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Abstract. Design of experiments, random search, initialization of
population-based methods, or sampling inside an epoch of an evolution-
ary algorithm use a sample drawn according to some probability dis-
tribution for approximating the location of an optimum. Recent papers
have shown that the optimal search distribution, used for the sampling,
might be more peaked around the center of the distribution than the
prior distribution modelling our uncertainty about the location of the
optimum. We confirm this statement, provide explicit values for this re-
shaping of the search distribution depending on the population size λ
and the dimension d, and validate our results experimentally.

1 Introduction

We consider the setting in which one aims to locate an optimal solution x∗ ∈ Rd
for a given black-box problem f : Rd → R through a parallel evaluation of λ
solution candidates. A simple, yet effective strategy for this one-shot optimiza-
tion setting is to choose the λ candidates from a normal distribution N (µ, σ2),
typically centered around an a priori estimate µ of the optimum and using
a variance σ2 that is calibrated according to the uncertainty with respect to
the optimum. Random independent sampling is – despite its simplicity – still
a very commonly used and performing good technique in one-shot optimiza-
tion settings. There also exist more sophisticated sampling strategies like Latin
Hypercube Sampling (LHS [20]), or quasi-random constructions such as Sobol,
Halton, Hammersley sequences [7,18] – see [2,6] for examples. However, no gen-
eral superiority of these strategies over random sampling can be observed when
the benchmark set is sufficiently diverse [4]. It is therefore not surprising that
in several one-shot settings – for example, the design of experiments [21,19,13,1]
or the initialization (and sometimes also further iterations) of evolution strate-
gies – the solution candidates are frequently sampled from random independent
distributions (though sometimes improved by mirrored sampling [27]). A sur-
prising finding was recently communicated in [6], where Cauwet et al. consider
the setting in which the optimum x∗ is known to be distributed according to
a standard normal distribution N (0, Id), and the goal is to minimize the dis-
tance of the best of the λ samples to this optimum. In the context of evolution
strategies, one would formulate this problem as minimizing the sphere function
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with normally distributed optimum. Intuitively, one might guess that sampling
the λ candidates from the same prior distribution, N (0, Id), should be optimal.
This intuition, however, was disproved in [6], where it is shown that – unless the
sample size λ grows exponentially fast in the dimension d – the median quality
of sampling from N (0, Id) is worse than that of sampling a single point, namely
the center point 0. A similar observation was previously made in [22], without
mathematically proven guarantees.

Our Theoretical Result. It was left open in [6] how to optimally scale the vari-
ance σ2 when sampling the λ solution candidates from a normal distribution
N (0, σ2Id). While the result from [6] suggests to use σ = 0, we show in this
work that a more effective strategy exists. More precisely, we show that set-
ting σ2 = min{1, Θ(log(λ)/d)} is asymptotically optimal, as long as λ is sub-
exponential, but growing in d. Our variance scaling factor reduces the median
approximation error by a 1 − ε factor, with ε = Θ(log(λ)/d). We also prove
that no constant variance nor any other variance scaling as ω(log(λ)/d) can
achieve such an approximation error. Note that several optimization algorithms
operate with rescaled sampling. Our theoretical results therefore set the math-
ematical foundation for empirical rules of thumb such as, for example, used in
e.g. [22,9,17,10,8,28,6].

Our Empirical Results. We complement our theoretical analyses by an empirical
investigation of the rescaled sampling strategy. Experiments on the sphere func-
tion confirm the results. We also show that our scaling factor for the variance
yields excellent performance on two other benchmark problems, the Cigar and
the Rastrigin function. Finally, we demonstrate that these improvements are not
restricted to the one-shot setting, but extend to iterative optimization strate-
gies. More precisely, we show a positive impact on the initialization of Bayesian
optimization algorithms [15] and on differential evolution [25].

Related Work. While the most relevant works for our study have been mentioned
above, we briefly note that a similar surprising effect as observed here is the
“Stein phenomenon” [24,14]. Although an intuitive way to estimate the mean of
a standard gaussian distribution is to compute the empirical mean, Stein showed
that this strategy is sub-optimal w.r.t. mean squared error and that the empirical
mean needs to be rescaled by some factor to be optimal.

2 Problem Statement and Related Work

The context of our theoretical analysis is one-shot optimization. In one-shot
optimization, we are allowed to select λ points x1, . . . , xλ ∈ Rd. The quality f(xi)
of these points is evaluated, and we measure the performance of our samples in
terms of simple regret [5] mini=1,...,λ f(xi) − infx∈Rd f(x).1 That is, we aim to

1 This requires knowledge of infx f(x), which may not be available in real-world ap-
plications. In this case, the infimum can be replaced by an empirical minimum. In
all applications considered in this work the value of infx f(x) is known.
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minimize the distance – measured in quality space – of the best of our points to
the optimum. This formulation, however, also covers the case in which we aim
to minimize the distance to the optimum in the search space: we simply take as
f the root of the sphere function fx∗ : Rd → R, x 7→ ||x− x∗||2, where here and
in the following ||.|| denotes the Euclidean norm.

Rescaled Random Sampling for Randomly Placed Optimum. In the setting stud-
ied in Sec. 3 we assume that the optimum x∗ is sampled from the standard
multivariate Gaussian distribution N (0, Id), and that we aim to minimize the
regret mini=1,...,λ ||xi − x∗||2 through i.i.d. samples xi ∼ N (0, σ2Id). That is, in
contrast to the classical design of experiments (DoE) setting, we are only al-
lowed to choose the scaling factor σ, whereas in DoE more sophisticated (often
quasi-random and space-filling designs – which are typically not i.i.d. samples)
are admissible. Intuitively, one might be tempted to guess that σ = 1 should be
a good choice, as in this case the λ points are chosen from the same distribution
as the optimum x∗. This intuition, however, was refuted in [6, Theorem 1], where
is was shown that the middle point sampling strategy, which uses σ = 0 (i.e., all
λ points collapse to (0, . . . , 0)) yields smaller regret than sampling from N (0, Id)
unless λ grows exponentially in d. More precisely, it is shown in [6] that, for this
regime of λ and d, the median of ||x∗||2 is smaller than the median of ||xi−x∗||2
for i.i.d. xi ∈ N (0, Id). This shows that sampling a single point can be better
than sampling λ points with the wrong scaling factor, unless the budget λ is
very large.
Our goal is to improve upon the middle point strategy, by deriving a scaling fac-
tor σ such that the λ i.i.d. samples yield smaller regret with a decent probability.
More precisely, we aim at identifying σ such that

P
[

min
1≤i≤λ

||xi − x∗||2 ≤ (1− ε)||x∗||2
]
≥ δ, (1)

for some δ ≥ 1/2 and ε > 0 as large as possible. Here, in line with [6], we have
switched to regret, for convenience of notation. [6] proposed, without proof, such
a scaling factor: our proposal is dramatically better in some regimes.

3 Theoretical Results

We derive sufficient and necessary conditions on the scaling factor σ such that
Eq. (1) can be satisfied. More precisely, we prove that Eq. (1) holds with ap-
proximation gain ε ≈ log(λ)/d when the variance σ2 is chosen proportionally to
log λ/d (and λ does not grow too rapidly in d). We then show that Eq. (1) can-
not be satisfied for σ2 = ω(log(λ)/d). Moreover, we prove that ε = O(log(λ)/d),
which, together with the first result, shows that our scaling factor is asymptoti-
cally optimal. The precise statements are summarized in Theorems 1, 2, and 3,
respectively. Proof sketches are available in Sec. 3.1. Full proofs are left in the
appendix.
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Theorem 1. (Sufficient condition on rescaling) Let δ ∈ [ 1
2 , 1). Let λ = λd,

satisfying λd → ∞ as d → ∞ and log(λd) ∈ o(d) (2). Then there exist
two positive constants c1, c2, and d0, such that for all d ≥ d0 it holds that
P
[
mini=1,...,λ ||x∗ − xi||2 ≤ (1− ε) ||x∗||2

]
≥ δ (3) when x∗ is sampled from the

standard Gaussian distribution N (0, Id), x1, . . . , xλ are independently sampled
from N (0, σ2Id) with σ2 = σ2

d = c2 log(λ)/d and ε = εd = c1 log(λ)/d.

Theorem 1 shows that i.i.d. Gaussian sampling can outperform the middle-point
strategy derived in [6] (i.e., the strategy using σ2 = 0) if the scaling factor
σ is chosen appropriately. Our next theorem summarizes our findings for the
conditions that are necessary for the scaling factor σ2 to outperform this middle-
point strategy. This result, in particular, illustrates why neither the natural
choice σ = 1, nor any other constant scaling factor can be optimal.

Theorem 2. (Necessary condition on rescaling) Consider λ = λd satisfying
assumptions (2). There exists an absolute constant C > 0 such that for all
δ ∈ [ 1

2 , 1), there exists d0 > 0 such that, for all d > d0 and for all σ the property
∃ε > 0,P

[
mini=1,...,λ ||x∗ − xi||2 ≤ (1− ε) ||x∗||2

]
≥ δ (4) for x∗ ∼ N (0, Id) and

x1, . . . , xλ independently sampled from N (0, σ2Id), implies that σ2 ≤ C log(λ)/d.

While Theorem 2 induces a necessary condition on the scaling factor σ to improve
over the middle-point strategy, it does not bound the gain that one can achieve
through a proper scaling. Our next theorem shows that the factor derived in
Theorem 1 is asymptotically optimal.

Theorem 3. (Upper bound for the approximation factor) Consider λ = λd sat-
isfying assumptions (2). There exists an absolute constant C ′ > 0 such that for
all δ ∈ [ 1

2 , 1), there exists d0 > 0 such that, for all d > d0 and for all ε, σ > 0,
it holds that if P

[
mini=1,...,λ ||x∗ − xi||2 ≤ (1− ε) ||x∗||2

]
≥ δ for x∗ ∼ N (0, Id)

and x1, . . . , xλ independently sampled from N (0, σ2Id), then ε ≤ C ′ log(λ)/d.

3.1 Proof Sketches

We first notice that as x∗ is sampled from a standard normal distribution
N (0, Id), its norm satisfies ||x∗||2 = d + o(d) as d → ∞. We then use that,
conditionally to x∗, it holds that

P
[
mini∈[λ] ||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣x∗] = 1−
(
1− P

[
||x− x∗||2 ≤ (1− ε) ||x∗||2

∣∣x∗])λ
We therefore investigate when the condition

P
[
||x− x∗||2 ≤ (1− ε) ||x∗||2

∣∣x∗] > 1− (1− δ) 1
λ (5)

is satisfied. To this end, we make use of the fact that the squared distance ||x∗||2
of x∗ to the middle point 0 follows the central χ2(d) distribution, whereas, for a
given point x∗ ∈ Rd, the distribution of the squared distance ||x − x∗||2/σ2 for
x ∼ N (0, σ2Id) follows the non-central χ2(d, µ) distribution with non-centrality
parameter µ := ||x∗||2/σ2. Using the concentration inequalities provided in [29,
Theorem 7] for non-central χ2 distributions, we then derive sufficient and neces-
sary conditions for condition (5) to hold. With this, and using assumptions (2),
we are able to derive the results from Theorems 1, 2, and 3.
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Fig. 1. Average regret, normalized by d, on the sphere func-
tion for various dimensions and budgets in terms of rescaled
standard deviation. Each mean has been estimated from
100, 000 samples. Table on the right: Average regret for σ∗ =√

log(λ)/d and σ = 1.

d λ σ∗ σ = 1

20
100 0.73 0.88
500 0.63 0.72
1000 0.59 0.66

50
100 0.89 1.23
500 0.83 1.10
1000 0.81 1.05

100
100 0.94 1.44
500 0.91 1.33
1000 0.90 1.29

150
100 0.96 1.53
500 0.94 1.44
1000 0.93 1.41

500
100 0.99 1.74
500 0.98 1.68
1000 0.98 1.66

4 Experimental Performance Comparisons

The theoretical results presented above are in asymptotic terms, and do not
specify the constants. We therefore complement our mathematical investigation
with an empirical analysis of the rescaling factor. Whereas results for the setting
studied in Sec. 3 are presented in Sec. 4.1, we show in Sec. 4.2 that the advantage
of our rescaling factor is not limited to minimizing the distance in search space.
More precisely, we show that the rescaled sampling achieves good results also in
a classical DoE task, in which we aim for minimizing the regret for the Cigar
and for the Rastrigin functions. Finally, we investigate in Sec. 4.3 the impact
of initializing two common optimization heuristics, Bayesian Optimization (BO)
and differential evolution (DE), by a population sampled from the Gaussian
distribution N (0, σ2Id) using our rescaling factor σ =

√
log(λ)/d.

4.1 Validation of Our Theoretical Results on the Sphere Function

Fig. 1 displays the normalized average regret 1
dE
[
mini=1,...,λ ||x∗ − xi||2

]
in

terms of σ/
√

log(λ)/d for different dimensions and budgets. We observe that

the best parametrization of σ is around
√

log(λ)/d in all displayed cases. More-
over, we also see that – as expected – the gain of the rescaled sampling over the
midpoint sampling (σ = 0) goes to 0 as d→∞. We also see that, for the regimes
plotted in Fig. 1, the advantage of the rescaled variance grows with the budget λ.
Figure 2 (on left) displays the average regret as a function of increasing values
of λ for the different rescaling methods (σ ∈ {0,

√
log λ/d, 1}). We remark, un-

surprisingly, that the gain of rescaling is diminishing as λ→∞. Finally, Figure 2
(on right) shows the distribution of regrets for the different rescaling methods.
The improvement of the expected regret is not at the expense of a higher dis-
persion of the regret.
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Fig. 2. Comparison of methods: without rescaling (σ = 1), midpoint sampling (σ = 0),

and our rescaling method (σ =
√

log λ
d

). Each mean has been estimated from 105

samples. (On left) Average regret, normalized by d, on the sphere function for diverse
population sizes λ at fixed dimension d = 20. The gain of rescaling decreases as λ
increases. (On right) Distribution of the regret for the strategies on the 50d-sphere
function for λ = 1000.

Fig. 3. Comparison of various one-shot optimization methods from the point of view
of the simple regret. Reading guide in Sec. 4.2. Results are averaged over objective
functions Cigar, Rastrigin, Sphere in dimension 20, 200, 2000, and budget 30, 100,
3000, 10000, 30000, 100000. MetaTuneRecentering performs best overall. Only the 30
best performing methods are displayed.

4.2 Comparison with the DoEs Available in Nevergrad

Motivated by the significant improvements presented above, we now investigate
whether the advantage of our rescaling factor translates to other optimization
tasks. To this end, we first analyze a DoE setting, in which an underlying (and
typically not explicitly given) function f is to be minimized through a parallel
evaluation of λ solution candidates x1, . . . , xλ, and regret is measured in terms
of mini f(xi) − infx f(x). In the broader machine learning literature, and in
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Sphere function Cigar function Rastrigin function

Fig. 4. Same experiment as Fig. 3, but separately over each objective function. Results
are still averaged over 6 distinct budgets (30, 100, 3000, 10000, 30000, 100000) and 3
distinct dimensionalities (20, 200, 2000). MetaTuneRecentering performs well in each
case, and is not limited to the sphere function for which it was derived. Variants of LHS
are sometimes excellent and sometimes not visible at all (only the 30 best performing
methods are shown).

particular in the context of hyper-parameter optimization, this setting is often
referred to as one-shot optimization [2,6].

Experimental Setup. All our experiments are implemented and freely available in
the Nevergrad platform [23]. Results are presented as shown in Fig. 3. Typically,
the six best methods are displayed as rows. The 30 best performing methods
are presented as columns. The order for rows and for columns is the same: al-
gorithms are ranked by their average winning frequency, measured against all
other algorithms in the portfolio. The heatmaps show the fraction of runs in
which algorithm x (row) outperformed algorithm y (column), averaged over all
settings and all replicas (i.e. random repetitions). The settings are typically
sweepings over various budgets, dimensions, and objective functions.2The num-
bers in the captions of the columns indicate the number of settings for which the
algorithms are compared against each other. That is, a bracket “(6/6)” is to be
read as “the winning frequencies are averaged over all six out of a total number
of six settings”. For each tested (algorithm, problem) pair 20 independent runs
are performed: a (6/6) case is thus based on a total number of 120 runs.

Algorithm Portfolio. Several rescaling methods are already available on Never-
grad. A large fraction of these have been implemented by the authors of [6]; in
particular:

• The replacement of one sample by the center. These methods are named
“midpointX” or “XPlusMiddlePoint”, where X is the original method that
has been modified that way.

• The rescaling factor MetaRecentering empirically derived in [6]: σ =
1+log(λ)
4 log(d) .

2 Detailed results for individual settings are available at http://dl.fbaipublicfiles.com/
nevergrad/allxps/list.html.

http://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
http://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
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Budget λ = 30 Budget λ = 100

Budget λ = 3000 Budget λ = 10000

Budget λ = 30000 Budget λ = 100000

Fig. 5. Results on the sphere function, per budget. Results are averaged over dimension
20, 200, 2000. Our method MetaTuneRecentering performs among the best in all cases.
LHS is excellent on this very simple setting, namely the sphere function.

• The quasi-opposite methods suggested in [22], with prefix “QO”: when x is
sampled, then another sample c − rx is added, with r uniformly drawn in
[0, 1] and c the center of the distribution.

We also include in our comparison a different type of one-shot optimization
techniques, independent of the present work, currently available in the platform:
they use the information obtained from the sampled points to recommend a
point x that is not necessarily one of the λ evaluated ones. These “one-shot+1”
strategies have the prefix “Avg”. We keep all these and all other sampling strate-
gies available in Nevergrad for our experiments. We add to this existing Nev-
ergrad portfolio our own rescaling strategy, which uses the scaling factor de-
rived in Sec. 3; i.e., σ =

√
log(λ)/d. We refer to this sampling strategy as

MetaTuneRecentering, defined below. Both scaling factors MetaRecentering [6]



Variance Reduction for Better Sampling in Continuous Domains 9

Dimension 20 Dimension 200 Dimension 2000

Fig. 6. Results on the sphere function, per dimensionality. Results are still averaged
over 6 values of the budget, namely 30, 100, 3000, 10000, 30000, 100000. Our method
becomes better and better as the dimension increases.

Dimension 20 Dimension 200

Dimension 2000 Dimension 20000

Fig. 7. Same context as Fig. 6, with x-axis = budget and y-axis = average simple
regret. We see the failure of MetaRecentering in the worsening performance as budget
goes to infinity: the budget has an impact on σ which becomes worse, hence worse
overall performance. We note that quasi-opposite sampling can perform decently in a
wide range of values. Opposite Sampling is not much better than random search in
high-dimension. Our MetaTuneRecentering shows decent performance: in particular,
simple regret decreases as λ→ ∞.

and MetaTuneRecentering (our equations) are applied to quasirandom sampling
(more precisely, scrambled Hammersley [13,1]) rather than random sampling. We
provide detailed specifications of these methods and the most important ones
below, whereas we skip the dozens of other methods: they are open sourced in
Nevergrad [23].

From [0, 1]d to Gaussian quasi-random, random or LHS sampling: Random sam-
pling, quasi-random sampling, Latin Hypercube Sampling (or others) have a well
known definition in [0, 1]d (for quasi-random, see Halton [12] or Hammersley [13],
possibly boosted by scrambling [1]; for LHS, see [19]). To extend to multidimen-
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sional Gaussian sampling, we use that if U is a uniform random variable on
[0, 1] and Φ the standard Gaussian CDF, then Φ−1(U) simulates a N (0, 1) dis-
tribution. We do so on each dimension: this provides a Gaussian quasi-random,
random or LHS sampling.

Then, one can rescale the Gaussian quasi-random sampling with the

corresponding factor σ for MetaRecentering (σ = 1+log(λ)
4 log(d) [6]) and

MetaTuneRecentering (σ =
√

log(λ)/d): for i ≤ λ and j ≤ d, xi,j = σφ−1(hi,j)
where hi,j is the jth coordinate of a ith Scrambled-Hammersley point.

Results for the Full DoE Testbed in Nevergrad. Fig. 3 displays aggregated results
for the Sphere, the Cigar, and the Rastrigin functions, for three different di-
mensions and six different budgets. We observe that our MetaTuneRecentering
strategy performs best, with a winning frequency of 80%. It positively compares
against all other strategies from the portfolio, with the notable exception of
AvgLHS, which, in fact, compares favorably against every single other strategy,
but with a lower average winning frequency of 73.6%. Note here that AvgLHS is
one of the “oneshot+1” strategies, i.e., it has not only one more sample, but
it is also allowed to sample its recommendation adaptively, in contrast to our
fully parallel MetaTuneRecentering strategy. It performs poorly in some cases
(Rastrigin) and does not make sense as an initialization (Sect. 4.3).

Selected DoE Tasks. Figs. 4 breaks down the aggregated results from Fig. 3 by
the three different functions. From this figure we see that MetaTuneRecentering
scores second on sphere (where AvgLHS is winning) , third on Cigar (after AvgLHS
and QORandom), and first on Rastrigin. This fine performance is quite remarkable,
given that the portfolio contains quite sophisticated and highly tuned methods.
In addition, the AvgLHS methods, sometimes performing better on the sphere,
besides using more capabilities than we do as it is a “oneshot+1” method, had
poor results for Rastrigin (not even in the 30 best methods). On sphere, the
difference to the third and following strategies is significant (87.3% winning rate
against 77.5% for the next runner-up). On Cigar, the differences between the first
four strategies are greater than 4 percentage points each, whereas on Rastrigin
the average winning frequencies of the first five strategies is comparable, but
significantly larger than that of the sixth one (which scores 78.8% against>94.2%
for the first five DoEs). Fig. 5 zooms into the results for the sphere function, and
breaks them further down by available budget λ (note that the results are still
averaged over the three dimensions 20, 200, 2000). MetaTuneRecentering scores
second in all six cases. A breakdown of the results for sphere by dimension (and
aggregated over the six available budgets) is provided in Fig. 6 and Fig. 7. For
dimension 20, we see that MetaTuneRecentering ranks third, but, interestingly,
the two first methods are “oneshot+1” style (Avg prefix). In dimension 200,
MetaTuneRecentering ranks second, with considerable advantage over the third-
ranked strategy (88.0% vs. 80.8%). Finally, for the largest tested dimension,
d = 2000, our method ranks first, with an average winning frequency of 90.5%.
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Fig. 8. Performance comparison of different strategies to initialize Bayesian Opti-
mization (BO, left) and Differential Evolution (DE, right). A detailed description is
given in Sec. 4.3. MetaTuneRecentering performs best as an initialization method. In
the case of DE, methods different from the traditional DE remain the best on this
testcase: when we compare DE with a given initialization and DE initialized with
MetaTuneRecentering, MetaTuneRecentering performs best in almost all cases.

4.3 Rescaled Sampling for Better Initialization of Iterative
Optimization Heuristics

We now move from the one-shot settings considered thus far to iterative opti-
mization, and show that our scaling factor can also be beneficial in this context.
More precisely, we analyze the impact of initializing efficient global optimization
(EGO [15], a special case of Bayesian optimization) and differential evolution
(DE [25]) by a population that is sampled from a distribution that uses our
variance scaling scheme. It is well known that a proper initialization can be very
critical for the performance of these solvers; see [11,26,22,16,3] for discussions.
Fig. 8 summarizes the results of our experiments. As in the previous setups, we
compare against existing methods from the Nevergrad platform, to which we
have just added our rescaling factor termed MetaTuneRecentering. For each
initialization scheme, four different initial population sizes are considered: de-
noting by d the dimension, by w the parallelism (i.e., the number of workers),
and by b the total budget that the algorithms can spend on optimizing the given
optimization task, the initial population λ is set as λ =

√
b for Sqrt, as λ = d for

Dim, λ = w for no suffix, and as λ = 30 when the suffix is 30. As in Sec. 4.2 we su-
perpose our scaling scheme on top of the quasi-random Scrambled Hammersley
sequence suggested in [6], but we also consider random initialization rather than
quasi-random (indicated by the suffix “R”) and Latin Hypercube Sampling [19]
(suffix “LHS”). The left chart in Fig. 8 is for the Bayesian optimization case. It
aggregates results for 48 settings, which stem from Nevergrad’s “parahdbo4d”
suite. It comprises the four benchmark problems Sphere, Cigar, Ellipsoid and
Hm. Results are averaged over the total budgets b ∈ {25, 31, 37, 43, 50, 60}, di-
mension d ∈ {20, 2000}, and parallelism w = max(d, bb/6c). The parallelism
is 20. We observe that a BO version using our MetaTuneRecentering per-
forms best, and that several other variants using this scaling appear among
the top-performing configurations. The chart on the right of Fig. 8 summa-
rizes results for Differential Evolution. Since DE can handle larger budgets, we
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consider here a total number of 100 settings, which correspond to the testcase
named “paraalldes” in Nevergrad. In this suite, results are averaged over bud-
gets b ∈ {10, 100, 1000, 10000, 100000}, dimensions d ∈ {5, 20, 100, 500, 2500},
parallelism w = max(d, bb/6c), and again the objective functions Sphere, Cigar,
Ellipsoid, and Hm. The parallelism is 20. Specialized versions of DE perform best
for this testcase, but we see that DE initialized with our MetaTuneRecentering
strategy ranks fifth (outperformed only by ad hoc variants of DE), with an overall
winning frequency that is not much smaller than that of the top-ranked NoisyDE

strategy (76.3% for ChainDEwithMetaTuneRecentering vs. 81.7% for NoisyDE)
- and almost always outperforms the rescaling used in the original Nevergrad.

5 Conclusions and Future Work

We have investigated the scaling of the variance of random sampling in order
to minimize the expected regret. While previous work [6] had already shown
that the optimal scaling factor is not identical to that of the prior distribution
from which the optimum is sampled (unless the sample size is exponentially
large in the dimension), it did not answer the question how to scale the vari-
ance optimally. In this work, we have proven that standard deviations scaled as
σ =

√
log(λ)/d gives, with probability at least 1/2, a sample that is significantly

closer to the optimum than the previous known strategies. We have also shown
that the gain achieved by our rescaled sampling strategy is asymptotically opti-
mal. Moreover, we have shown that any decent scaling factor is asymptotically at
most as large as our proposed one. The empirical assessment of our rescaled sam-
pling strategy confirms decent performance not only on the sphere function, but
also on other classical benchmark problems. We have furthermore given indica-
tion that the sampling might help improve state-of-the-art numerical heuristics
based on differential evolution or using Bayesian surrogate models. Our proposed
one-shot method performs best in many cases, sometimes outperformed by e.g.
AvgLHS, but is stable on a wide range of problems and meaningful also as an ini-
tialization method (as opposed to AvgLHS). Whereas our theoretical results can
be extended to quadratic forms (by conservation of barycenters through linear
transformations), an extension to wider families of functions (e.g., families of
functions with order 2 Taylor expansion) is not straightforward. Apart from ex-
tending our results to broader function classes, another direction for future work
comprises extensions to the multi-epoch case. Our empirical results on DE and
BO gives first indication that a properly scaled variance can also be beneficial
in iterative sampling. Note, however, that in the latter case, we only adjusted
the initialization, not the later sampling steps. This forms another promising
direction for future work.
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18. Matoušek, J.: Geometric Discrepancy. Springer, 2nd edn. (2010)

https://arxiv.org/abs/2003.13826
https://arxiv.org/abs/2003.13826
http://arxiv.org/abs/1912.08956
http://arxiv.org/abs/1912.08956
http://eudml.org/doc/131448
https://projecteuclid.org/euclid.bsmsp/1200512173


14 L. Meunier, C. Doerr, J. Rapin, O.Teytaud

19. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

20. McKay, M.D., Beckman, R.J., Conover, W.J.: A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer
Code. Technometrics 21, 239–245 (1979)

21. Niederreiter, H.: Random Number Generation and quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1992)

22. Rahnamayan, S., Wang, G.G.: Center-based sampling for population-based algo-
rithms. In: 2009 IEEE Congress on Evolutionary Computation. pp. 933–938 (May
2009). https://doi.org/10.1109/CEC.2009.4983045

23. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad (2018)

24. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution. In: Proc. of the Third Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. pp.
197–206. University of California Press (1956), https://projecteuclid.org/euclid.
bsmsp/1200501656

25. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J. of Global Optimization 11(4), 341–
359 (Dec 1997)

26. Surry, P.D., Radcliffe, N.J.: Inoculation to initialise evolutionary search. In: Foga-
rty, T.C. (ed.) Evolutionary Computing. pp. 269–285. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

27. Teytaud, O., Gelly, S., Mary, J.: On the ultimate convergence rates for isotropic
algorithms and the best choices among various forms of isotropy. In: Proceedings
of PPSN. pp. 32–41 (2006). https://doi.org/10.1007/11844297 4, https://doi.org/
10.1007/11844297 4

28. Yang, X., Cao, J., Li, K., Li, P.: Improved opposition-based biogeography opti-
mization. In: The Fourth International Workshop on Advanced Computational
Intelligence. pp. 642–647 (2011)

29. Zhang, A., Zhou, Y.: On the non-asymptotic and sharp lower tail bounds of random
variables (2018)

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://projecteuclid.org/euclid.bsmsp/1200501656
https://projecteuclid.org/euclid.bsmsp/1200501656
https://doi.org/10.1007/11844297_4
https://doi.org/10.1007/11844297_4


Variance Reduction for Better Sampling in Continuous Domains 15

Appendix A: Relevant Concentration Bounds for χ2

Distributions

We recall some basic definitions and properties of the central and the non-central
χ2 distributions, which are needed in the proofs of Theorems 1 and 2.

Definition 1. (Central χ2-distribution) Let X1, ..., Xd be d independent random
variables drawn from the standard normal distribution N (0, 1). Then the random
variable U = X2

1 + ...+X2
d follows a central χ2(d) distribution with d degrees of

freedom.

As mentioned previously, the squared distance ||x∗||2 of x∗ to the middle point
0 follows the central χ2(d) distribution. This is thus also the distribution of the
performance of the random sampling strategy using σ2 = 0. In our proofs we
will make use of the following properties of this distribution.

Property 1. (Properties of χ2 distribution) Let U ∼ χ2(d). Then E(U) = d,

var(U) = 2d, and for all t ∈ [0, 1] it holds that P
[
|Ud − 1| ≥ t

]
≤ 2 exp(−dt

2

8 ).

While the central χ2 distribution suffices for the analysis of the middle point
sampling strategy, non-central χ2 distribution are required in the analysis of our
Gaussian sampling with rescaled variance.

Definition 2. (Non-central χ2-distribution) Let X1, ..., Xd be independently
drawn random variables satisfying Xi ∼ N (µi, 1). Let U = X2

1 + ... + X2
d . The

random variable U follows a central χ2(d, µ) distribution with d degrees of free-

dom and non-centrality parameter µ =
∑d
i=1 µ

2
i .

Note here that the non-central χ2 distribution only depends on
∑d
i=1 µ

2
i , but not

on the individual values (µ1, ..., µd). Note further that, for a given point x∗ ∈ Rd,
the distribution of the squared distance ||x − x∗||2 for x ∼ N (0, I) follows the
non-central χ2(d, µ) distribution with non-centrality parameter µ := ||x∗||2.

We recall some important properties of the non-central χ2 distribution.

Property 2. (Properties of the non-central χ2 distribution) Let U ∼ χ2(d, µ).
Then E(U) = d+ µ, var(U) = 2(d+ 2µ), and for any β > 1 there exist positive
constants C1, Cβ such that for all x ≤ (µ+ d)/β it holds that

P (U ≤ −x) ≥ C1 exp

(
−Cβ

x2

2µ+ d

)
. (6)

Moreover, for all x > 0, it holds that

P (U ≤ −x) ≤ exp

(
−1

4

x2

2µ+ d

)
. (7)

Proofs for the concentration inequalities 6 and 7 can be found in [29, Theorem 7].
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Appendix B: Proof of Theorem 1 (Sufficient condition)

We now present the proof of Theorem 1, the sufficient condition for the scaling
factor σ2 to be beneficial over sampling the middle point. Let δ, λ and d satisfy
the conditions of Theorem 1. Let ε, σ > 0. By the law of total probability it
holds that, for all t ≤ 1,

P
[

min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

]
= P

[
min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2 | | ||x

∗||2

d
− 1| ≤ t

]
P
[
| ||x
∗||2

d
− 1| ≤ t

]
+ P

[
min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣| ||x∗||2
d
− 1| > t

]
P
[
| ||x
∗||2

d
− 1| > t

]
.

Eq. 3 is therefore satisfied if

P
[

min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣| ||x∗||2
d
− 1| ≤ t

]
P
[
| ||x
∗||2

d
− 1| ≤ t

]
≥ δ.

This equation, in turn, is satisfied if for all y with | ||y||
2

d − 1| ≤ t it holds that

P
[

min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣x∗ = y

]
≥ δ

P
[
| ||x
∗||2
d − 1| ≤ t

] . (8)

For the following computations, we fix t := d−1/3 and we set δ′ :=

δ/P
[
| ||x
∗||2
d − 1| ≤ t

]
.

Let x∗ be such that | ||x
∗||2
d − 1| ≤ t. Then, conditionally to x∗, we have

P
[

min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣x∗]
= 1− P

[
min
i∈[λ]
||x∗ − xi||2 ≥ (1− ε) ||x∗||2

∣∣x∗]
= 1− P

[
||x− x∗||2 ≥ (1− ε) ||x∗||2

∣∣x∗]λ
= 1−

(
1− P

[
||x− x∗||2 ≤ (1− ε) ||x∗||2

∣∣x∗])λ
for an x is distributed as a normal distribution N (0, σ2I). We recall that for
such an x the distribution of the term ||x − x∗||2/σ2 (for fixed x∗) follows the
non-central χ2(d, µ) distribution with non-centrality parameter µ := ||x∗||2/σ2.
We therefore obtain (through simple algebraic manipulations) that condition (8)
holds if and only if

P
[
U ≤ (1− ε) ||x

∗||2

σ2

]
≥ 1− (1− δ′)1/λ ,
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with U ∼ χ2(d, µ). Let Y := U −
(
||x∗||2
σ2 + d

)
. Then the previous condition is

equivalent to

P
[
Y ≤ −

(
ε
||x∗||2

σ2
+ d

)]
≥ 1− (1− δ)1/λ .

According to the concentration inequality 6, it holds that for any β > 1,
there exist constants C1 > 0 and Cβ > 0 such that if

ε
||x∗||2

σ2
+ d ≤ 1

β

(
||x∗||2

σ2
+ d

)
, (9)

then

P
(
Y ≤ −

(
ε
||x∗||2

σ2
+ d

))
≥ C1 exp

(
−Cβ

(ε ||x
∗||2
σ2 + d)2

2 ||x
∗||2
σ2 + d

)
.

We deduce a sufficient condition for (8), by noting that it is satisfied if, for all

x∗ such that | ||x
∗||2
d − 1| ≤ t, it holds that(

ε ||x
∗||2
σ2 + d

)2

2 ||x
∗||2
σ2 + d

≤ Aλ, (10)

with Aλ := − 1
Cβ

(
log
(
1− (1− δ′)1/λ

)
− logC1

)
.

Let us now fix β := 2, ε := c1
log λ
d and σ2 := c2

log λ
d , with c1 := 1

3Cβ
and

c2 := c1. We show that, with these choices of β, ε and σ, inequalities (9) and 10

are satisfied if d is sufficiently large and x∗ satisfies | ||x
∗||2
d − 1| ≤ t. To this end,

first note that

ε ||x
∗||2
σ2 + d

( ||x
∗||2
σ2 + d)

≤
c1
c2

(1 + t) + 1
d

c2 log λ (1− t) + 1
.

Under the assumptions stated in (2) the term
c1
c2

(1+t)+1
d

c2 log λ (1−t)+1
converges to zero

as d → ∞. We therefore obtain that, for d sufficiently large and x∗ satisfying

| ||x
∗||2
d − 1| ≤ t, it holds that

ε ||x
∗||2
σ2 + d

||x∗||2
σ2 + d

≤ 1

β
,

which proves (9).

To show (10), we first note that

(ε ||x
∗||2
σ2 + d)2

2 ||x
∗||2
σ2 + d

≤

(
c1
c2

(1 + t) + 1
)2

2 d
c2 log λ (1− t) + 1

.
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Under the assumptions stated in (2), and since d→∞, we approximate

c1
c2

(1 + t) + 1
d

c2 log λ (1− t) + 1
=
c2
2

(
c1
c2

+ 1

)2

log λ+ o(log λ) =
2

3Cβ
log λ+ o(log λ)

and Aλ = 1
Cβ

log λ + o(log λ), which shows that condition 10 holds for d suffi-

ciently large and x∗ satisfying | ||x
∗||2
d − 1| ≤ t.

Appendix C: Proof of Theorem 2 (Necessary condition)

We now prove the necessary condition which we have stated in Theorem 2. Let
d, λ, ε, and σ satisfy the condition of Theorem 2. As in the beginning of the
proof for Theorem 1, we can deduce the following necessary condition. For all
t ≤ 1 it holds that

P
[

min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣| ||x∗||2
d
− 1| ≤ t

]
P
[
| ||x
∗||2

d
− 1| ≤ t

]
+P
[
| ||x
∗||2

d
− 1| > t

]
≥ δ

Then there exists x∗ such that | ||x
∗||2
d − 1| ≤ t and

P
[

min
i∈[λ]
||x∗ − xi||2 ≤ (1− ε) ||x∗||2

∣∣x∗] ≥ δ − P
[
| ||x
∗||2
d − 1| > t

]
P
[
| ||x
∗||2
d − 1| ≤ t

] . (11)

Set δ′ :=
δ−P

[
| ||x
∗||2
d −1|>t

]
P
[
| ||x
∗||2
d −1|≤t

] . Then the necessary condition (11) can be written as

P
[
Y ≤ −

(
ε
||x∗||2

σ2
+ d

)]
≥ 1− (1− δ′)1/λ

with Y := U−( ||x
∗||2
σ2 +d) and U being distributed according to a non-central χ2

distribution with d degrees of freedom and non-centrality parameter ||x∗||2/σ2.
According to the concentration bound (7), we have

P
(
Y ≤ −

(
ε
||x∗||2

σ2
+ d

))
≤ exp

(
−1

4

(ε ||x
∗||2
σ2 + d)2

2 ||x
∗||2
σ2 + d

)
.

Condition (11) therefore requires

exp

(
−1

4

(ε ||x
∗||2
σ2 + d)2

2 ||x
∗||2
σ2 + d

)
≥ 1− (1− δ′)1/λ.
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From this we derive ε ≤
(√

Ãλ

(
2 ||x

∗||2
σ2 + d

)
− d
)

σ2

||x∗||2 , with Ãλ =

−4 log
(
1− (1− δ′)1/λ

)
. As ε > 0, we obtain that

σ2 < σ̃2 := 2
||x∗||2/d
d
Āλ
− 1

.

Fixing t = d−1/3 and considering the requirements stated in (2) we obtain that

σ̃ = 2 Ãλd +o
(
Ãλ
d

)
= 8 log λ

d +o
(

log λ
d

)
, which concludes the proof of the necessary

condition, as it shows σ2 ∈ O
(

log λd
d

)
.

Appendix D: Proof of Theorem 3 (Upper Bound for the
Gain)

The proof of Theorem 3 uses the same argument as the one of Theorem 2. We

have proved that σ2 must be between 0 and σ̃ = 2 ||x
∗||2/d
d
Āλ
−1

. Then we get that:

ε ≤ sup
σ∈[0,σ̃]

(√
Ãλ

(
2
||x∗||2
σ2

+ d

)
− d

)
σ2

||x∗||2
.

Noticing that:

sup
σ∈[0,σ̃]

(√
Ãλ

(
2
||x∗||2
σ2

+ d

)
− d

)
σ2

||x∗||2

= sup
α∈[0,1]

(√
Ãλ

(
2
||x∗||2
ασ̃2

+ d

)
− d

)
ασ̃2

||x∗||2

We get after simple algebraic simplifications and for d sufficiently large under
assumptions (2):

sup
σ∈[0,σ̃]

(√
Ãλ

(
2
||x∗||2
σ2

+ d

)
− d

)
σ2

||x∗||2

≤ dσ̃2

||x∗||2
sup
α∈[0,1]

α

√α−1 +
Ãλ
d2
− 1


≤ dσ̃2

||x∗||2
sup
α∈[0,1]

α
(√

α−1 + 1− 1
)

≤ 8
log λ

d
+ o

(
log λ

d

)
Then ε ∈ O

(
log λd
d

)
, which concludes the proof of Theorem 3.
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