing point rin (see fig. S5). Under a single scattering assumption,  is 
a diagonal matrix whose elements (r) map the reflectivity of the 
object in the focal planes. This object is here assumed to cover the 
whole FOI. T is the transmission matrix between the focal and pupil 
planes (see fig. S5). Its elements T(uout, r) describe the propagation 
of the wave field from a point r in the MO focal plane to a detector 
uout in the output pupil plane. Theoretically, the correlation length 
rP of the reflected wave field in the pupil plane scales as f/ (see 
section S1), while its correlation length rF in the focal plane is dictated 
by the coherence length of the input focal spots, that is to say, the 
input diffraction limit, ​​​in​ 0 ​ ∼ f / ​D​ in​​​, in a strong aberration regime 
(see section S2). This accounts for the spatial incoherence exhibited 
by R both at its input (Fig. 1C2) and output (Fig. 1C3), respectively. 
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In the next section, we show how to reveal the hidden correlations 
in R to, subsequently, extract the transmission matrix T.

Principle of the distortion matrix
The holy grail for imaging is indeed to have access to this transmission 
matrix T. Its inversion or pseudoinversion would actually allow to 
reconstruct a reliable 3D image of the scattering medium, thereby 
overcoming aberration and multiple scattering effects generated by 
the medium itself. However, in most imaging configurations, the 
true transmission matrix T is not accessible as it would require an 
invasive measurement. The common assumption in wave imaging 
is thus to consider a homogeneous medium model. The free space 
transmission matrix T0 should then be considered. Its elements 
T0(uout, r) are simply given by

	​​​ T​ 0​​(​u​ out​​, ​r​ in​​ ) = ​ 1 ─ jλf ​ exp​[​​j ​ 2π ─ λf ​ ​u​ out​​ . r​]​​​​	 (3)

where f is the MO’s focal length and  the central wavelength.

In this work, we will use T0 as a reference matrix. The columns 
of T0 are actually the reflected wave fields that would be obtained in 
an ideal case, i.e., without aberrations. In the Fourier space, the 
phase of the complex wave field, or wavefront, is particularly ade-
quate to study the effect of aberrations. Figure 1B compares few ex-
amples of reflected wavefronts (columns of R; see Fig. 1B1) with 
the corresponding ideal wavefronts (columns of T0; see Fig. 1B2). 
While the latter ones display plane-wave fringes whose orientation 
and spatial frequency are related to the position rin of the input 
focusing point, the recorded wavefronts consist in a stack of this 
geometrical component with a distorted phase component induced 
by the biological tissues. The key idea of this paper is to isolate the 
latter contribution by subtracting the recorded wavefront by its ideal 
counterpart. Mathematically, this operation can be expressed as a 
Hadamard product between R and ​​T​0​ * ​​ (where * stands for phase 
conjugate)

	​ D  =  R ∘ ​T​0​ * ​​	 (4)
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Fig. 1. Principle of the distortion matrix approach. (A) A resolution target (USAF 1951) is positioned underneath an 800-m-thick sample of rat intestine (A1). In scanning 
microscopy, raster scanning in the focal plane is obtained using a set of plane-wave illuminations in the input pupil (A2). In the presence of sample-induced aberrations, 
the detected intensity will exhibit a much larger extent compared to the ideal PSF (A3). The resulting full-field image displays a low contrast and a reduced resolution (A4). 
(B) In the output pupil plane, the phase of the reflected wave field (B1) can be split into a diffraction (B2) and a distortion (B3) term. (C and D) The reflected distorted wave 
fields can be stored along column vectors to form the reflection and distortion matrices, R and D, respectively. The phase of R and D is displayed in (C1) and (D1), respec-
tively. The autocorrelations of the complex reflected/distorted wave fields are computed in the focal (C2/D2; see section S2) and in the pupil (C3/D3; see section S1) 
planes, both in dB. All the data shown here are extracted from the rat intestine imaging experiment. Photo credit: Amaury Badon, CNRS. NA, numerical aperture.
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which, in terms of matrix coefficients, can be written as

	​ D(​u​ out​​, ​r​ in​​ ) = R(​u​ out​​, ​r​ in​​ ) × ​T​0​ * ​(​u​ out​​, ​r​ in​​)​.	 (5)

The matrix D = [D(uout, rin)] is the so-called distortion matrix. 
Removing the geometrical component of the reflected wave field in 
the pupil plane as done in Eq. 4 amounts to a change of reference 
frame. While the original reflection matrix is recorded in the object’s 
frame (static object scanned by the input focusing beam; see Fig. 2A), 
the D-matrix is a reflection matrix in the frame of the input focus-
ing beam (moving object illuminated by a static beam; see Fig. 2B). 
Physically, this corresponds to a descan of the reflected light as per-
formed in confocal microscopy.

The D-matrix deduced from R is displayed in Fig. 1D1. Compared 
to R (Fig. 1C1), it exhibits long-range correlations both in the pupil 
(Fig. 1D3) and focal (Fig. 1D2) planes, respectively. On the one hand, 
by virtue of the van Cittert Zernike theorem (36), the coherence 
length dP of the distorted wave field in the pupil plane scales as 
f/in, with in being the spatial extension of the incoherent input 
focal spot ∣Hin∣2 (see section S2). On the other hand, its correlation 
length dF in the focal plane corresponds to the size 𝓁c of the IP (see 
section S2). This is illustrated by examples of distorted wave fields 
displayed in Fig. 1B3. While the original reflected wavefronts did 
not exhibit any similarity, the distorted component displays similar 
Fresnel rings whatever the focusing point rin. The D-matrix thus 
reveals input/output correlations of the wave field that were originally 
completely hidden in the original R-matrix (Fig. 1C).

SVD of the distortion matrix
The next step is to extract and take advantage of those field-field 
correlations for imaging. To that aim, an SVD of the distortion 
matrix is performed. It consists in writing D as follows

	​ D = ​UΣV​​ †​​	 (6)

or, in terms of matrix coefficients

	​ D(​u​ out​​, ​r​ in​​ ) =​ ∑ 
p=1

​ 
​N​ in​​

 ​​ ​​ p​​ ​U​ p​​(​u​ out​​ ) ​V​p​ * ​(​r​ in​​)​	 (7)

Σ is a diagonal matrix containing the real positive singular values i 
in a decreasing order 1 > 2 > . . > Nin. U and V are unitary 
matrices whose columns, Up = [Up(uout)] and Vp = [Vp(rin)], corre-
spond to the output and input singular vectors, respectively. The 
symbol † stands for transpose conjugate. Mathematically, the SVD 
extracts a signal subspace associated with the largest singular values 
and characterized by an important correlation between its lines 
and/or columns. In the D-matrix, these correlations are induced by 
the isoplanicity of the input PSF Hin. The single scattering and forward 
multiple scattering contributions are expected to lie along the signal 
subspace since they exhibit a spatial invariance over each IP (37). 
On the contrary, the diffuse photons induced by the scattering layer 
ahead of the focal plane give rise to a fully incoherent wave field that 
will be equally distributed over all the eigenstates of D (38). Hence, 
the pollution of the signal subspace by the multiple scattering noise 
scales as the inverse of the number of independent input focusing 
points mapping each IP, ​​(​ℓ​ c​​ / ​​in​ 0 ​)​​ 

2
​​. A large IP enables the SVD to 

drastically decrease the multiple-to-single scattering ratio.
To know which of the input or output correlations will dictate 

the SVD of D, relevant parameters are the numbers of independent 
speckle grains, MD and ND, exhibited by D at its input and output, 
respectively. The correlation degree of the distorted wave field in 
each plane is actually inversely proportional to the corresponding 
number of independent speckle grains. In the focal plane, MD is given 
by the squared ratio between the FOI  and the coherence length dF 
of the distorted wave field in the focal plane

	​​ M​ D​​ = ​( / ​d​ F​​)​​ 2.​​	 (8)

dF is the minimum between the isoplanatic length 𝓁c and the 
characteristic fluctuation length 𝓁 of the object’s reflectivity (see 
section S2). In the pupil plane, the number ND of independent 
speckle grains scales as (see section S1)

	​​ N​ D​​ = ​(​​ in​​ / ​​out​ 
0 ​ )​​ 

2
​​	 (9)

where 0
out is the diffraction-limited resolution at the output (Eq. 13). The 

domination of input correlations implies the following condition
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Fig. 2. Extracting the aberration transmittance from the distortion matrix D. (A) The recording of the R-matrix consists in scanning the objects with a moving input 
focusing beam. (B) The removal of the geometric component in each reflected wavefront (Eq. 4) amounts to recenter each incident focal spot at the origin. The D-matrix 
is equivalent to the reflection matrix for a moving object. (C) The SVD of D leads to a coherent sum of the distorted wavefronts in the pupil plane. A coherent reflector is 
virtually synthesized in the focal plane, and the corresponding wavefront emerges along the output singular vector U1. The corresponding image of the object is provided 
by the first input singular vector V1, but its resolution is dictated by the width in of the input focusing beam. (D) A normalization of U1 in the pupil plane makes the virtual 
scatterer point like. The corresponding input singular vector ​​​̂  V​​ 1​​​ yields a diffraction-limited image of the object in the focal plane.
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	​​ M​ D​​  < ​ N​ D​​​	 (10)

If 𝓁 > 𝓁c, then the last equation can be translated as follows: The 
number MD = (/𝓁c)2 of IPs supported by the FOI should be smaller 
than the number ND of resolution cells that map each input focus-
ing beam (Eq. 9). As we will see, this strong aberration condition is 
fulfilled in the experiments presented in this work.

When input correlations dominate, the effective rank of the 
signal subspace then corresponds to the number of independent 
spatial modes required to map the distorted wave field in the focal 
plane, i.e., the number MD of IPs. As shown in section S3, the SVD 
decomposes the FOI onto a set of orthonormal IMs defined by the 
input singular vectors Vp. The corresponding output singular vectors 
Up yield the associated aberration phase laws in the pupil plane. 
Their coherent combination can then lead to the retrieval of the 
transmission matrix T. In the next sections, we will check all these 
promising properties of D experimentally and see how we can take 
advantage of it for deep imaging.

Imaging over a single IP
The reflection and distortion matrices corresponding to the imaging 
experiment through a thick layer of rat intestine are shown in Fig. 1 
(C1 and D1, respectively). The long-range spatial correlations ex-
hibited by D (Fig. 1D2) seem to indicate that the isoplanatic hypothesis is 
close to being fulfilled in this experiment. The SVD of D confirms 
this intuition by exhibiting a predominant eigenstate. The correspond-
ing singular vectors V1 and U1 are displayed in Fig. 3. The modulus 
of V1 displays a contrasted image of the resolution target (Fig. 3B), 
but its resolution is limited by the low spatial sampling of the illumina-
tion scheme. The output singular vector U1 corresponds to the wave-
front induced by a virtual coherent reflector of scattering distribution 
∣Hin(r − rin)∣2, hence located on the optical axis in the focal plane 
(see Fig. 2C). This virtual scatterer results from a coherent summa-
tion of the descanned input focal spots through the SVD process 
(see section S3). Its phase is made of Fresnel rings mainly induced 
by the irregular surface of the sample and its index mismatch with 
the surrounding fluid (Fig. 3D). Its finite support is explained by the 
finite size in of the coherent reflector (Fig. 3C). To make this virtual 
scatterer point like and retrieve a diffraction-limited image (Fig. 2D), 
a normalized vector ​​​   U​​ 1​​​ should be considered, such that ​​​   U ​​ 1​​(​u​ out​​ ) = ​
U​ 1​​(​u​ out​​ ) / ∣ ​ U​ 1​​(​u​ out​​ ) ∣​. ​​​   U​​ 1​​​ can be used to build an estimator ​​  T​​ of the 
transmission matrix between the pupil and focal planes, such that 
its coefficients read

	​​ ​   T ​​ p​​(​u​ out​​, ​r​ in​​ ) = ​​   U ​​ p​​(​u​ out​​ ) ​T​ 0​​(​u​ out​​, ​r​ in​​)​	 (11)

with p = 1 in the present case. This estimator can be used to project 
the recorded matrix R in the focal basis both at input and output, 
such that

	​​ R​ p​​ = ​​̂  T​​p​ 
†
 ​ R​	 (12)

The coefficients R1(rout, rin) are the impulse responses between 
each input focusing point rin and each output imaging point rout. In 
other words, once reshaped in 2D, each column of R1 yields the PSF 
of the imaging system at the input focusing point rin. The PSF for an 
input focusing point on the optical axis (rin = 0) is displayed in 
Fig. 3F. For the sake of comparison, the corresponding initial focal 
spot is displayed in Fig. 3E. The latter one is extracted from the 
focused matrix R0 deduced from R using ​​T​ 0​​ : ​R​ 0​​ = ​T​0​ †​ R​. While the 

initial PSF exhibits a random speckle pattern (Fig. 3E), the PSF after 
correction shows a nearly diffraction-limited focal spot with almost 
all the energy concentrated in the vicinity of the incident focusing 
point (Fig. 3F). The apparent width of this PSF yields an estimation 
of the local output resolution out at rin. Here, out goes from 20 m 
on the raw data (Fig. 3E) to 1.2 m after the matrix correction 
(Fig. 3F). This value should be compared to the diffraction-limited 
resolution

	​​ ​out​ 
0  ​ = ​   ─ 2 ​NA​ out​​

 ​​	 (13)

with ​​NA​ out​​ = ​D​ out​​ / (2f ) = 0.45​ being the output NA. The numerical 
application of this formula yields ​​​out​ 0 ​  ≃ 0.9 m​ in our experimental 
configuration. The mismatch between out and ​​​out​ 

0 ​​  comes from the 
noisy aspect of U1 at large spatial frequencies (see Fig. 3D), which 
prevents from an efficient aberration compensation over the whole NA.

If the spatial sampling was equivalent at input and output, then 
a confocal image could be deduced from the diagonal elements (rin = 
rout) of R0 and R1 (27). Here, as a sparse illumination scheme has 
been used ​( ​r​ in​​ > ​​out​ 

0 ​ )​, a full-field image is considered and obtained 
by summing R over its input elements

	​​ ℱ​ p​​(​r​ out​​ ) = ​∑ 
​r​ in​​

​ ​​ ∣ ​R​ p​​(​r​ out​​, ​r​ in​​ )∣​	 (14)

with p = 0 or 1 here. The corresponding images ℱ0 and ℱ1 are dis-
played in Fig. 3 (G and H, respectively). While the patterns of the 
resolution target are hardly visible on the raw image, the D-matrix 
approach provides a highly contrasted image of the target. To quantify 
this gain in image quality, the Strehl ratio is a relevant parameter 
(39). It is defined as the ratio of the PSF peak intensity with and 
without aberration. Equivalently, it can also be defined in the pupil 
plane as the squared magnitude of the mean aberration phase factor. 
Its initial value ​S​0 can thus be directly derived from the D-matrix 
coefficients

	​​ S​ 0 ​​= ​∣〈exp ( jarg { D(​u​ out​​, ​r​ in​​ ) ​V​ 1​​(​r​ in​​ ) }) 〉∣​​ 2​​	 (15)

where the symbol 〈⋯〉 denotes an average over uout and rin. In the 
present case, the original Strehl ratio is S0 = 8 × 10−5. This experi-
ment corresponds to imaging conditions far from being in the range 
of operation of conventional AO and explains why the patterns of 
the resolution target are so hardly visible on the raw image (Fig. 3G). 
The Strehl ratio ​S​1 after the U1 correction can be directly extracted 
from the SVD of D (Eq. 7)

	​​ S​ 1​​ = ​∣〈exp (jarg { ​U​1​ * ​(​u​ out​​ ) D(​u​ out​​, ​r​ in​​ ) ​V​ 1​​(​r​ in​​ ) }) 〉∣​​ 
2
​​	 (16)

The D-matrix correction leads to a Strehl ratio S1 = 3 × 10−3. 
However, Eq. 16 gives the same weight to bright and dark areas of 
the resolution target in the focal and pupil planes. One possibility is 
to consider a weighted average instead of Eq. 16 by the object reflec-
tivity ∣V1(rin)∣2. This weighted Strehl ratio ​​S​ 1​ ′ ​​ then reaches the value 
of 1.1 × 10−2. Such a Strehl ratio value is relatively low, but it should 
be kept in mind that the distortion matrix is associated with a PSF 
in reflection that convolves the transmit and receives PSFs. Our 
measurement of the Strehl ratio is thus degraded by (i) the sub-
sistence of input aberrations and (ii) the presence of a diffuse multiple 
scattering background that acts here as an additive noise. Note, 
however, that the gain in terms of Strehl ratio is absolute; this is the 
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relevant quantity to assess the benefit of our matrix approach. This 
gain here is spectacular ​(​S​ 1​ ′ ​ / ​S​ 0​ ′ ​ ∼ 140)​ and accounts for the satisfying 
image of the resolution target obtained after the D-matrix correc-
tion (see Fig. 3H). Figure S3 shows how this drastic improvement of 
the Strehl ratio allows us to push back the imaging depth limit from 
450 m to almost 1 mm.

This first experiment demonstrates the benefit of the D-matrix 
in the simple case of an FOI containing a single IP. In the next 
section, the case of multiple IPs is tackled.

Imaging over multiple IPs
The first element of the group 6 in the resolution target is now im-
aged through an aberrating layer consisting in a rough plastic sheet 
placed d = 1 mm above the resolution target (USAF 1951) (see 
Fig. 4A). The reflection matrix R is measured over a FOI of 57 × 
57 m2 with Nin = 441 input wavefronts, a spatial sampling rin = 
2.85 m, and an input pupil aperture ​​D​ in​​ × ​D​ in​​ = 1.3 × 1.3 ​mm​​ 2​​. 
At the output, the wave field is recorded over a pupil size of ​​
D​ out​​ × ​D​ out​​ = 2 × 2 ​mm​​ 2​​ with Nout = 12,321 pixels and a spatial 
sampling uout = 18 m.

The full-field image F0 (Eq. 14) and an example of PSF (Eq. 12) 
are displayed in Fig. 4 (A and B, respectively). The PSF is strongly 
degraded with a characteristic focal spot dimension out ∼ 45 m. 
This PSF dimension allows an estimation of the coherence length 𝓁c 
of the aberrating layer. Under a thin phase screen model (37), the IP 
dimension 𝓁c coincides with the coherence length of the aberration 
transmittance. It turns out that the PSF width is inversely propor-
tional to 𝓁c in this experiment: out ∼ d/𝓁c. The IP size and the 
number of IPs supported by the FOI can be deduced from the PSF 
width : 𝓁c ∼ 18 m and MD ∼ (/𝓁c)2 ∼ 10.

A D-matrix is deduced from R (Eq. 4). Its analysis leads to the 
following estimation of the initial Strehl ratio: ​​S​ 0​ ′ ​ = 1.6 × ​10​​ −6​​ (Eq. 15). 
This particularly strong aberration level accounts for the highly 
blurred aspect of the full-field image in Fig. 4A. This experimental 
situation is thus particularly extreme, even almost hopeless, for a 
successful imaging of the resolution target. Yet, the SVD of D will 
provide the solution.

Figure 4D displays the histogram of the normalized singular 
values ​​​   σ​​ p​​  = ​ σ​ p​​ / ​∑ i=1​ ​N​ in​​ ​​ ​σ​ i​​​. If recorded data were not corrupted by 
experimental noise, then the matrix would be of effective rank MD. 
We could use all the eigenstates of D associated with nonzero singular 
values to retrieve an image of the object. In Fig. 4D, only few singular 
values seem to emerge from the noise background. Hence, it is dif-
ficult to determine the number of eigenstates that we need to 
consider to properly reconstruct an image of the object. This issue 
can be circumvented by computing the Shannon entropy H of the 
singular values (40, 41), such that

	​ ℋ(​​   ​​ i​​ ) = − ​ ∑ 
i=1

​ 
​N​ in​​

 ​​ ​​   ​​ i​​ ​log​ 2​​(​​   ​​ i​​)​	 (17)

Shannon entropy delivers the maximally noncommittal dataset at a 
given signal-to-noise ratio, that is to say, the most information with 
the least artifact. The Shannon entropy can be used as an indica-
tor of how many eigenstates are needed to build an adequate image 
of the object without being affected by experimental noise.

The singular values of Fig. 4D have an entropy H≃ 8.4. Hence, 
only the eight first singular states shall be considered. Figure 4G 
displays the phase of the four first singular vectors Up in the pupil 
plane. They display phase distortions whose typical coherence 
length uc scales as f𝓁c/d ∼ 100 m. The phase conjugation of these 
singular vectors should compensate for the detrimental effect of the 
aberrating layer in different parts of the FOI. A set of focused reflec-
tion matrices Rp can be deduced (Eq. 12). Figure 4F displays an 
example of corrected PSF extracted from a column of R1. Its com-
parison with the original PSF in Fig. 4C shows how the phase con-
jugation of U1 allows one to compensate for the aberrations at this 
incident focusing point. On the one hand, the PSF width is nar-
rowed by a factor of 20, going from out ∼ 45 m to 2.25 m. The 
latter value should be compared with the diffraction-limited resolu-
tion ​​​out​ 

0 ​  ∼ 2 m​ (Eq. 13) in our experimental conditions. The Strehl 
ratio is increased by a factor of 2.2 ×103 to reach the final value 
​​S​ 1​ ′ ​ = 3.5 × ​10​​ −3​​ (Eq. 16). Again, this value of the Strehl ratio is 
probably underestimated because of input aberrations and multi-
ple scattering.
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Fig. 3. Imaging through a thick layer of rat intestinal tissue. (A) Experimental configuration. (B and C) Modulus of the first input singular vector V1 of D in the focal 
plane. (D) Modulus and phase of the first output singular vector Up in the pupil plane. (E) Example of PSF deduced from the central column (rin = 0) of the raw focused 
matrix R0. (F) Corresponding corrected PSF deduced from the central column of the focused matrix R1 (Eq. 12). (G and H) Comparison of the full-field images ℱ0 and ℱ1 
(Eq. 14) before and after aberration correction. Photo credit: Amaury Badon, CNRS.
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Confocal images can be deduced from the focused reflection 
matrices Rp

	​​ ℐ​ p​​(​r​ out​​ ) = ​∑ 
​r​ in​​

​ ​​ ∣ ​ R​ p​​(​r​ out​​, ​r​ in​​ ) ∣ ​ e​​ −​‖​r​ out​​−​r​ in​​‖​​ 2​/2​l​p​ 2 ​​​	 (18)

where lp is the aperture of the numerical confocal pinhole (27). This 
finite aperture enables an average of the output image over neigh-
bor incident focusing points to smooth out the sparse illuminations. 
Figure 4H displays the confocal images Ip for lp = 2 m. For a spec-
ular object such as a resolution target, the SVD has indeed the prop-
erty of decomposing into a set of orthogonal IMs of spatial period 𝓁c 
(see section S3). Their shape depends on the autocorrelation function 
of the aberrating phase screen. A general trend is that the spatial 
frequency content of the eigenvectors increases with their rank. If 
this function presents an exponential or sinc model, then the FOI 
will be spatially decomposed into sinusoidal wave functions (42) 
analogous to optical fiber modes or to prolate spheroidal wave func-
tions (43), respectively. Here, the autocorrelation function of the 
aberrating phase displays a Gaussian-like shape. The FOI is thus 

spatially mapped onto Hermite-Gaussian wave functions analogous 
to laser cavity modes (44).

The normalized pupil singular vectors ​​​   U​​ p​​​ yield a set of orthogonal 
phase transmittances that map aberrations onto each IM. A coherent 
combination of these singular vectors should lead, in principle, to a 
satisfying estimator of the transmission matrix (see section S3)

	​​   T​ = ​  ∑ 
p=1

​ 
ℋ(​​   ​​ i​​)

​​ ​​   U​​ p​​ ∘ ​T​ 0​​​	 (19)

In practice, a final image I of the resolution target can be obtained 
by summing the previous IMs Ip

	​ ℐ(​r​ out​​ ) =​  ∑ 
p=1

​ 
ℋ(​​   ​​ i​​)

​​ ​ℐ​ p​​(​r​ out​​)​	 (20)

The final result is displayed in Fig. 4E. The comparison with the 
initial full-field image (Fig. 4B) illustrates the benefit of the D-matrix 
approach. Spatially varying aberrations are overcome, and a con-
trasted image of the resolution target is recovered over the whole 
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Fig. 4. Matrix imaging over multiple IPs. (A) Schematic of the experiment. A resolution target (USAF 1951) is positioned at a distance d = 1 mm underneath a rough 
plastic film (see inset). (B) Original full-field image ℱ0 (Eq. 14). (C) Example of PSF deduced from a column of the raw focused matrix R0. (D) Plot of the normalized singular 
values ​​​ ̃ ​​ ​​​ of D. The red circles correspond to the eight first singular values (signal subspace), while the noisy singular values are displayed in blue. (E) Matrix image con-
structed from the eight first eigenstates of D (Eq. 20). (F) Example of PSF deduced from a column of the corrected focused matrix R1. (G) Phase of the four first singular 
vectors Up. (H) Confocal images deduced from the focused reflection matrices Rp (Eq. 18). Photo credit: Amaury Badon, CNRS.
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FOI. This experiment demonstrates how the D-matrix enables a 
decomposition of the FOI into several IMs and a mapping of each 
of them onto orthonormal distorted phase laws. However, this 
demonstration has been restricted to the case of a 2D aberrating 
phase layer. In the next section, we consider the case of a cornea 
with deteriorated transparency as a 3D aberrating and scattering 
structure.

Imaging through a hazy cornea
The experimental configuration is displayed in Fig. 5A. The number 
“3” of the group 5  in the resolution target is imaged through a 
700-m-thick edematous nonhuman primate cornea. The reflec-
tion matrix R is measured over an FOI of 52 × 52 m2 by means of 
Nin = 625 input wavefronts, a spatial sampling rin = 2.1 m, and an 
input pupil aperture ​​D​ in​​ × ​D​ in​​ = 1 × 1 ​mm​​ 2​​. At the output, the wave 
field is recorded over an output pupil size ​​D​ out​​ × ​D​ out​​  =  2 × 2 ​mm​​ 2​​ 
with Nout = 1296 pixels and a spatial sampling length uout = 56 m . 
Figure 5C displays the confocal image I0 deduced from R0 with 
lp = 1 m (Eq. 18). Multiple scattering and aberrations induced by 
the cornea induce a random speckle-reflected wave field that pre-
vents from imaging the resolution target. On the contrary, as we 
will see, the D-matrix analysis allows us to nicely recover the pattern 
3 of the resolution target (see Fig. 5D).

Figure 5C displays the spectrum of the singular values ​​​   σ​​ p​​​. The 
first singular value emerges from the rest of the spectrum, but it is 
difficult to know until which rank the eigenstates can be considered 
as belonging to the signal subspace. As previously, the Shannon 
entropy of the singular values yields an unambiguous answer: 
​ℋ(​​   ​​ i​​ ) = 10.7​. The 11th first singular states should thus be consid-
ered. Figure 5E displays the 1st, 6th, and 11th singular vectors Up in 
the pupil plane. The complexity of the wavefront distortion, i.e., 
their spatial frequency content, increases with the rank of the corre-
sponding singular values. The corresponding IMs Ip (Eq. 18) are 
displayed in Fig. 5F. While the first singular vector U1 allows a 
wide-field correction of low-order aberration, the higher-rank 
singular vectors are associated with high-order aberrations that are 
effective over IMs of smaller dimension. In Fig. 5D, the whole spa-
tial frequency spectrum of wavefront distortions is lastly compen-
sated by smartly combining the confocal images Ip associated with 
each singular state from D’s signal subspace (Eq. 20). The compari-
son of the initial (Fig. 5C) and final (Fig. 5D) images is spectacular 
with a Strehl ratio gain ​​S​ 1​ ′ ​ / ​S​ 0​ ′ ​ = 230​. The comparison of I (Fig. 5D) 
and I1 (see the first inset of Fig. 5F) illustrates the benefit of a matrix 
approach of aberration correction compared to conventional AO, 
since the latter one would yield I1 in theory.

This decomposition of complex aberration phase laws over a set 
of IMs opens important perspectives for aberrometry. It actually goes 
well beyond state-of-the-art techniques that basically consist in a 
simple projection over a set of Zernike polynomials. Moreover, an 
estimator of the single-to-multiple scattering ratio (SMR) can be built 
on the relative energy between the signal and noise subspaces of D

	​ SMR  = ​ 
​∑ p=1​ ℋ(​σ​ i​​) ​​ ​σ​p​ 2 ​

 ─ 
​∑ i=ℋ(​σ​ i​​)+1​ ​N​ in​​ ​​ ​ σ​p​ 2 ​

 ​​	 (21)

The SMR can actually be a quantitative biomarker of the corneal 
opacification or a quantitative measure of corneal transparency 
(45). On the basis of a fit with a recent analytical study of the SMR 
(38), the cornea thickness L can be estimated in terms of scattering 

mean free path 𝓁s: L ∼ 9𝓁s (see fig. S3). As the corneal thickness is 
known (L = 700 m), the scattering mean free path can be deduced: 
𝓁s ∼ 80 m. This value is in excellent agreement with recent ex vivo 
measurements of 𝓁s in pathological corneas with compromised 
transparency (45). The value of 9𝓁s highlights the difficult experi-
mental conditions under which the imaging of the resolution target 
has been successfully achieved.

In conclusion, this last experiment shows the potential of a 
matrix approach for eye aberrometry and turbidimetry, such as for 
improved quality control of donor tissue assessment before corneal 
transplantation (45). Of course, this method is by no means limited 
to ophthalmic applications. It can be applied to the characterization 
of any kind of biological tissues provided that we have access to the 
associated reflection matrix.

DISCUSSION
Here, we present a novel and noninvasive method for aberration 
compensation and diffraction-limited imaging at large optical 
depths. This approach relies on a new operator, the so-called distor-
tion matrix, that connects a set of input focusing points with the 
distorted component of the reflected the wave field in the pupil 
plane. This operator connecting position and spatial frequency has 
some analogy with the Wigner distribution function (46). However, 
the Wigner transform applies to a single variable of a function, i.e., 
to a single vector in a discrete formalism. Here, our position-
momentum analysis is performed between the input and output of 
a reflection matrix.

The concept of distortion matrix is to measure the backscattered 
waves in a descanned frame while scanning the sample with focused 
illuminations. This approach has some similarity with a previous AO 
approach (10) in its hardware configuration. The main difference is 
that, in this study, wavefronts are averaged by the Shack-Hartmann 
type of analysis and this AO approach thus relies on an isoplanatic 
condition. Here lies one of the strengths of our approach. While 
conventional methods estimate the aberrated wavefront for a single 
location or averaged over the whole FOI, we propose to study the 
spatial and angular correlations of the distortion operator through 
an SVD. In this manner, we demonstrate the efficient compensation 
of both low- and high-order aberrations over multiple IPs. More-
over, our approach relies on the Shannon entropy that provides an 
objective criterion to determine the number of IPs supported by the 
FOI. This is in contrast with recent works based on a far-field reflec-
tion matrix in which the FOI was arbitrarily divided into subareas 
where different corrections were applied (47, 48).

Besides aberration correction, our approach leverages the cor-
relations of the output wave field to get rid of the multiple scattering 
background. The latter contribution is actually spatially incoherent. 
It thus mainly lies along the noise subspace of the D-matrix. Thanks 
to these features, we were able to image through almost 10 scattering 
mean free paths of biological tissues, which is beyond the imaging 
depth of conventional OCT systems for these specimens (see fig. S3). 
Compared to the previously developed smart-OCT method that 
was able to detect few bright scatterers at large penetration depth 
(12𝓁s) (27), the D-matrix approach yields a direct image of the sample 
reflectivity at a diffraction-limited resolution. In addition, our 
approach enables to quantitatively estimate the amount of multiply 
scattered light. Combined with a conventional image, this parameter 
is of importance for characterization purposes.
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The distortion operator thus opens a new route toward real-time 
deep optical imaging of biological tissues. In that respect, the exper-
imental setup and procedure used in this paper are clearly perfectible. 
While postprocess operations take less than 1 min on a regular 
laptop, the main limitation in the current experimental configura-
tion is the acquisition time. In particular, the scanning illumination 
scheme was not optimized because of the SLM speed. While the use 
of a galvanometric mirror or a high-speed deformable mirror would 
drastically reduce the acquisition time at the cost of a more complex 
setup, we counteracted this issue with a sparse illumination. How-
ever, this, in return, limited the available number of angular degrees 
of freedom at the input, which prevents us from an aberration cor-
rection of the incident wave field. By optimizing the experimental 
apparatus and acquisition scheme, large reflection matrices can be 
measured in a few seconds. For instance, Yoon et al. (48) recently 
demonstrated the acquisition of a 10,000-mode matrix in 15 s with 
the same degree of control for the incident and reflected waves. In 
that case, a simultaneous correction of aberrations at the input and 
output is absolutely possible under the distortion matrix approach 
by alternatively projecting the incident and reflected wave fields in 
the focal and pupil planes. In view of 3D imaging, our approach can 
also be coupled to computational AO techniques (12) to tackle 
depth-dependent aberrations and restore a diffraction-limited reso-
lution in all directions. An alternative is to switch from a scanning 
to a full-field illumination scheme. A measurement of the coherent 
reflection matrix R can be performed under a spatially incoherent 
illumination (49, 50). This full-field configuration would allow to 
record the reflection matrix over millimetric volumes in a moderate 
acquisition time.

Last, we used a negative resolution target as the sample to be 
imaged in this work. The reason is that this highly contrasted object 
was the ideal specimen to clearly highlight the issue of multiple iso-
planatic areas. Beyond the proof-of-concept experiments presented 
in this article, a direct imaging of biological specimens over large 
penetration depth will be the next step. The assumption on which 
our method is based (Eq. 10) can easily be met in biological tissues 
since a strong aberration regime takes place beyond a few scattering 
mean free paths. Note also that, even when this condition is not 
fulfilled and far-field correlations dominate, the distortion matrix 
approach can still work but the FOI has to be beforehand subdivided 
into individual IPs (47, 51). The ability of identifying multiple IPs 

will also be particularly promising to map the specimen-induced 
aberration and the SMR. Aside from aberrometry and/or turbidimetry, 
future in vivo implementations of our approach have implications 
beyond that of ocular media characterization, most notably for 
imaging through nontransparent ocular media (e.g., retinal imaging 
through a turbid cornea or through cataract opacities) (52).

In summary, we have introduced, in this work, a new operator, 
the so-called distortion matrix D, which reveals the hidden cor-
relations of the reflected wave field. This matrix results from the 
mismatch between the phase of the recorded reflection matrix and 
those of a reference matrix that would be obtained in an ideal con-
figuration. As shown in this paper, D gives access to the nonin-
vasive transmission matrix between each sensor and each voxel of 
the FOI. Then, by solving the corresponding inverse problem, an 
image of a scattering sample can be obtained as if the medium 
ahead was made transparent. The D-matrix concept is very gener-
al. It can be extended to any kind of waves and experimental con-
figurations for which a measurement of the amplitude and phase 
of the reflected wave field is possible under multiple illuminations 
(53–56). A recent work actually demonstrates the benefits of this 
concept for ultrasound imaging in a random scattering regime 
(51). This D-matrix concept thus opens a new route toward a glob-
al and noninvasive matrix approach of deep imaging in biological 
tissues.

MATERIALS AND METHODS
Experimental setup
The experimental configuration is identical to the one described in 
(27) except for the MO that had been replaced by a water immersion 
one. The following components were used in the experimental setup 
(see fig. S1): a femtosecond laser (Femtosecond Fusion 20-400: central 
wavelength, 810 nm; bandwidth, 40 nm), an SLM (PLUTO-NIR-2, 
HOLOEYE), an objective lens (40×; NA, 0.8; Nikon), and a CCD 
camera (Dalsa Pantera 1M60) with a dynamic range of 60 dB. The 
incident light power in the back pupil plane of the MO was 10 mW 
in the experiment. Thus, the radiant flux was 106 W/cm2 at the focal 
spot in free space. For each input wavefront, the complex-reflected 
wave field was extracted from four intensity measurements using 
phase-shifting interferometry. The acquisition time of the reflection 
matrix was approximately 2 min.
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Fig. 5. Imaging through corneal tissue with deteriorated transparency. (A) Schematic of the experiment. A resolution target (USAF 1951) is positioned below an 
edematous nonhuman primate cornea (see inset). (B) Plot of the normalized singular values ​​​ ̃ σ​​ p​​​ of D. The red circles correspond to the 11 first singular values (signal 
subspace), while the noisy singular values are displayed in blue. (C) Original confocal image deduced from the focused reflection matrix R0 (Eq. 18). (D) Final matrix image constructed 
from the 11 first eigenstates of D (Eq. 20). (E) Real parts of U1, U6, and U11. (F) Corresponding confocal images deduced from the focused reflection matrices Rp (Eq. 18).
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Image acquisition and data analysis
Both data acquisition and analysis were performed using MATLAB 
custom-written codes. These codes are available from the authors 
upon request.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/30/eaay7170/DC1
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