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Abstract. One-shot optimization tasks require to determine the set of
solution candidates prior to their evaluation, i.e., without possibility for
adaptive sampling. We consider two variants, classic one-shot optimiza-
tion (where our aim is to find at least one solution of high quality) and
one-shot regression (where the goal is to fit a model that resembles the
true problem as well as possible). For both tasks it seems intuitive that
well-distributed samples should perform better than uniform or grid-
based samples, since they show a better coverage of the decision space.
In practice, quasi-random designs such as Latin Hypercube Samples and
low-discrepancy point sets are indeed very commonly used designs for
one-shot optimization tasks.

We study in this work how well low star discrepancy correlates with
performance in one-shot optimization. Our results confirm an advan-
tage of low-discrepancy designs, but also indicate the correlation be-
tween discrepancy values and overall performance is rather weak. We
then demonstrate that commonly used designs may be far from optimal.
More precisely, we evolve 24 very specific designs that each achieve good
performance on one of our benchmark problems. Interestingly, we find
that these specifically designed samples yield surprisingly good perfor-
mance across the whole benchmark set. Our results therefore give strong
indication that significant performance gains over state-of-the-art one-
shot sampling techniques are possible, and that evolutionary algorithms
can be an efficient means to evolve these.

Keywords: One-Shot Optimization · Regression · Fully Parallel Search
· Surrogate-Assisted Optimization · Continuous Optimization

1 Introduction

When dealing with costly to evaluate problems under high time pressure, a
decision maker is often left with the only option of evaluating a few possible
decisions in parallel, in the hope that one of them proves to be a reasonable
alternative. The problem of designing strategies that guarantee a fair chance of
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finding a good solution is studied under the term one-shot optimization. One-
shot optimization is studied in numerous variants and contexts, including classic
Operations Research [12] and numerical analysis [26,27]. Most recently, one-
shot optimization has gained momentum in the context of Machine Learning
applications, including hyper-parameter optimization for deep neural networks
and for heuristic optimization techniques [4,2,9].

We study in this work two variants of one-shot optimization tasks, classic
one-shot optimization and one-shot regression. In classic one-shot optimiza-
tion, n solution candidates are evaluated in parallel. We only care about the best
one of them, xbest and measure its simple regret f(xbest)−inf f . In one-shot re-
gression, in contrast, we use all n evaluated samples to build an approximation
f̂ of the actual, unknown function f . The objective is to determine a surrogate
f̂ which resembles f as well as possible. The quality of f̂ is measured, for ex-
ample, by the mean squared error (MSE)

∑
x∈X (f̂(x)− f(x))2/|X|. One-shot

regression is also studied under the term global surrogate modeling [12].

Several works, in particular the one of Bousquet et al. [4] and the more recent
work by Cauwet et al. [9], show that quasi-random designs of low discrepancy are
more suitable for the classic one-shot optimization task than i.i.d. uniform sam-
ples or grid search. The overall recommendation propagated in [4] are randomly
scrambled Hammersley point sets with random shifts. Other low-discrepancy
point sets also perform well in the experiments reported there. Also for one-
shot regression quasi-random constructions such as Latin Hypercube Samples
(LHS [30]) and again low-discrepancy point sets [12,28] are quite common, leav-
ing us with the question if there is a correlation between the discrepancy of a
point set and its performance in one-shot optimization. If such a correlation ex-
isted, one could hope to find even better one-shot designs by searching for point
sets of small discrepancy – a problem that is much easier (yet very hard [14]) to
address than the original one-shot optimization problem. Interestingly, no such
direct comparison has been attempted in the literature, although several works
have investigated the suitability of various sampling designs for one-shot regres-
sion, see [28,12] for examples and although such a correlation is well known to
hold in the context of numerical integration, via the Koksma-Hlawka inequal-
ity [24,21].

We compare five different experimental designs, three generalized Halton
point sets, one LHS construction, and i.i.d. uniform sampling, see Sec. 2 for more
details. Our test bed are the 24 noiseless BBOB functions [19,20], a standard
benchmark set for numerical black-box optimization, which covers a wide range
of different problems encountered in real-world optimization. We focus on star
discrepancy [14] as diversity measure for the point sets, since this is the one that
also appears in the mentioned Koksma-Hlawka inequality. For the regression
task, we compare four standard regression techniques, support vector machines
(SVMs) [11], decision trees [7], random forests [6], and Kriging [10], see Sec. 3.
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1.1 Summary of Results

Results for Standard Sampling Designs In the context of classic one-shot opti-
mization, our experiments confirm the superiority of low-discrepancy point sets
over random sampling. However, no clear correlation could be identified between
the star discrepancy value of a point set and its performance as one-shot opti-
mizer, somewhat refuting our hope that point sets with optimized discrepancy
values could substantially boost performance in one-shot optimization.

For the one-shot regression task, we observe that there is no clear winning
design, nor any obvious correlation between discrepancy and performance, in-
dicating that we cannot rely on simple recommendations suggesting to use a
specific design and/or surrogate model. Rather, we observe that competence
maps, which provide recommendations based on some high-level features of the
problem, can be crucial to achieve peak performance in one-shot optimization.

Constructing High-Performing Designs with Evolutionary Algorithms In the ab-
sence of theoretical bounds, we investigate in Sec. 6 how the performances ob-
tained by the tested (design, surrogate) combinations in the one-shot regression
task compare against sampling strategies that are explicitly designed for mini-
mizing the MSE individually for each of the 24 benchmark problems.1 To this
end, we apply an off-the-shelf evolutionary algorithm and evolve designs of low
MSE for each BBOB function. To our surprise, we find that some of these de-
signs perform very well not only on the problem that they have been designed
for, but across all 24 functions, indicating that substantial performance gains
over the state-of-the-art one-shot optimization strategies might exist.

Discussion While our results might appear negative with respect to the original
question about the correlation between the discrepancy of a sampling strategy
and its performance in one-shot optimization, they reveal a clear need and may
pave a way for identifying other diversity measures showing a better correlation
with the performance results. The evolved designs clearly indicate that such
investigations could significantly improve the state of the art. We note that
previous attempts to construct low discrepancy samples [15] or well-performing
LHS designs [28,22] can be found in the literature. A wider application of such
constructions, however, seems to be lagging behind its potential. We therefore
believe more research is needed to test these methods in various applications,
and to make them easily applicable and accessible.

Finally, while we only focus on one-shot optimization in this work, we note
that good one-shot optimization designs are likely to be useful in the context of
sequential model-based optimization (SMBO) [23]. SMBO is also studied under
the notion of global optimization or surrogate-based optimization, sand entails
iterative methods for the optimization of black-box functions that are computa-
tionally expensive to evaluate. In SMBO, one uses the evaluated samples of an

1 Note here that for the classic one-shot optimization task, this question is not mean-
ingful, as the design {x} with x = arg min f is optimal with zero regret.
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initial design to build a model of the true objective function, which is computa-
tionally fast or at least much faster to evaluate than the true objective function.
In a sequential process this initial design is augmented by injecting further design
points in order to improve the function approximation. So-called infill criteria
or acquisition functions which usually balance exploitation of the current model
and exploration of areas with high model uncertainty are used to decide which
point(s) seem(s) adequate to evaluate next with the true objective function. Clas-
sic model-based approaches, such as the efficient global optimization algorithm
(EGO) by Jones et al. [23], typically use well-distributed, space-filling point sets
to initialize the search (see, e.g., [17]).

Reproducibility. We can only show a small set of results here in this ex-
tended abstract. Detailed data for both one-shot optimization tasks, for all 29
designs, the 4 surrogate models, 5 sample sizes, and each of the 24 tested BBOB
functions is available on our public GitHub repository [3].

2 Low-Discrepancy Designs

The discrepancy of a point set measures how far it deviates from a perfectly dis-
tributed set. Various discrepancy measures exist, providing different performance
guarantees in quasi-Monte Carlo integration and other applications [1,25,29].
The arguably most common discrepancy metric is the star discrepancy, which
measures the largest absolute difference between the volume Vy of any origin-
anchored box [0, y] :=

∏d
i=1[0, yi] and the fraction of points contained in this

box. Hence, the star discrepancy of a point set {x1, . . . , xn} ∈ [0, 1]d is defined
as D∗(X) := supy∈[0,1]d

∣∣Vy −
∣∣[0, y] ∩X

∣∣/n∣∣.
Low-discrepancy designs provide a proven guarantee on their asymptotic dis-

crepancy value. They are well-studied objects in numerical analysis, because of
the good error guarantees that they provide for numerical integration. The in-
terested reader is referred to the survey [14], which covers in particular the
computational aspects of star discrepancies relevant to our work. In our exper-
iments we consider four different designs of low discrepancy, and we compare
them to uniform sampling. More precisely, we study Latin Hypercube Samples
(LHS [30]; we use the maximin LHS implementation of the R package lhs [8])
and three variants of so-called Halton sequences: the original one suggested by
Halton [18], an improved version introduced by Braaten and Wellter [5], and
a third design which we obtain from a full enumeration and evaluation of all
generalized Halton sequences (for the sample sizes n ∈ {125, 1 000}). For our
four-dimensional setting, these are 34 560 different designs each. Those are eval-
uated using the algorithm by Dobkin et al. [13], which has running time n1+d/2.
This exact approach becomes infeasible for larger sample sizes, and we use the
best generator for n = 1 000 instead. The so-minimized Halton designs are re-
ferred to as “Best” in the remainder of this work. The discrepancy values of the
different designs used in this paper are summarized in Table 1.
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n Best BW Halton LHS UNIFORM EVOLVED

125 0.056 12% 48% 49% 185% 156%
1000 0.013 20% 35% 109% 316% 343%
2500 0.008 0% 6% 295% 371% –
5000 0.005 2% 6% 376% 413% –

Table 1. Discrepancy value of the best design and the relative overhead of the other
designs. Values for LHS, UNIFORM, and EVOLVED designs are averaged.

3 Experimental Setup and Availability of Data

For our experiments we have chosen the 24 noiseless problems from the black-
box optimization benchmark (BBOB) by Hansen et al. [20]. For computational
reasons, we limit our attention to the first instance of each problem. The BBOB
functions assume [−5, 5]d as search space. We therefore scale our designs, which
are initially constructed in [0, 1]d, accordingly.

Our study summarizes the results from a total of 124 080 scenarios. We con-
sidered designs of three (deterministic) Halton sequences, as well as LHS and
random uniform samples. As the latter two are stochastic, we generated ten sam-
ples each to account for their stochasticity. Moreover, each design was generated
for the five sample sizes n ∈ {125, 1 000, 2 500, 5 000, 10 000}. For each design, we
then computed surrogates using the following four machine learning algorithms:
support vector machines (SVMs) [11], decision trees [7], random forests [6], and
Kriging [10]. Note that the latter could not be computed on designs of size 10 000
due to memory issues. Also, as (except for the decision trees) the considered al-
gorithms are stochastic – or at least contain stochastic elements within their R
implementations – we replicated all experiments ten times. In addition to these
104 880 scenarios we further evaluated a total number of 1 920 “evolved” designs,
which will be introduced in detail in Section 5 (one-shot regression).

4 Classic One-Shot Optimization

In the classic one-shot optimization scenario we are asked to provide a point
set {x1, . . . , xn} for which the quality f(xbest) of the best point xbest :=
arg minxi∈{x1,...,xn} f(xi) is as good as possible.

In line with the machine learning literature, where the one-shot problem
originates from, we consider simple regret f(xbest)−f∗ as performance measure,
where f∗ = infx f(x) denotes the best function value. In optimization, this
measure is referred to as the target precision of the best design point. Of course,
this performance criterion requires that f∗ is known. This is usually not the
case for real-world applications, but for the BBOB benchmarks these values are
available [20], so that the regret can be computed straightforwardly. Minimizing
simple regret is also the standard objective in other related domains, including
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Fig. 1. Scatterplots showing the relationship between the discrepancy of designs of size
n = 1 000 and the one-shot performance f(xbest)− f∗ for all 24 BBOB problems. The
EVOLVED instances were designed for Kriging surrogates.

evolutionary computation [19]. Since this performance depends on a single point,
the variance of the results can be tremendous, and it is therefore interesting to
compare different designs over different sets of problems (and to perform several
independent runs in case of the stochastic designs LHS and uniform sampling).

Fig. 1 compares the average regret for each pair of function and design, and
plots the respective performance (y-axis) in dependence of the design’s discrep-
ancy (x-axis). Due to different scales of the problems, absolute performances
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Best (9)

Braaten-Weller (5)

EVOLVED (4)

Halton (5)

LHS (0)

UNIFORM (1)

1 2 3 4

Ratio of Avg. f(xi) − f(x*) and Best Avg. Regret f(xbest) − f(x*) for One-Shot Decision Making

Fig. 2. Boxplots for factors by which the average one-shot result is worse than that
of the best design (one data point per BBOB function). The x-axis is capped at 4
(outliers not shown in this plot: UNIFORM at 4.5 and 4.7, and Best at 7.2). Numbers
in brackets indicate on how many functions the design achieved the best (average)
result. All numbers are for n = 1 000 points and use Kriging surrogates.

should not be directly compared across functions (we will use relative perfor-
mances instead). As already mentioned before, the results for LHS, UNIFORM
and EVOLVED sampling are based on ten independent designs. Note that the
concept of the EVOLVED designs will be discussed in more detail later in this
work, but we are already showing its results for completeness.

The plots in Fig. 1 indicate that the correlation between discrepancy and one-
shot-performance is rather weak, as we do not see any obvious trend. However,
one has to keep in mind that these performances depend on a single point only –
similar to a lucky punch in sports. Therefore, we additionally analyze the aggre-
gated performances in Fig. 2. The boxplots display the distribution of the factor
by which each design is worse than the best design for the respective function.
According to this aggregated view, the “Best” design – whose discrepancy is the
smallest among all sets (recall Tab. 1) – is also the one achieving the smallest
mean and median result. The Braaten-Weller-design had the best performance in
5 out of the 24 benchmarks. Although LHS showed good (average) performance
as well, it did not achieve the best average result on any of the benchmark func-
tions. Interestingly, uniform sampling achieves a good median score. In fact, we
can see in Fig. 1 that the best uniform design often outperforms all other designs,
but at the same time there is (with few exceptions) always at least one of the
uniform samples which is worse than all other designs. Of course, our benchmark
set is small compared to broad range of numerical problems encountered in prac-
tice. An extension to more use-cases, possibly grouped by type of application,
forms an important direction for future work.In particular, we suggest to not only
consider more instances of the BBOB functions, but to extend our approach to
other problems, such as those provided by Nevergrad [32,33], the problems from
the black-box optimization competition BBComp (https://bbcomp.ini.rub.de),
and to hyper-parameter tuning.

https://bbcomp.ini.rub.de
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n Best BW Halton LHS UNIFORM total

125 6 13 8 11 4 42
1 000 9 9 6 11 3 38
2 500 11 7 8 16 3 45
5 000 12 10 11 14 3 50

Table 2. Number of functions for which the respective design, together with the Krig-
ing surrogates, achieved (on average) a MSE that is at most 5% worse than the best
achieved MSE. We recall that we have 24 benchmark problems in total.

5 One-Shot Regression

We now turn our attention to the one-shot regression problem, in which we
aim to build a regression model f̂ that predicts the function values of the true
function f as accurately as possible. The accuracy of the one-shot regression
models is measured by the mean squared error (MSE), for which we evaluate

both f and our proxy f̂ in t i.i.d. points y1, . . . , yt, which are selected from the
domain [−5, 5]d uniformly at random. The MSE is then computed as

MSE(f̂) :=
1

t

t∑
j=1

(
f(yj)− f̂(yj)

)2
.

In our evaluation, we use t = 100 000 i.i.d. samples. For LHS and UNIFORM
designs, we compute the MSE for each of the ten random designs, and average
the results.

In Tab. 2 we compare the five designs for different sample sizes. For each
sample size, we count the number of functions for which the design achieved an
MSE that is at most 5% worse than the best one for the respective sample size.
The displayed results are based on Kriging but results for the other surrogate
models are similar. Uniform samples seem to enable less accurate regression
models than the Halton and LHS designs. However, there are three cases in
which the uniform design yields the best MSE: for function F16 (Weierstrass)
with n = 125 points, F22 (Gallagher’s Gaussian 21-hi Peaks) with n = 1 000,
and F3 (Rastrigin) with n = 2 500. In the latter case no other design achieves
an MSE within the 5% margin, whereas for the first two combinations the other
designs achieve just slightly worse MSEs.

Fig. 3 provides a more detailed impression of the regression quality for the
different (design, function)-pairs. This chart includes the EVOLVED designs,
which we introduce and discuss in the next section. The results in Fig. 3 are for
Kriging, but those for the other models look alike. We observe clear patterns:
uniform designs, in general, produce surrogate models with high mean MSE and
high variance and hence a poor global approximation of the target function f on
average. An exception is F21, Gallagher’s Gaussian 101-me peaks function, for
which uniform samples obtain the best median results with far reaching whiskers
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Fig. 3. MSE of the Kriging models, individually trained for each of the six designs with
n = 1 000 points and each of the 24 BBOB problems. Each model was assessed on a set
of 100 000 i.i.d. uniform samples. Boxplots show the distribution of the 10 independent
constructions.

though. We attribute this to lucky sampling. In contrast, models fitted to LHS
and low-discrepancy designs tend to be much more accurate approximations of
the true function. However, there is no obvious winner among the five designs,
indicating that the correlation between discrepancy and performance is more
complex than one might have hoped for.

6 Evolving Designs for One-Shot Regression

Given a target function f and a surrogate model we do not know what quality
(w.r.t. the MSE on test data) one can achieve in the best-case with an optimal
design of n points in d dimensions – a baseline is missing. In order to get an
impression for the absolute quality of our tested designs, as well as for the po-
tential of further improvement, we have approximated optimal n-point designs
by means of an evolutionary algorithm (EA) [16]. That is, we evolve sampling
plans in a heuristically guided stochastic manner.

Our algorithm starts with an initial LHS design x of n points in [−5, 5]d. In
each iteration, a new candidate design y is created from the current-best design
x by applying Gaussian perturbations to a subset of bn/10c points. Points falling
off the [−5, 5]d boundaries are repaired by projecting the violating components
to the boundary, see Fig. 4 for an illustration. If y is no worse w.r.t. the fitness
function, replace x by y, otherwise discard y. The process is repeated for a fixed
number of 2 000 iterations. The fitness function fits a surrogate model based on
the given design in a first step. Next, the quality of the surrogate is assessed by
means of the MSE for ten random uniform designs with 10 000 points each. The
fitness value is the average of these MSE values and is meant to be minimized.
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xi

xj

Fig. 4. Illustration of mutation step of a design with n = 10 points (black dots) in
two dimensions. Here, the two points xi, xj are subject to mutation (solid arrows). The
perturbation of xj results in a point outside the bounding box. This is where a repair
mechanism comes in (dashed arrow).

Number of Points in Design: 125 Number of Points in Design: 1000
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Fig. 5. Illustration of MSEs across the 24 functions from the BBOB suite. The first 24
columns correspond to the evolved designs (the i-th evolved design has been optimized
for the i-th BBOB function), and the remaining five columns show the results for
the five one-shot designs (Best, Braaten-Weller, Halton, LHS and UNIFORM). For
each of the 29 designs, a Kriging model has been fitted to the BBOB function of the
respective row and assessed by means of the MSE. The cell colors illustrate the ratio of
the respective model’s MSE and the MSE of the corresponding problem-tailored (i.e.,
evolved) design.

Note that each run of the EA produces a large set of interim solutions, but we
only keep the final design for further evaluation.

We evolved ten designs (to account for randomness of the EA approach) for
each combination of surrogate modelling approach, BBOB function, and size
n ∈ {125, 1 000} of sampling plan resulting in 1 920 EVOLVED designs. We ne-
glected larger sampling sizes to keep computational costs reasonable (each fitness
evaluation requires fitting a surrogate on n points, which becomes computation-
ally expensive for increasing n).
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Fig. 6. Visualization of average MSE-ranks (lower is better) for all 29 designs. This
figure aggregates the detailed MSE values in Fig. 5 across all 24 BBOB functions.

Returning to Fig. 3 we observe that the evolved designs lead to drastic im-
provements w.r.t. the MSE (and low variance) for the majority of BBOB func-
tions; in particular for FIDs 1-14 (first three BBOB groups with mainly unimodal
functions with global structure). Contrary, for FIDs 16 and 21-23 – i.e., functions
which are characterized by a highly rugged landscape with many local optima
and weak global structure – the evolving process is far less successful w.r.t. MSE
improvement.

Recall that we evolved designs for specific combinations of target function,
surrogate-modelling approach, and sample size. However, as depicted in Fig. 5,
the problem-specifically evolved designs are not necessarily inferior to any of the
established sampling strategies. While the designs resulted indeed in significantly
superior performances on the problems they have been evolved on – as can be
seen by the diagonal of dark blue cells – their MSE ratios are usually comparable,
if not even better, than the respective ratios of Best, Braaten-Weller, etc. When
comparing the average ranks obtained by the 29 designs, see Fig. 6, the design
evolved for F1 (Sphere) achieves the best average score (10.4) of all 29 tested
designs for n = 125, closely followed by LHS (11.4) and Braaten-Weller (11.7).
For n = 1 000 LHS has an average rank of 8.7, while the runner-ups are “Evolved
23” (11.3) and Best (11.9). Several other evolved designs obtain fine average
ranks. Noticeably, the uniform design is clearly the worst, with an average rank
of 25.0 for both n = 125 and n = 1 000. That is, the MSE of uniform sampling
is on average more than 5 ranks worse than any of the other 28 designs.

Fig. 5 also reveals quite noticeable differences across the functions on which
the trained surrogates are assessed (rows). Non-surprisingly, we observed a de-
crease in the MSE ratios for an increase in sample size.



12 J. Bossek et al.

7 Conclusion

We have analyzed the question whether the promising results of low-discrepancy
point sets for one-shot optimization are well correlated with the discrepancy of
these sets. No strict one-to-one correlation could be identified, neither in the
classic nor in the one-shot regression scenario. These results refute our hope
that the challenging and resource-consuming task of designing efficient one-shot
designs could be reduced to a discrepancy-minimization problem (which is also a
challenging task in its own, see [15,31], but of a much smaller scale than the one-
shot design one). In terms of aggregated results, however, the low-discrepancy
designs performed well in the classic one-shot optimization task. In future work,
we plan on investigating whether other diversity measures (such as, for example,
those mentioned in [12]) show a better correlation. Among the most promising
candidates are indicators measuring how “space-filling” the designs are. A related
question is how well good designs for one one-shot optimization task perform on
other tasks.

The decent performance of the problem-specific designs obtained through our
evolutionary approach was a big surprise. Not only did they improve quite con-
siderably over the standard designs for one-shot regression for the problem and
learner they were evolved for, but some of them even rank in the top places when
evaluated across the whole benchmark set. A cross-validation of the evolution-
ary approach on other benchmarks and an extension to other dimensions forms
another line of research that seems very promising in the context of one-shot
optimization.
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