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An unprecedented outbreak of pneumonia caused by a novel coronavirus (CoV),

subsequently termed COVID-19 by the World Health Organization, emerged in Wuhan

City (China) in December 2019. Despite rigorous containment and quarantine efforts,

the incidence of COVID-19 continues to expand, causing explosive outbreaks in more

than 160 countries with waves of morbidity and fatality, leading to significant public

health problems. In the past 20 years, two additional epidemics caused by CoVs have

occurred: severe acute respiratory syndrome-CoV, which has caused a large-scale

epidemic in China and 24 other countries; and respiratory syndrome-CoV of the Middle

East in Saudi Arabia, which continues to cause sporadic cases. All of these viruses

affect the lower respiratory tract and manifest as pneumonia in humans, but the novel

SARS-Cov-2 appears to be more contagious and has spread more rapidly worldwide.

This mini-review focuses on the cellular immune response to COVID-19 in human

subjects, compared to other clinically relevant coronaviruses to evaluate its role in the

control of infection and pathogenesis and accelerate the development of a preventive

vaccine or immune therapies.
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INTRODUCTION

On December 31, 2019, a cluster of atypical pneumonia was reported in the Chinese city of
Wuhan, mediated by a novel coronavirus (CoV) called SARS-CoV-2 (1, 2). The outbreak of this
“coronavirus disease 2019” (COVID-19) has been declared a global pandemic by theWorld Health
Organization (WHO), with more than 7 million cases in early June 2020 (3, 4) with a case-fatality
rate of about 1%, as well as significant economic and social consequences. To date, no approved
antiviral agents or efficient vaccines are available against the SARS-COV-2. For these reasons,
necessary public health measures have been deployed, including worldwide quarantining of the
populations and the use of barrier gestures to stop the progression of the SARS-COV-2.

CoVs are a class of positive-sense single-stranded RNA viruses found in a wide range of
host species, including birds and mammals. Many of beta-CoV cause intestinal and respiratory
infections in animals and humans. The zoonotic source of COVID-19 is not confirmed; however,
sequencing of the SARS-CoV-2 reveals up to 80% identity with SARS-CoV and even more with
several bat CoVs (5). This similarity suggests that bats could be the key reservoir, from which the
virus was possibly directly transmitted to humans or through another unknown intermediate host.
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A phylogenetic analysis of 160 genomes of patients with COVID-
19 revealed three major variants, named A, B, and C; the A-
type being the ancestral type, firstly detected in China. The A
and C types are found in significant proportions in Europe and
America, whereas the B type is the most common in East Asia (6).

In 2002–2003, a first “atypical pneumonia,” called severe
acute respiratory syndrome (SARS) was reported in Guangdong
Province in China. The disease then spread to 37 countries to
cause more than 8,000 cases, with a case-fatality rate of∼10% (7).
At that time, SARS had already posed a worldwide public health
threat, with a major impact on the economy. More recently,
the Middle East respiratory syndrome (MERS) spread to 27
countries, causing around 2,500 cases. Among the CoVs, MERS
has the highest case fatality rate (about 30%), but it is rarely
transmitted between humans, only via camel (8). Thus, for the
third time in a few decades, a new CoV has crossed species to
infect human populations. However, compared with the other
two CoVs, SARS-CoV-2 is much more contagious. Until now,
more than 7 million cases have been diagnosed globally, with
over 400,000 fatalities worldwide through early June 2020, with
a basic reproductive number estimated to be from 2.2 to 3.3 and
a mortality rate of around 2.3% (3, 9).

Like the other CoVs, SARS-CoV-2 possesses a typical envelope
structure with spike proteins at the surface; this characteristic
certainly plays a major role in interspecies transmission. Based on
similarities in spike structure characteristics between SARS-CoV-
2 and SARS-CoV, several research groups have demonstrated
that SARS-CoV-2 also utilizes the human angiotensin-converting
enzyme 2 (ACE2) receptor as a cellular entry receptor (10, 11).
ACE2 is mainly expressed in vascular endothelial cells and the
renal tubular epithelium. PCR analysis revealed that ACE2 is also
expressed in the lungs and gastrointestinal tract, which are tissues
shown to harbor viruses (12). It was also suggested that CD147
(basigin or the EMMPRIN protein) could be another cell-surface
receptor for SARS-CoV-2 (13). By co-immunoprecipitation,
ELISA, and immuno-electron microscopy, they show that anti-
CD147 antibody (Meplazumab) could competitively inhibit the
binding of spike protein (SP) with CD147 and thus prevent
infection of target cells. A phase II clinical trial entitled “Clinical
study of anti-CD147 humanized Meplazumab for injection to
treat with 2019-nCoV pneumonia” (ClinicalTrials.gov identifier:
NCT04275245) is currently underway in China aiming to prevent
SARS-CoV-2 SP binding and subsequent infection (14). CD209L
(L-SGN) has been identified as another possible alternative
receptor for SARS-CoV-2, as previously described for the SARS-
CoV virus (15).

This review highlights some of the most recent advances in
our understanding of the role of innate and adaptive cellular
immunity in COVID-19 infection and discusses potential links
to pathogenesis.

IMMUNOPATHOLOGY OF COVID-19

What of the Acute Infection?
The first symptoms associated with COVID-19 are mainly
those of respiratory disease, although neurologic and digestive
symptoms can also be observed. The primary mode of infection

is human-to-human transmission through close contact, via
the spraying of droplets from infected individuals, primarily
through the nasal and larynx mucosa, followed by entrance
into the lungs through the respiratory tract. Next, in more
severe cases, damage/oedema due to extracellular fluid may let
the virus enter the peripheral blood from the lungs, causing
viremia. COVID-19 has a probable asymptomatic incubation
period between 2 and 14 days during which the virus can be
transmitted (16), but importantly, the duration of SARS-CoV-
2 RNA detection has not been well-characterized. Zhou et al.
(12) found that viral titers in nasopharyngeal aspirates diminish
10–15 days after the onset of symptoms, but remains high
when the clinical disease worsens. It is, however, noteworthy
that the presence of viral RNA in specimens does not always
correlate with viral transmissibility; a major limitation remains
the inability to differentiate between infective and non-infective
(dead or antibody-neutralized) viruses. For SARS and MERS,
it had previously been shown that viral RNA persisted in the
respiratory tract for at least 3 weeks after disease onset in a
majority of patients (17).

What of the Severe Forms?
More than 80% of COVID-19 cases were asymptomatic or
presented with mild symptoms, while the remaining cases were
severe or critical (2, 18). It seems that the case-fatality rate
of COVID-19 (about 1%) is lower than those of SARS (10%)
and MERS (30%). Like other pathogenic CoVs, COVID-19 is
associated with a typical influenza-like syndrome with fever,
cough, fatigue and/or myalgia. Although diarrhea was reported
in a foursome of patients with SARS and MERS, intestinal
symptoms were rarely observed in patients with COVID-19
(2, 18, 19).

An early report in China found that 14% of COVID-19
patients were hospitalized, including 5% with ICU intervention
(20). Similar proportions were observed later in Europe and the
US (4). Among those who are seriously ill, acute hypoxemic
respiratory failure due to acute respiratory distress syndrome
(ARDS) is mainly observed (20, 21). At this stage, the need
for mechanical ventilation is high, ranging from 40 to 100%
(22); however, encephalitis and antiphospholipid syndrome are
rare (23). Common complications of COVID-19 include acute
kidney injury, elevated liver enzymes, and cardiac injury (23).
The limited COVID-19 post mortem data show prominent
alveolar edema, fibrin deposition, immune cell infiltration, and
severe multi-organ damage, including renal, cardiac, and liver
dysfunction (12, 24).

It was also reported that about 90% of COVID-19 hospitalized
patients had at least one risk factor (www.cdc.gov/coronavirus/
2019-ncov/index.html). Older age, in particular, as well as a
higher sequential organ failure assessment (SOFA) score on
admission, are associated with a higher probability of in-hospital
death, whereas elevated levels of blood IL-6, high-sensitivity
cardiac troponin I, and lymphopenia are more commonly seen
in severe COVID-19 illness (12). It is still unknown why the
cytokine storm may account for the severity of infection in
elderly and immunocompromised (i.e., diabetics) but not in the
young population who are mostly asymptomatic but have a fully
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functional immune system. However, the variability of clinical
cases observed during exposure and infection with SARS-CoV-
2 likely suggests that human genetic factors can also influence the
response to this virus. However, to date, very few studies have
been conducted to determine its real impact.

Based on patients analyzed, SARS-CoV-2 infects all age
groups equally, except perhaps children and adolescents. One
unanswered question is why some patients develop severe
disease, while others do not. Among the different parameters that
can influence the severity of this infection, we will focus on the
role of the cellular immune response.

RECENT PROGRESS IN IMMUNE
CONTROL OF COVID-19 PATHOGENESIS

Usually, type I interferons (IFN-α/β) provide the first line of
defense by generating cell-intrinsic antimicrobial states to limit
virus replication. It seems, however, that pathogenic CoVs are
particularly adapted to dampen responses mediated by IFN-α/β
(25, 26). Several hypotheses were proposed to explain this early
modulation of the immune response. It was shown that the
Orf6 protein of SARS-CoV disrupts the karyopherin transport
(27) and consequently inhibits the import of transcriptional
factors, such as STAT1, into the nucleus, resulting in an
inhibition of IFN response. Similarly, the Orf3b protein of
SARS-CoV inhibits phosphorylation of interferon regulatory
factor 3 (IRF3) (28), a protein involved in the activation
of IFN-α/β. In China, the guidelines for the treatment of
COVID-19 recommended administering IFN-α in combination
with ribavirin (29), although no improvement was recorded.
Interestingly, IFN-α effectively inhibited SARS-CoV replication
but 50–90 times lower than IFN-β (30–32), suggesting that IFN-
β could be a better antiviral component in patients’ treatment.
Thus, in the European DisCoVeRy trial, a combination of
subcutaneous IFN-β with lopinavir/ritonavir is compared to
hydroxychloroquine and remdesivir.

The loss of the “front line” antiviral defense mechanism
mediated by IFN-α/β deficiency could be implicated in the
induction of the cytokine storm leading tomacrophage activation
syndrome (MAS)-like pathology (33, 34). This cytokine storm
is considered as the root cause of pathogenic inflammation in
COVID-19. However, its initial trigger is not yet known, but it
likely involves the immune system’s detection of a large quantity
of viral antigens released by dying cells. One in two fatal cases
of COVID-19 experience a cytokine storm, 82% of whom are
over the age of 60 (35). Interestingly, NLRP3, a major protein
component of the inflammasome, could play a role. During
aging, there is a steady increase in the abundance and activity
of NLRP3 in immune cells in the lung, which contribute to
pulmonary fibrosis (36). After age and hematological cancers,
obesity is the nextmajor risk factor for COVID-19 fatality, similar
to type 2 diabetes. Obesity is well-known to increase the activity
of NLRP3 and stimulate inflammation during viral infection (37).

The cytokine storm is mainly associated with a high
production of pro-inflammatory cytokines (i.e. IL-1β, IL-6, TNF-
α) (Figure 1). For example, IL-6 production is about 3-fold

higher in patients with complicated COVID-19 compared to
asymptomatic patients (38). Preliminary data with tocilizumab,
a humanized anti-IL-6 monoclonal antibody, in patients with
COVID-19 pneumonia reveal clinical improvement in a small
number of patients (39). Similarly, interferon gamma-induced
protein 10 (IP-10) is correlated with patient viral load, whereas
monocyte-chemotactic protein 3 (MCP3) is associated with
loss of lung function (PaO2/FaO2 ratio), lung injury (Murray
Score) and fatal outcome (40). Systemic inflammation was also
observed in fatal cases of H1N1, with high IL-6 and IP-10
concentrations in the lungs, associated with massive infiltration
of immune cells in the lung (41), also reported in severe or fatal
forms of avian H5N1 and H7N9 pulmonary infection (42, 43).

What of the Cell-Innate Immunity?
The epithelium of the lungs is the largest surface in the human
body (>200 m2) in direct contact with the external environment.
The lungs inhale daily about 10,000 l of air that contains various
pathogenic particles, like the SARS-CoV-2 in fine droplets. Thus,
this constant exposure to pathogens requires a very efficient
immune system to sense the challenge and protect the host. To
this end, the airways are endowed with physical barriers such as a
layer of mucus, which is present over its entire surface to defend
this tissue against pathogens, but also a vast network of cellular
and humoral host defense mechanisms.

This network is mainly composed of epithelial cells of the
respiratory tract, dendritic cells (DC) and alveolar macrophages.
These cells trigger pro-inflammatory downstream immune
responses in the presence of viral particles. Liao et al. (44) found
that the depletion of tissue-resident alveolarmacrophages and the
accumulation of inflammatory macrophages in bronchoalveolar
lavage cells were associated with disease severity. However,
it would be necessary to finely test the infectivity of the
monocyte/macrophage lineage with SARS-CoV-2 to determine
better its impact on inflammatory responses. In this acute
inflammatory reaction, neutrophils are also attracted and
localized mainly in the bronchoalveolar space (45). Consistently,
elevated neutrophil levels were reported in COVID-19+ patients
(46, 47). Importantly, the lung constitutes the most important
reservoir of neutrophils in the systemic circulation (∼40% of
total body neutrophils). It is plausible that elevated neutrophil
level is associated with increased reactive oxygen species (ROS)
and neutrophil extracellular traps (NETs), both considered as
the most potent antimicrobial mechanisms used by neutrophils.
Inappropriate levels of these neutrophil-derived products could
contribute to the development of the “cytokine storm” initiated
by the lung-infiltrating macrophages, and then to the partial
destruction of lung tissues (Figure 1) (2, 48).

Mucosal-associated invariant T (MAIT) cells represent a
population of innate T cells. They recognize metabolites that
are presented by the major histocompatibility complex (MHC)
class I-related protein MR1. Potential effectors of MAIT cell
antimicrobial activity include the secretion of TNF-α, IFN-γ,
IL-17A, and IL-22 as well as granzyme B and perforin (49,
50). Changes in MAIT cell frequencies have been reported in
several viral infections; for example, higher cell numbers were
found in survivors infected by H7N9 influenza, compared to
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FIGURE 1 | Proposed host immune responses during SARS-CoV-2 infection. Aerosolized uptake of SARS CoV-2 leads to infection of ACE2-expressing target cells,

such as alveolar type 2 pneumocytes or other unknown target cells. The virus may dampen antiviral IFN-α/β responses resulting in uncontrolled viral replication. The

influx of neutrophils and monocytes/macrophages results in hyperproduction of pro-inflammatory cytokines. The immunopathology of lung may be the result of the

“cytokine storm.” NK cells and specific T cells may be activated and contribute to exacerbating inflammatory responses, and then to an acute respiratory distress

syndrome (ARDS). SARS-CoV-2 specific Abs may help neutralize viruses, participate to antibody-dependent cell-mediated cytotoxicity (ADCC) or on the contrary to

induce antibody-dependent enhancement (ADE). To date, most events remain speculative or unknown.

samples from fatalities (51). Consistently, in vitro coculture of
primary peripheral blood mononuclear cells and H7N9-infected
A549 airway epithelial cells was associated with increased
intracellular IFN-γ and granzyme B levels in MAIT cells (51).
Very recent preliminary data also suggested a very significant
decrease of MAIT cells in COVID-19+ patients; expression of the
CD69 activation marker on blood MAIT cells at inclusion was
predictive of COVID-19 severity (52).

Natural killer (NK) cells are another key element of innate
immunity (53). It was rapidly determined that in COVID-19
patients, the total number of NK cells is markedly decreased
(54), as previously reported for the SARS (55). NK cells
express a variety of receptors that transduce either activating
or inhibitory signals. Integration of these signals regulates the
effector functions of NK cells, including cytotoxic activity and
cytokine secretion (53, 56). In patients infected with SARS-CoV-
2, NKG2A expression was significantly increased on NK cells
(54). The CD94/NK group 2 member A (NKG2A) heterodimeric
receptor is one of the most prominent NK inhibitory receptors.
It binds to a non-classical minimally polymorphic HLA class I
molecule (HLA-E), which presents peptides derived from leader
peptide sequences of other HLA class I molecules (57). Upon
ligation by peptide-loadedHLA-E, NKG2A transduces inhibitory
signaling through 2 inhibitory immune-receptor tyrosine-based
inhibition motifs, thus suppressing NK cytokine secretion and

cytotoxicity (58). A clinical trial is ongoing in the presence
of anti-NKG2A (Monalizumab) in Patients with advanced or
metastatic cancer infected by SARS-CoV-2 (ClinicalTrials.gov
Identifier: NCT04333914). However, more extensive phenotypic
studies of NK cells will be necessary to determine the role of other
cell markers and to measure their impact in disease evolution
better. Consistent with increased NKG2A levels on NK cells
from COVID-19 patients, low polyfunctional capacities were
reported (54). Hence, SARS-CoV-2 may break down antiviral
immunity mediated by NK cells at an early stage of infection,
with putative consequences for the development of an efficient
adaptive immunity. To increase NK-cell capability, a phase I
clinical trial is ongoing to evaluate the safety and efficiency
of allogenic NK-cell transfer in combination with standard
therapy for 30 pneumonia patients infected with SARS-CoV-2
(ClinicalTrials.gov identifier: NCT04280224).

In other infectious situations, such as dengue virus infection,
activation of NK cells by antibodies (Abs) can enhance controlled
antibody-dependent enhancement (ADE) process (Figure 1),
which occurs when Abs specific to a viral determinant facilitate
secondary infection. Interestingly, it was shown previously that
sera from SARS-CoV infected patients enhance viral entry into
Fc receptor-expressing cells (59, 60). This mechanism should
be extensively studied in a COVID-19 context to guide the
development of future vaccine and antibody-based drug therapy.
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Together, the preliminary data on COVID-19 patients suggest
that SARS-CoV-2 could use different strategies to evade and/or
antagonize different arms of the innate immune system.

What of the Cell-Adaptive Immunity?
Severe lymphopenia was observed until death in non-survivor
patients with COVID-19 (12). Consistently, the acute phase of
SARS in human patients was associated with marked leukopenia
in up to 80% of hospitalized patients, associated with a dramatic
loss of CD4 and CD8T cells (61, 62). In SARS-CoV-infected
patients, it was shown that infection of T lymphocytes directly
contributes to lymphopenia and atrophy of the spleen and
lymphoid tissue (63). Lymphopenia is also observed in MERS
patients, albeit to a lesser degree than in SARS patients (64).
Understanding the mechanism of lymphopenia could open the
way to the development of a new strategy for the treatment of
COVID-19. Several potential mechanisms could be considered:
(i) The virus might directly infect lymphocytes, resulting in
lymphocyte death, as recently reported by Wang et al. (65)
for the SARS-CoV-1. (ii) The virus can damage different
target organs, such as bone marrow and thymus, which can
no longer function normally. (iii) Inflammatory cytokines are
massively produced, perhaps leading to lymphocyte apoptosis.
(iv) Lymphocytes are trapped in infected tissues (Figure 1).
Further research is needed to confirm these hypotheses.
Importantly, the loss of lymphocytes was transient; CD8+ T
lymphocytes and memory CD4+ T cells of SARS patients
returned to normal within 2–3 and 12 months after infection,
whereas other CD4+ T cell subsets were still lower than in healthy
controls (66).

The first study on patients with COVID-19 revealed that
low levels of IFN-γ and TNF-α in CD4+ T cells are associated
with severity. Consistently, in CD8+ T cells, the frequency of
the exhausted (PD-1+CTLA-4+TIGIT+) subset was significantly
higher in the severe group (67). Consequently, the no (low)
functionality of CD8+ T cells in severe patients could impact
an efficient control of infection (67), as previously described
in SARS-CoV infection (68). Furthermore, COVID-19 was
associated with a significant decrease of T cell activation,
determined by CD25, CD28, and CD69 expression on CD4+

and CD8+ T cell subsets (68). Despite a wave of information
on the specific T cell responses to many other pathogens, less
is known about respiratory CoV infections. CD8+ T cells are
typically required for the control of influenza virus and other
respiratory viruses (68). Furthermore, T resident memory cells
(TRM) are critical in preventing re-infection from influenza
virus (69). Their role in SARS-Co-V2 infection should be,
however, more finely determined. In senescent mice infected
by SARS-CoV, CD8+ CTLs alone are not sufficient to clear
the virus in the absence of both CD4+ T cells and specific
Abs (70).

On the other hand, depletion of CD4+ T cells in SARS-
infected patients reduced production of neutralizing Abs and
Th1 cytokines and induced lower recruitment of inflammatory
monocytes in the lung. This mechanism can be bypassed
by a passive transfer of neutralizing Abs against SARS-
CoV, suggesting that the CD4-mediated control of infection

most likely operates through Ab- and/or cytokine-dependent
mechanisms. In fatal human fulminant cases of H1N1 influenza
pneumonia that required mechanical ventilation, a strong
effector T-cell response in the lungs was also observed in
conjunction with high production of IFN-γ and IP-10, suggesting
a massive and effective translocation of specific T cells to
the lungs (41).

Genetic differences in HLA haplotypes are also key
parameters, known to contribute to individual sensitivity
against pathogens as previously described for tuberculosis,
leprosy, HIV, hepatitis B, and influenza (71). For example,
HLA-A∗11, HLA-B∗35, and HLA-DRB1∗10 confer susceptibility
to H1N1 infection (72). For SARS-CoV-2, a preliminary in
silico analysis of viral peptide-MHC class-1 binding affinity
suggests that individuals expressing HLA-B∗46:01 may be
particularly vulnerable to COVID-19, as previously shown
for the SARS. At the same time, HLA-B∗15:03 showed the
greatest capacity to present highly conserved SARS-CoV-2
peptides shared among common human CoVs (73, 74). This
observation suggests that the HLA distribution could affect the
cellular immune response to SARS-CoV-2, and might explain
the differences in COVID-19 susceptibility around the world.
However, it seems crucial for the development of vaccine
strategies to understand whether specific HLA haplotypes are
associated with the development of anti-SARS-CoV-2 immunity.
Interestingly, among the first 120 available SARS-CoV-2
sequences (as of February 21, 2020), several B cell and T cell
epitopes specific to SARS-CoV-2 were identified for the spike
and nucleocapsid proteins, that potentially induce protection
against COVID-19 (75).

CONCLUDING COMMENTS

Current observations indicate that SARS-CoV-2 is particularly
adapted to evade immune responses at the early stage of
infection. Most mechanisms are linked to inappropriate type
1 IFN responses, massive inflammatory cytokine production,
and possibly to a defect in NK-cell functions. Preliminary
data also suggest adaptive immune evasion, as indicated by
the exhaustion of T lymphocytes. However, current evidence
strongly indicated that the Th1-type response is key to the
successful control of human pathogenic CoVs, in the association
with the presence of specific neutralizing Abs. Although there
are clear relationships between the severity of the disease and
immune responses, the role of protective immunity currently
remains questionable.

Alarmingly, some patients remain viral positive, while others
even relapse, after discharge from hospital, as recently stated
by WHO (3), suggesting that complete control of the virus
by the immune response could be difficult to induce at least
in some patients. This could also have an impact on the
development of the second wave of the epidemic, which is
currently strongly envisaged. The vaccine remains the best way
to counter this epidemic. However, to define the surrogate
parameters of vaccine efficacy, it should be important to better
monitor T/B cell responses of recovered patients and to better
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understand the aging impact on the immune responses in
COVID-19 patients, including the relative protection of younger
individuals, excepted for some unexplained cases of Kawasaki-
like syndrome. If overlapping epitopes among different human
CoVs can be identified, this could help in the design of cross-
reactive vaccines that protect against several pathogenic CoVs in
the future.
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