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Abstract. Exploratory landscape analysis (ELA) supports supervised
learning approaches for automated algorithm selection and configuration
by providing sets of features that quantify the most relevant character-
istics of the optimization problem at hand. In black-box optimization,
where an explicit problem representation is not available, the feature
values need to be approximated from a small number of sample points.
In practice, uniformly sampled random point sets and Latin hypercube
constructions are commonly used sampling strategies.
In this work, we analyze how the sampling method and the sample size
influence the quality of the feature value approximations and how this
quality impacts the accuracy of a standard classification task. While, not
unexpectedly, increasing the number of sample points gives more robust
estimates for the feature values, to our surprise we find that the feature
value approximations for different sampling strategies do not converge
to the same value. This implies that approximated feature values cannot
be interpreted independently of the underlying sampling strategy. As
our classification experiments show, this also implies that the feature
approximations used for training a classifier must stem from the same
sampling strategy as those used for the actual classification tasks.
As a side result we show that classifiers trained with feature values ap-
proximated by Sobol’ sequences achieve higher accuracy than any of the
standard sampling techniques. This may indicate improvement potential
for ELA-trained machine learning models.

Keywords: Exploratory Landscape Analysis · Automated Algorithm
Design · Black-Box Optimization · Feature Extraction

1 Introduction

The impressive advances of machine learning (ML) techniques are currently shak-
ing up literally every single scientific discipline, often in the function to support
decisions previously requiring substantial expert knowledge by recommendations
that are derived from automated data-processing techniques. Computer science
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is no exception to this, and an important application of ML is the selection and
configuration of optimization heuristics [11,13,31], where automated techniques
have proven to yield tremendous efficiency gains in several classic optimization
tasks, including SAT solving [34] and AI planning [33].

In the context of numerical optimization, supervised learning approaches are
particularly common [16,3,24]. These methods often build on features developed
in the context of fitness landscape analysis [18,26], which aims at quantifying
the characteristics of an optimization problem through a set of features. More
precisely, a feature maps a function (the optimization problem) f : S ⊆ Rd → R
to a real number. Such a feature could measure, for example, the skewness of f ,
its multi-modality, or its similarity to a quadratic function.

In practice, many numerical optimization problems are black-box problems,
i.e., they are not explicitly modeled but can be accessed only through the evalu-
ation of samples x ∈ S. Hyper-parameter optimization is a classical example for
such an optimization task for which we lack an a priori functional description.
In these cases, i.e., when f is not explicitly given, the feature values need to be
approximated from a set of (x, f(x)) pairs. The approximation of feature values
through such samples is studied under the notion of exploratory landscape anal-
ysis (ELA [22]). ELA has been successfully applied, for example, in per-instance
hyperparameter optimization [3] and in algorithm selection [16]. When applying
ELA to a black-box optimization problem, the user needs to decide how many
samples to take and how to generate these.

When the functions are fast to evaluate, a typical recommendation is to
use around 50d samples [14]. For costly evaluations, in contrast, one has to
resort to much fewer samples [2]. It is well known that the quality of the feature
approximation depends on the sample size. Several works have investigated how
the dispersion of the feature approximation decreases with increasing sample
size, see [29,27] and references mentioned therein. The recommendation made
in [14] is meant as a compromise between a good accuracy of the feature value
and the computational effort required to approximate it.

Interestingly, the question which sampling strategy to use is much more
widely open. In the context of ELA, the by far most commonly used strategies
are uniform sampling (see, e.g. [23,3]) and Latin Hypercube Sampling (LHS,
see, e.g., [14,16]). These two strategies are also predominant in the broader ML
context, although a few works discussing alternative sampling techniques exist
(e.g., [30]). A completely different approach, which we do not further investigate
in this work, but which we mention for the sake of completeness, is to compute
feature values from the search trajectory of an optimization heuristic. Examples
for such approaches can be found in [5,12]. Note though, that such trajectory-
based feature value approximations are only applicable when the user has the
freedom to chose the samples from which the feature values are computed, a
prerequisite not always met in practice.

We share in this work the interesting observation that the feature value
approximations obtained from different sampling methods do not con-
verge to the same values. Put differently, the feature values are not absolute,
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but strongly depend on the distribution from which the (x, f(x)) pairs have been
sampled. This finding is in sharp contrast to what seems to be common belief
in the community. For example, it is argued in Saleem et al. [29, page 81] that
“As N [the sample size] →∞ the feature Φi approaches a true value”. We show
in this work that no such “true value” exist: the feature values cannot be in-
terpreted as stand-alone measures, but only in the context of the samples from
which they are approximated.

Our observation has the undesirable side effect that machine-trained models
achieve peak performance only when the sampling method applied to train the
models was identical to the method used to approximate the feature values for
the problem under consideration. Since the latter can often not be sampled
arbitrarily (e.g., because we are forced to use existing evaluations), this implies
that one might have to re-do a training ensemble from scratch. In application
where we are free to chose the samples (x, f(x)), we need to ensure to store and
share the points (or at least the distributions) that were used to approximate the
feature values for the training data. Also, when using feature values to compare
problems (see [8,7] for examples), one needs to pay particular attention that the
differences in feature values are indeed caused by the function properties, and
not by the sampling technique.

Given the sensitivity with respect to the sampling distribution, one may worry
that even the random number generator may have an impact on the feature value
approximations. On a more positive note than the results described above, we
show that this is not the case. More precisely, we show that uniform sampling
based on two very different random number generators, Mersenne Twister and
RANDU, respectively, give comparable results.

Another observation that we share with this paper is the fact that sampling
strategies different from uniform and LHS sampling seem worth further investi-
gation. More precisely, we show that classifiers trained with feature values that
are approximated from samples generated by Sobol’s low-discrepancy sequences
perform particularly well on our benchmark problems. This challenges the state-
of-the-art sampling routines used in ELA, and raises the question whether prop-
erties such as low discrepancy, good space-filling designs, or small stochastic
dispersion correlate favorably with good performance in supervised learning.

Reproducibility: The landscape data used for our analysis as well as several
plots visualizing it are available at [28].

2 The Impact of Low Feature Robustness on
Classification Accuracy

Instead of directly measuring and comparing the dispersion and the modes of
the feature value approximation, we consider their impact on the accuracy in
a simple classification task. We believe this approach offers a very concise way
to demonstrate the effects that the different sampling strategies can have in
the context of classical ML tasks. The classification task and its experimental
setup is described in Sec. 2.1. We then briefly comment on the distribution of
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the feature values (Sec. 2.2), on the classifiers (Sec. 2.3), and on the sampling
strategies (Sec. 2.4). The impact of the low feature value robustness will then
be discussed in Sec. 2.5, whereas all discussions related to the impact of the
sampling strategy are deferred to Sec. 3.

2.1 Classification of BBOB Functions

We consider the 24 BBOB functions that form the set of noiseless problems
within the COCO (Comparing Continuous Optimisers) platform [9], a standard
benchmark environment for numerical black-box optimization. For each BBOB
problem we take the first instance of its 5-dimensional version. Each of these
instances is a real-valued function f : [−5, 5]5 → R. The choice of dimension and
instance are not further motivated, but are identical to those made in [27], for
better comparability.

For the feature approximation, we sample for each of the 24 functions f a
number n of random points x(1), . . . , x(n), and we evaluate their function val-
ues f(x(1)), . . . , f(x(n)). The pairs (x(i), f(x(i)))ni=1 are then fed to the flacco
package [15], which returns a vector of 46 features.4 We repeat this procedure
100 independent times, each time sampling from the same random distribution.
This leaves us with 100 feature vectors per each function. From this set we use
50 uniformly chosen feature vectors (per function) for training a classifier that,
given a previously unseen feature vector, shall output which of the 24 functions
it is faced with. We test the classifier with all 50 feature vectors that were not
chosen for the training, and we record the average classification accuracy, which
we measure as the fraction of correctly attributed function labels. We apply 50
independent runs of this uniform random sub-sampling validation, i.e., we re-
peat the process of splitting the 24 × 100 feature vectors into 24 × 50 training
instances and 24× 50 test instances 50 independent times.

To study the effects of the sample size, we conduct the above-described ex-
periment for three different values of n: n = 30, n = 300, and n = 55 = 3125.

The BBOB functions are designed to cover a broad spectrum of numerical
problems found in practice. They are therefore meant to be quite different in
nature. Visualizations of the functions provided in [10] support this motive. We
should therefore expect to see very good classification accuracy, even with non-
tuned off-the-shelf classifiers.

2.2 Feature Value Distributions

Fig. 1 shows the distribution of the feature value approximations for one par-
ticular feature, which measures the adjusted fit to a linear model (observe that

4 Note here that flacco covers 343 features in total, which are grouped into 17 feature
sets [13]. However, following the discussion in [27] we only use 6 of these sets: dis-
persion (disp), information content (ic), nearest better clustering (nbc), meta model
(ela meta), y-distribution (ela distr), and principal component analysis (pca).
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Fig. 1. Distribution of the approximations for the ela meta.lin simple.adj r2 feature
value, for 100 independently drawn LHS designs of n = 300 (blue) and n = 3125
(red) samples. Each row corresponds to one of the 24 BBOB functions. The black bars
indicate the median value of the n = 3125 data.

function 5 is correctly identified as a linear slope with an R2 value of 1). Results
are shown for n = 300 (blue) and n = 3125 (red) LHS samples.

We observe that the median values (black bars) of the single feature plotted
in Fig. 1 are already quite diverse, i.e. – taking a few exceptions aside – they
show fairly large pairwise distances. However, we also see that the dispersion of
the approximated feature values is large enough to require additional features for
proper classification. We also see that, in line with observations made in [29,27],
the dispersion of the approximations reduces with increasing sample size.

2.3 Classifiers: Decision Trees and KNN

All the classification experiments are made using the Python package scikit
learn [25, version 0.21.3]. Since we are not interested in our work to compare
accuracy of different classifiers, but rather aim at understanding the sensitivity
of the classification result with respect to the random feature value approxima-
tions, and since more sophisticated classifiers (in particular ensemble learning
methods such as random forests) tend to require more computational overhead,
we do not undertake any effort in optimizing the performance of these classifiers,
and resort to default implementations of two common, but fairly different, classi-
fication techniques instead. Concretely, we use K Nearest Neighbors (KNN)
(we use K = 5) and decision trees. We decided to run the experiments with
two different classifiers to analyze whether the effects observed for one method
also occur with the other one. This should help us avoid reporting classifier-
specific effects. For some selected results, we have performed a cross-validation
with 5 independent runs of a random forest classifier, and found that – while
the overall classification results are better than for KNN and decision trees – the
structure of the main results (precisely, the results reported in Fig. 4) is very
similar to that of the two classifiers discussed below.
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2.4 Sampling Designs

As mentioned previously, the two most commonly used sampling strategies in
feature extraction, and more precisely in exploratory landscape analysis, are
Latin Hypercube Sampling (LHS) and uniform random sampling. To analyze
whether the sensitivity of the random feature value approximations depend on
the strategy, we investigate a total number of five different sampling strategies,
which we briefly summarize in this section.

Uniform Sampling We compare uniform random sampling based on two differ-
ent pseudo-random number generators:
- random: We report under the name random results for the Mersenne
Twister [20] random number generator. This generator is commonly used by
several programming languages, including Python, C++, and R. It is widely
considered to be a reliable generator.
- RANDU: we compare the results to those for the linear congruential number
generator RANDU. This generator is known to have several deficits such as an
inherent bias that results in the numbers falling into parallel hyper-planes [17].
We add this generator to investigate whether the quality of the random sam-
pling has an influence on the feature value approximations and to understand (in
Sec. 3) whether apart from the sampling strategy also the random number gen-
erator needs to be taken into account when transferring ELA-trained ML-models
to new applications.

Latin Hypercube Sampling (LHS) LHS [21] is a commonly used quasi-random
method to generate sample points for computer experiments. In LHS, new points
are sampled avoiding the coordinates of the previously sampled points. More
precisely, the range of each coordinate is split into n equally-sized intervals.
From the resulting n × . . . × n grid the points are chosen in a way that each
one-dimensional projection has exactly one point per interval.
- LHS: Our first LHS designs are those provided by the pyDOE Python package
(version 0.3.8). We use the centered option, which takes the middle point of each
selected cube as sample.
- iLHS: The “improved” LHS (iLHS) designs available in flacco. This strategy
builds on work of Beachofski et Grandhi [1]. Essentially, it implements a greedy
heuristic to choose the next points added to the design. At each step, it first
samples a few random points, under the condition of not violating the Latin
Hypercube design. From these candidates the algorithm chooses the one whose
distance to its nearest neighbor is closest to the ideal distance n/ d

√
n.

Sobol’s low-discrepancy sequence We add to our investigation a third type of
sampling strategies, the sequences suggested by Sobol’ in [32]. Sobol’ sequences
are known to have small star discrepancy, a property that guarantees small ap-
proximation errors in several important numerical integration tasks. The inter-
ested reader is referred to [6,19] for an introduction to these important families
of quasi-random sampling strategies.
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Fig. 2. Classification accuracy by sampling strategy, sample size, and classifier
(left=KNN, right=decision trees). Note the different scale of the y-axes.

For our experiments we generate the Sobol’ sequences from the Python pack-
age sobol seq (version 0.1.2), with randomly chosen initial seeds.

2.5 Classification Accuracy

Fig. 2 reports the distribution of the classification accuracy achieved by each of
the five sampling strategies, when training and testing uses the same sampling
strategy. The results on the left are for KNN classifiers, the ones on the right
for decision trees. The absolute value of the medians can be inferred from Fig. 4
(which we will discuss in Sec. 3). As expected, we see higher classification ac-
curacy with increasing sample size. We also observe that the KNN results are
slightly (but with statistical significance) worse than those of the decision trees.
Recall, however, that this is not a focus of our search, and no fine-tuning was
applied to the classification methods. Comparison between the two classifiers
should therefore only be taken with great care.

For KNN we nicely observe that the dispersion of the classification error
reduces with increasing sample size. This aligns with the reduced variance of the
feature value approximations discussed in Sec. 2.2. For the decision tree classifier
the dispersion of the classification accuracy reduces significantly from 30 to 300
samples, but then stagnates when increasing further to 3125 samples.

No substantial differences between the two random number generators can
be observed. For LHS, in contrast, the centered sampling method yields consid-
erably worse classification accuracy than iLHS.

Finally, we also observe that in each of the six reported (classifier, sample
size) combinations the median and also the average (not plotted) classification
accuracy of the Sobol’ sampling strategy is largest, with box plots that are well
separated from those of the other sampling strategies, in particular for n ≤ 300
samples. Kolmogorov-Smirnov tests confirm statistical significance in almost all
cases. We omit a detailed discussion, for reasons of space.
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Fig. 3. Distribution of feature value approximations for the nbc.dist ratio.coeff var
feature (left) and ic.h max feature (right). Results are for 100 independent evaluations
of n = 3125 samples generated by LHS, random, and Sobol’ generators, respectively.

The good performance of Sobol’ sampling suggests to question the state of the
art in feature extraction, which considers uniform and LHS designs as default.
Interestingly, our literature research revealed that Sobol’ points were already
recommended in the book of Santner et al. [30]. It is stated there that Sobol’
sequences may enjoy less popularity in ML because of their slightly more involved
generation. Santner et al. therefore recommend LHS designs as fall-back option
for large sample sizes. Our data, however, does not support this suggestion, and
the (very small) advantages of the random sampling strategies over iLHS are
indeed statistically significant.

3 The Sampling Strategy Matters

Following the discussion above, it seems plausible to believe that the differences
in classification accuracy is mostly caused by the dispersion of the feature value
approximations. However, while this is true when we compare results for different
sample sizes, we will show in this section that dispersion is not the main driver
for differences between the tested sampling strategies.

Fig. 3 plots the distribution of feature value approximations for two of our
46 features. It illustrates an effect which came as a big surprise to us. Whereas
features are typically considered to have an absolute value (see the examples
mentioned in the introduction), we observe here that the results very strongly
depend on the sampling strategy. For the feature values displayed on the left, not
only do the distributions have different medians and means, but they are even
non-overlapping. This behavior is consistent for the different sample sizes (not
plotted here). While this chart on the left certainly displays an extreme case,
the same effect of convergence against different feature values can be observed
for a large number of features (but not always for all functions or all different
sampling strategies), as we can observe in the right chart of Fig. 3. The latter
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Fig. 4. Heatmaps of median classification accuracy for KNN (top) and decision trees
(bottom), for feature values approximated by 30 search points (left), 300 search points
(middle), and 3125 search points (right), respectively.

also squashes hopes for simple translation of feature values from one sampling
strategy to another one: looking at functions 10 and 12, for example, we see
that random and Sobol’ sampling yield similar feature values for both functions,
whereas those approximated by LHS sampling are much larger for f10 as for f12.
We thus observe that the interpretation of a feature value cannot be
carried out without knowledge of the sampling strategy.

We investigate the impact of the strategy-dependent feature values by per-
forming the following classification task. We use the same feature values as gen-
erated for the results reported in Sec. 2, but we now train the classifiers with
the feature value approximations obtained from one sampling strategy, and we
track the classification accuracy when tested with feature value approximations
obtained by one of the other strategies. Apart from this twist, the experimental
routine is the same as the one described in Sec. 2.1.

The heatmaps in Fig. 4 display the median classification accuracy of the
25 possible combinations of training and testing sampling strategies. We show
results for all three sample sizes, n = 30 (left), n = 300 (middle), and n =
3125 (right). Rows correspond to the training strategy, the columns to the test
strategy; the diagonals therefore correspond to the data previously discussed in
Sec. 2.5. KNN data is shown in the top, those for decision trees on the bottom.

For sample size n = 300 and n = 3 125 the best or close-to-best classifica-
tion accuracy is achieved when the sampling strategy for the testing instances
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is identical to that of the training instances. This is independent of the clas-
sifier. Interestingly, this observation does not apply to the case with n = 30
samples, where, e.g., the KNN classifiers trained with LHS data achieve better
accuracy with iLHS feature approximations (86.5%) than with LHS approxi-
mations (85.1%). The same holds for the classifiers trained with data from the
random sampling strategy (for both random number generators). The differences
between the different training and test data combinations, however, are rather
small in these cases. In addition, the dispersion of the classification accuracies
are relatively large for n = 30 samples, with ranges that are very similar to those
plotted in Fig. 2. We also recall that the overall classification accuracy, in light
of the high diversity of the 24 BBOB functions, is not as good as it may seem
at the first glance.

We also observe that, for n = 30, the KNN classifiers (except for the Sobol’-
trained ones) perform best when tested with iLHS test samples, whereas for
decision trees we see better results with Sobol’ test data. This however, applies
only to the case n = 30, as we shall discuss in the following.

Moving on to the cases n ≥ 300, we observe that – in line with the observation
made in Fig. 2 – the average classification accuracy increases significantly, to
values well above 90%, with a few notable exceptions: The poor accuracy of
LHS both as test and as training instances stands out, but is consistent for both
classifiers, and both sample sizes n = 300 and n = 3 125. Albeit not as bad, the
Sobol’-approximated feature values also lead to comparatively poor performance
on almost all classifiers not trained with Sobol’-approximations (an exception
are the iLHS-trained KNN classifiers using n = 300 samples). Consistent to this,
the Sobol’-trained classifiers have low classification accuracy when tested with
feature values from the other four strategies. While this effect is most noticeable
for the decision tree classifiers, it also applies to KNN. A closer inspection of the
feature value approximations reveals that those for iLHS, random sampling, and
Randu are much more alike to each other than to the LHS or Sobol’ features.
For 947 = 43% of all 24 × 46 (function, feature) pairs, the median of the LHS
feature values with n = 3125 samples is either smaller or larger than that of
the other strategies. For Sobol’ points, this value is 725 = 33%. Of course, this
just gives a first impression. Plots similar to Figure 3 provide much more details;
they are available for all features at [28]. A thorough investigation into why these
differences exist forms an important next step for our research, cf. Sec. 5.

Given that we use the centered option for the LHS strategy (see Sec. 2.4), one
might be tempted to think that the LHS-approximations are more concentrated
than those of the other sampling strategies. This, however, cannot be confirmed
by our data: the dispersion of the LHS approximations is comparable to that of
the other strategies.

Finally, we observe that the two random strategies show high inter-strategy
classification accuracy. Their feature approximations work furthermore quite well
with classifiers trained on iLHS data. However, while all of the results reported
above also apply to average (instead of median) classification accuracy, the aver-
age classification error of the iLHS-trained KNN-classifiers is considerably worse
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Fig. 5. Average classification result across 50 independently iLHS-trained KNN classi-
fiers, each tested with 50 Sobol’ feature value approximations using n = 30 evaluations.
Numbers are provided for > 1% probabilities only.

for (Mersenne-Twister) random feature value approximations than for those ob-
tained from Randu (91.4% vs. 94.0% accuracy for n = 300 and 91.7% vs. 98%
for n = 3125 samples).

4 Confusion Matrices

The results reported in the previous sections were all aggregated over the 24
functions from the BBOB benchmark set. In Fig. 5 we analyze which functions
are misclassified most frequently, and by which functions they are confused with.
The matrix shows results for the 50 KNN classifiers trained with iLHS feature
approximations and tested with Sobol’ data (50 tests per classifier), for n = 30
sample points. We recall from Fig. 4 that the median classification accuracy of
this combination is 84.2%. This is also the average accuracy.

Most functions are correctly classified with probability at least 80%. For
twelve functions we observe at least 95% accuracy. Only four functions (9-11,
18) are misclassified with probability ≥ 30%, and those are typically confused
by the same one or two other functions. Function 2, for example, is misclassified
as function 11 in 12% of the tests.

We do not show the confusion matrices for the other 3×25 cases, but note that
– overall – the patterns are quite consistent across all KNN classifiers. Naturally,
the concentration on the diagonal increases with larger sample sizes. We also see
a higher concentration for the mis-classifications as well. For example, in the
same iLHS-Sobol’ setting as above with n = 3125 samples 15 functions have
accuracy ≥ 95%, and only five function pairs with mis-classification rate ≥ 5%
are observed. Four of these occur with probability ≤ 8%. One mis-classification
stands out: function 9 is classified as function 20 in 93% of the cases.
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For decision trees, the structure of the confusion matrices is similar to those of
KNN for n = 30 samples. For n = 3125 samples, however, the mis-classifications
are much more scattered across several function pairs.

Without going further into details, we note that these results can be used to
understand deficits of the benchmark sets (frequent confusion of two functions
could indicate some problems are quite alike), of the selected features (if they
do not capture major differences between two structurally different functions),
and the classifiers (e.g., the scattered confusion matrix of the decision trees for
n = 3125 samples).

5 Conclusions

We have analyzed the impact of the stochasticity inherent to feature value ap-
proximations on the use of exploratory landscape analysis in classic ML tasks.
Our key findings are the following.

(1) ELA features are not absolute, but should be interpreted only
in the context of the sampling strategy. As an important consequence of
this observation, we derive the recommendation that the sampling strategy of
the training data should match the sampling strategy of the test data. Note that
this also implies more data needs to be shared to obtain reproducible and/or
high quality results.

(2) The good results achieved by the classifiers trained with Sobol’
samples suggests to revive a recommendation previously made by
Santner et al. [30], and to further investigate this sampling strategy
in the context of other feature extraction tasks, i.e., beyond appli-
cations in exploratory landscape analysis. In this context, it would also
be worthwhile to study other low-discrepancy constructions, which are recently
gaining interest in the broader ML context, e.g., in the context of one-shot op-
timization (the task of optimizing a black-box problem through the best of n
parallel samples, see [4] and references therein). Whether good performance in
one-shot optimization correlates with a good approximation of feature values
forms another interesting avenue for future work.

While we have focused in this work on classification accuracy only, we are also
planning on a more detailed analysis of the feature approximations themselves.
In particular, we aim at understanding a functional relationship between the
sampling strategies and their feature value approximations. This shall help us
identify correction methods that translate values obtained from one sampling
strategy to another. This, ultimately, may help us by-pass the need for sample-
specific training.

We also believe that the confusion matrices such as the one in Fig. 5 should
be explored further, to understand which BBOB instances are more alike than
others. Such information can be useful for instance selection and generation.
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