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Abstract. Bayesian Optimization (BO) is a surrogate-assisted global optimization technique that has
been successfully applied in various fields, e.g., automated machine learning and design optimization.
Built upon a so-called infill-criterion and Gaussian Process regression (GPR), the BO technique suffers
from a substantial computational complexity and hampered convergence rate as the dimension of the
search spaces increases. Scaling up BO for high-dimensional optimization problems remains a challeng-
ing task.
In this paper, we propose to tackle the scalability of BO by hybridizing it with a Principal Component
Analysis (PCA), resulting in a novel PCA-assisted BO (PCA-BO) algorithm. Specifically, the PCA
procedure learns a linear transformation from all the evaluated points during the run and selects di-
mensions in the transformed space according to the variability of evaluated points. We then construct
the GPR model, and the infill-criterion in the space spanned by the selected dimensions.
We assess the performance of our PCA-BO in terms of the empirical convergence rate and CPU time
on multi-modal problems from the COCO benchmark framework. The experimental results show that
PCA-BO can effectively reduce the CPU time incurred on high-dimensional problems, and maintains
the convergence rate on problems with an adequate global structure. PCA-BO therefore provides a
satisfactory trade-off between the convergence rate and computational efficiency opening new ways to
benefit from the strength of BO approaches in high dimensional numerical optimization.

Keywords: Bayesian optimization · Black-Box optimization · Principal component analysis · Dimen-
sionality reduction

1 Introduction

Over the last few years, Gaussian Process Regression (GPR) [20] has been proven to be a very flexible
and competitive tool in the modeling of functions that are expensive to evaluate or characterized by strong
nonlinearities and measurement noises. A Gaussian Process (GP) is a stochastic process, i.e., a family of
random variables, such that any finite collection of them have joint Gaussian distributions. GP is used in
many application fields (engineering, geology, etc.) in order to evaluate datasets, predict unknown function
values, and perform surrogate model-based optimization [7]. Based on a certain number of evaluations of the
objective function (training data), surrogate models allow for the construction of computationally cheap-to-
evaluate approximations and for replacing the direct optimization of the real objective with the model. As
such, many more evaluations can be performed on the approximate model. GP uses a measure of the similarity
between points – the kernel function – to predict the value for an unseen point from training data. GP is
often chosen because it also provides a theoretical uncertainty quantification of the prediction error, among
a variety of kernel-based methods, e.g., Radial Basis Functions [4] and Support Vector Regression [36,9].
Indeed, GP not only provides the estimate of the value of a function (the mean value), but also the variance
at each domain point. This variance defines the uncertainty of the model while performing a prediction of
the function value on an untested point of the search space. In particular, when GP is used in surrogate
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model-based optimization, at each iteration of the optimization algorithm, the estimate of the error is a
crucial information in the update phase of the approximation model.
A GP can be used as a prior probability distribution over functions in Bayesian Optimization (BO) [24,25],
also known as Efficient Global Optimization (EGO) [16]. BO is a sequential design strategy targeting black-
box global optimization problems. It generates an initial set of training points in the search space where
the objective function is evaluated. Based on this training data, a GPR model is built to approximate the
real objective function. Afterwards, the optimization procedure starts by iteratively choosing new candidate
points for which the objective function is evaluated. These points are obtained through the optimization
of an acquisition function. However, it has to be noted that the optimization of the acquisition function
and the model construction become quite complicated and time-consuming as the dimension of the problem
increases, due to the well-known curse of dimensionality. In particular, this is the case for most real-world
optimization problems, where the number of design variables can range from a few (for simple parameter
optimization problems) up to millions (for complex shape [12] or topology optimization [1] problems). In
spite of this difficulty, BO techniques have been successfully applied in many fields of engineering, including
materials science [35,17], aerospace engineering [15,6,18,21], turbomachinery design [14,2], or even fluid and
structural topology optimization [41,27,28,29,22], thanks to a reduction of the problem dimensionality on
the representation level. Nevertheless, since the efficiency of these methods decreases strongly with the rising
number of design variables, the development of BO approaches able to address high-dimensional problems
is crucial for their future applications in industry [37,26].

Different dimensionality reduction techniques using other tools than PCA have been introduced in the lit-
erature for the optimization of expensive problems through GPs. Huang et al. [13] proposed a scalable GP for
regression by training a neural network with a stacked denoising auto-encoder and performing BO afterwards
on the top layer of the trained network. In [40], Wang et al. proposed to embed a lower-dimensional subspace
into the original search space, through the so-called random embedding technique. Moreover, Blanchet-
Scalliet et al. [3] presented four algorithms to substitute classical kernels, which provide poor predictions
of the response in high-dimensional problems. In [8], a kernel-based approach is devised to perform the
dimensionality reduction in a feature space for the shape optimization problem in Computer Aided Design
(CAD) systems. To the authors’ knowledge, the only ones who used PCA to discover hidden features in
GP regression are Vivarelli and Williams [38]. However, their strategy mainly allowed for estimating which
are the relevant directions in a prescribed feature space, rather than for pursuing the intrinsic optimization
process. Finally, Kapsoulis et al. [19] embedded Kernel and Linear PCA in optimization strategies using
Evolutionary Algorithms (EAs). Nevertheless, they identify the principal component directions and map the
design space to a new feature space only when a prescribed iteration is reached, while in the first iterations
PCA is not applied. In this paper, we propose to tackle this problem by using the well-known Principal
Component Analysis (PCA) procedure to identify a proper subspace, on which we deploy the BO algorithm.
This treatment leads to a novel hybrid surrogate modeling method - the PCA-assisted Bayesian Optimiza-
tion (PCA-BO), which starts with a Design of Experiments (DoE) [7] and adaptively learns a linear map
to reduce the dimensionality by a weighted PCA procedure. Here, the weighting scheme is meant for taking
the objective values into account. We assessed the empirical performance of PCA-BO by testing it on the
well-known BBOB problem set [11]. Among these problems, we focus on the multi-modal ones, which are
most representative of real-world optimization challenges.

2 Bayesian Optimization

In this paper, we consider the minimization of a real-valued objective function f : S ⊆ RD → R with simple
box constraints, i.e., S = [x,x]. Bayesian Optimization [16,25] (BO) starts with sampling an initial DoE of
size n0: X = [x1,x2, . . . ,xn0 ]> ⊆ Sn0 . The DoE can be uniform random samples, or obtained through more
sophisticated sampling methods [31]. We choose the so-called Optimal Latin Hypercube Sampling (OLHS) [5]
in this paper. The corresponding objective function values are denoted as y = (f(x1), f(x2), . . . , f(xn0

))>.
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Conventionally, a centered Gaussian process prior is assumed on the objective function: f ∼ gp(0, k(·, ·)),
where k : S × S → R is a positive definite function (a.k.a. kernel) that computes the autocovariance of the
process. Often, a Gaussian likelihood is taken, leading to a conjugate posterior process [30], i.e., f | y ∼
gp(f̂(·), k′(·, ·)), where f̂ and k′ are the posterior mean and covariance function, respectively. On an unknown

point x, f̂(x) yields the maximum a posteriori (MAP) estimate of f(x) whereas ŝ2(x) := k′(x,x) quantifies
the uncertainty of this estimation. We shall refer to the posterior process as the Gaussian process regression
(GPR) model. Based on the posterior process, we usually identify promising points via the so-called infill-

criterion which balances f̂ with ŝ2 (exploitation vs. exploration). A variety of infill-criteria has been proposed
in the literature, e.g., Probability of Improvement [7,25], Expected Improvement [7], and the Moment-
Generating Function of Improvement [39]. In this work, we adopt the Penalized Expected Improvement
(PEI) criterion [28] to handle the box constraints,

PEI(x) =

{
E{max{0,miny − f(x)} | y} if x is feasible,

−P (x) if x is infeasible,
(1)

which essentially calculates the expected improvement when x is feasible, and returns a negative penalty
value otherwise. The penalty function P (x) is proportional to the degree of infeasibility of the point x. This
will be further described in Sec. 3. BO then proceeds to select the next point by maximizing PEI, namely,
x∗ = arg maxx∈S PEI(x). After evaluating x∗, BO augments4 the data set, X← X∪{x∗},y← y∪{f(x∗)},
on which the GPR model is retrained.

3 PCA-assisted Bayesian Optimization

In this section, we introduce the coupling of the principal component analysis procedure and Bayesian
optimization method, called PCA-BO. Loosely speaking, this approach learns a linear transformation (from
the initial design points of BO) that would, by design, identify directions (a.k.a. principal components)
in RD along which the objective value changes rapidly. Also, this approach adapts this transformation
through the optimization process. Intuitively, we could further drop the components to which objective
function values are less sensitive, resulting in a lower-dimensional search space Rr (r < D). Particularly for
BO, the surrogate model shall be trained in this lower-dimensional search space, thus benefiting from the
dimensionality reduction. Also, the infill-criterion optimization, which is typically an expensive sub-procedure
in BO, becomes less costly because it now operates in the lower-dimensional space as well.

The PCA-BO algorithm. We first present a high-level overview of the proposed PCA-BO algorithm. A
graphical representation is provided in Fig. 1, whereas a pseudo-code description is presented in Alg. 1.
PCA-BO works as follows:

1. We perform an initial DoE in the original search space, generating as an outcome a set of evenly dis-
tributed points.

2. We design a weighting scheme to embed the information from objective function into the DoE points,
where smaller weights are assigned to the points with worse function values.

3. We apply a PCA procedure to obtain a linear map from the original search space to a lower-dimensional
space, using the weighted DoE points.

4. In the lower-dimensional space, we train a GPR model and maximize an infill-criterion to find a promising
candidate point.

4 With an abuse of terminology, the operation X ∪ {x∗} is understood as appending x∗ at the bottom row of X
throughout this paper. y ∪ {f(x∗)} is defined similarly.
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5. We map the candidate point back to the original search space, and evaluate it with the objective function.
6. We augment the data set with the candidate point and its objective value, and then proceed to step 2

for the next iteration.

Fig. 1: Flowchart of the PCA-BO optimization algorithm in which PCA-related operations are depicted in
circles.

Algorithm 1 PCA-assisted Bayesian Optimization

1: procedure pca-bo(f,A , S) . f : objective function, A : infill-criterion, S: search space, S′: lower-dimensional
search space

2: Create X = [x1,x2, . . . ,xn0 ]> ⊂ Sn0 with optimal Latin hypercube sampling
3: y← (f(x1), f(x2), . . . , f(xn0))>, n← n0

4: while the stop criteria are not fulfilled do
5: Centering: X̄← X− 1nµ
6: Rescaling: X′ ← X̄W
7: µ′,Pr ← pca(X′)
8: Mapping to Rr: Zr ← Pr(X̄− 1nµ

′)>

9: GPR training: f̂ , ŝ2 ← gpr(Zr,y)
10: z′ ← arg maxz∈S′ A (z; f̂ , ŝ2)
11: Mapping to RD: x′ ← P>r z + µ′ + µ
12: y′ ← f(x′)
13: X← X ∪ {x′}, y← (y>, y′)>, n← n + 1
14: end while
15: end procedure

Rescaling data points for PCA. Because the goal of applying PCA, as stated above, is to spot directions in
RD to which the function value is sensitive, it is then necessary to take into account the information on the
objective function. We implement this consideration by rescaling the data points according to a weighting
scheme, which depends on the corresponding function values. The weighting scheme aims to adjust the
“importance” of data points when applying the PCA procedure, such that a point associated with a better
(here lower) function value is assigned with a larger weight. We propose to use a rank-based weighting
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scheme, in which the weight assigned to a point is solely determined by the rank thereof. Let {ri}ni=1 be the
ranking of the points in X according to their function values y. We calculate the rank-based (pre-)weights
as follows:

w̃i = lnn− ln ri, (2)

where n stands for the current number of data points. Afterwards, we normalize the pre-weights: wi =
w̃i/

∑
w̃i. Notably, this weighting scheme will gradually decrease the weights of worse points when a better

point is found and added to the data, hence leading to a self-adjusting discount factor on the data set.5 It is
worth pointing out that this weighting scheme resembles the weight calculation in the well-known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [10], although they are motivated differently. For ease of
discussion, we will use a weight matrix W = diag(w1, w2, . . . , wn) henceforth. We rescale the original data
X by removing its sample mean, i.e., X̄ = X − 1nµ, where µ =

(
1
n

∑n
i=1Xi1, . . . ,

1
n

∑n
i=1Xid

)
and 1n =

(1, . . . , 1)> (n 1’s), and then adjust each point with the corresponding weight, namely, X′ = X̄W.

Dimensionality reduction. The PCA procedure starts with computing the sample mean of data matrix
X′, i.e., µ′ =

(
1
n

∑n
i=1X

′
i1, . . . ,

1
n

∑n
i=1X

′
id

)
, after which it calculates the unbiased sample covariance matrix

C = 1
n−1X

′′>X′′,X′′ = X′−1nµ
′. The principle components (PCs) are computed via the eigendecomposition

C = PDP−1, where column vectors (a.k.a. eigenvectors) of P identify the PCs, and the diagonal matrix
D = diag(σ2

1 , . . . , σ
2
d) contains the variance of X′′ along each principal component, i.e., σ2

i = var{X′′pi}
(pi is the ith column of P). For clarity of discussion, we consider the orthonormal matrix P that defines
a rotation operation, as a change of the standard basis in RD such that PCs are taken as the basis after
the transformation. After changing the basis, we proceed to reduce the dimensionality of RD by sorting
the PCs according to the decreasing order of their variances and keeping the first r components. Here r
is chosen as the smallest integer such that the top-r variances sum up to at least α percent of the total
variability of the data (we use α = 95% in our experiments). By denoting the ordering of variances and PCs
as σ2

1:d, σ
2
2:d . . . , σ

2
d:d and p1:d,p2:d, . . . ,pd:d, respectively, we formulate the selection of PCs as follows:

Pr := [p1:d,p2:d, . . . ,pr:d]> ∈ Rr×d, r = inf

{
k ∈ [1..d] :

k∑
i=1

σ2
i:d ≥ α

d∑
i=1

σ2
i

}
.

Now, we could transform the data set X into a lower-dimensional space, i.e., Zr = Pr(X̄ − 1nµ
′)>. Note

that, 1) in this transformation, the centered data set X̄ is not scaled by the weights because we only intend
to incorporate the information on the objective values when determining Pr. Using the scaled matrix X̄W
will make it cumbersome to define the inverse mapping (see below). 2) It is crucial to substract µ′ from X̄
since it estimates the center of ellipsoidal contours when f resembles a quadratic function globally. In this
way, the principal axis of contours will be parallel to the PCs after applying Pr. 3) Here, Pr : RD → Rr

is not injective (dim(kerPr) = D − r). Therefore when transforming the centered data set to the lower-
dimensional space, it seems that we might loose some data points in X̄. However, we argue that such an
event {x − x′ ∈ kerPr : x,x′ ∈ X} is a null set with respect to any non-singular measure on RD, and the
probability distribution of X, no matter which forms it takes, should not be singular (otherwise BO will
only search in a subspace of RD). Thus, it is safe to ignore the possibility of losing data points. Now we are
ready to train a GPR model on (Zr,y), and propose candidate points by optimizing an infill-criterion in Rr.
Importantly, to evaluate a candidate point z ∈ Rr, we map it back to RD on which the objective function
takes its domain, using the following linear map L:

L : Rr → RD, z 7→ P>r z + µ′ + µ.

5 Alternatively, the weight can also be computed directly from the function value, e.g., through a parameterized
hyperbolic function. However, we do not prefer this approach since it introduces extra parameters that require
tuning, and does not possess the discount effect of the rank-based scheme since the weights remain static throughout
the optimization.
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Note that, 1) the linear map L is an injection; 2) it is necessary to include µ and µ′ in this transformation
since we subtract them from the design matrix X when mapping it to the lower-dimensional space; 3) After
evaluating point z, i.e., y = f(L(z)), we augment the data set in RD: X ∪ {L(z)} and y ∪ {y}, from which
the linear map Pr is re-computed using the procedure described above; 4) After re-computing Pr, we have
to re-calculate Zr by mapping the augmented X into Rr: Zr = Pr(X̄− 1nµ

′)>, and retrain the GPR model
on (Zr,y).

Penalized infill-criterion. Once the regression model is fitted, we use it to construct and maximize the
acquisition function that determines the next infill point. As previously stated, in this work we use a penalized
version of the well-known EI, referred to as PEI. By definition, we search for the maximum of PEI through
DE over a prescribed cubic domain C, which is orientated according to the axes of the transformed coordinate
system and must contain the projection of the PCA-transform of the old domain S onto the lower-dimensional
feature space. We hence define and penalize a bounding cube C in order to prevent 1) that the optimum is
found in a region of C that falls outside S when mapped back, and 2) that we neglect some good regions for
new query points, i.e., the regions that belong S but not to C. To achieve this, if ρ is the radius of the sphere
tangent to S, we define C = [C1−ρ, C1 +ρ]×· · ·× [Cr−ρ, Cr +ρ], where Ci, i = 1, . . . , r is the ith component
of the center of the new feature space. Since, for simplicity reasons, C is wider than necessary, we introduce a
penalty to be assigned to the points that would not fall into S when mapped back through the inverse PCA
linear transformation – the infeasible points. In order to avoid a stagnation of the DE search, the penalty
P assigned to infeasible points is defined as the additive inverse of the distance of their images through the
PCA inverse transformation from the boundary of S. As a result, the infeasible points are automatically
discarded in the maximization of PEI (Eq. (1)).

4 Experiments

Experimental Setup. We assess the performance of PCA-BO on ten multi-modal functions taken from the
the BBOB problem set [11], and compare the experimental result to a standard BO. This choice of test
functions aims to verify the applicability of PCA-BO to more difficult problems, which potentially resemble
the feature of real-world applications. We test PCA-BO on three different dimensions D ∈ {10, 20, 40} with
the following budget of 10D+50 function evaluations, of which the initial DoE takes up to 20%. To allow for
a statistically meaningful comparison, we performed 30 independent runs for each combination of algorithm,
function, and dimension, on an Intel(R) Xeon(R) CPU E5620 @ 2.40GHz machine in single-threaded mode.
Also, we recorded the best-so-far function value and measured CPU time taken by those algorithms, which
are considered as performance metrics in this paper. We select a squared-exponential kernel function for
the GPR model that underpins both PCA-BO and BO. A Differential Evolution (DE) [34] algorithm6 is
adopted to maximize the PEI criterion in every iteration. We implement both algorithms in Python, where
the PyDoE, PyOpt, and Scikit-learn open-source packages are used to handle the DoE, modeling, and
PCA-transformation phases, respectively.

Results. In this section, we illustrate the results we obtained in the optimization of multi-modal benchmark
functions from the BBOB suite by using PCA-BO and the state-of-the-art BO. In particular, each algorithm
is tested on functions F15-F24, which can be categorized in two main groups: 1) multi-modal functions
with adequate global structure: F15-19, and 2) multi-modal functions with weak global structure: F20-24.

6 We take the Scipy implementation of DE (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
differential evolution.html) with a population size of 20r and the “best1bin” strategy, which uses the binary
crossover and calculates the differential vector based on the current best point. Here, we set the evaluation budget
to 20020r2 to optimize the infill-criterion.
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By keeping 95% of the variability of data points, our PCA-assisted approach, on average, reduces about
40% dimensions from the original search space across all problems and dimensions. Also, we compare the
two algorithms in terms of the empirical convergence and CPU time. In Fig. 2, we report the mean target
precision achieved on each test function, which is the difference between the best-so-far function value and the
optimal function value averaged over 30 runs with the same initial DoE points. Also, we plot the mean target
precision against the iteration number that counts the number of function evaluations after the DoE phase
and illustrate the 95% confidence interval of the mean target precision.7 On each dimension, the plots clearly
illustrate that PCA-BO is either superior or at least comparable to the standard BO when the test function
exhibits an adequate global structure (F15-19). For each function in this group, PCA-BO reveals a steep
convergence at the beginning of the optimization procedure. Notably, such an early and steep convergence is
extremely valuable when we apply it in real-world scenarios, e.g., industrial optimizations, where we could
only afford a very limited evaluation budget for expensive optimization problems. In contrast, on multi-modal
functions with weak global structure (F20-24), PCA-BO has difficulties in maintaining the convergence
speed, particularly on functions F21 and F22 whose global contour lines are composed of multiple local
ellipsoids that have different orientations (see contour plots in [11]). We speculate that the poor performance
of PCA-BO on those two functions is because we apply the PCA procedure on a global scale, which could be
potentially confused by the landscape of F21 and F22. However, we argue that this issue could be alleviated
effectively with a simple extension of applying the PCA procedure locally, which can be realized by either
searching for the optimum with the trust region approach [42], or through clustering techniques [33]. We
shall investigate this issue in future work. Moreover, we performed the well-known Wilcoxon rank-sum test
on the target precision values reached by each algorithm upon termination in each dimension. Under the
null hypothesis of this test, the target precision values has an equal distribution in BO and PCA-BO [23].
Based on the data, we reject the null hypothesis at the 5% significance level on all functions and dimensions
except F23, which belongs to the category of multi-modal functions with weak global structure. Therefore, we
argue that PCA-BO converges at least as fast as the standard BO algorithm except on problems F20-F24,
where the problem landscape exhibits high local irregularities and lacks a global structure. This scenario
will be addressed by the authors in future works. More importantly, the PCA-BO algorithm achieves this
convergence speed with a significantly less computational power, which is supported by measured CPU times
in Fig. 3. Here, we observe that the CPU time of PCA-BO, on average, is about 1.2209 times that of BO on
10D. Although this ratio does not imply any benefits from PCA-BO on 10D, it, however, decreases to 0.7519
for 20D, and further to 0.5910 for 40D. Therefore, PCA-BO can effectively reduce the CPU time incurred
on higher-dimensional problems, leading to a 25% and a 41% reduction in the 20- and 40-variables tests,
respectively.

5 Conclusions and future research

In this paper, we presented the novel PCA-assisted Bayesian Optimization (PCA-BO) method, which aims
to efficiently address high-dimensional black-box optimization problems by means of surrogate modeling
techniques. In fact, despite BO has been successfully applied in various fields, it demonstrated to be restricted
to problems of moderate dimension, typically up to about 15. Therefore, since many real-word applications
require the solution of very high-dimensional optimization problems, it becomes necessary to scale BO to more
complex parameter spaces, e.g., through dimensionality reduction techniques. Essentially, PCA-BO allows
for achieving this by performing iteratively an orthogonal linear transformation of the original data-set, in
order to map it to a new feature space where the problem becomes more separable and features are selected
in order to inherit the maximum possible variance from the original sample set. Once the transformation
is applied, the model construction and the optimization of the acquisition function – i.e., the costly steps
characterizing the BO sequential strategy – are performed in the lower-dimensional space so that we can

7 On the 10-dimensional F20 problem, we observed that the standard deviation of BO over 30 runs gradually shrinks
to zero after 50 iterations, making the confidence interval disappear in the corresponding subplot.

7



F20 F21 F22 F23 F24

F15 F16 F17 F18 F19

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

7

10

20

90
100

200

30

40

50

4

5

7

8

10

10

30

50

15

20

25

30

35

10

30

50

100

200

300

10

100

1000

10000

iteration

f−
f∗  in

 1
0D

BO PCA−BO

F20 F21 F22 F23 F24

F15 F16 F17 F18 F19

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

10

20

30

300

400

500

40

50

70

5

6

12

14

16

18

20

10

30

50

25

30

35

40

10

30

50

300

500

700

100

1000

10000

iteration

f−
f∗  in

 2
0D

BO PCA−BO

F20 F21 F22 F23 F24

F15 F16 F17 F18 F19

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

10

20

30

500

700

1000

50

60

70

5.5

6.0

6.5

7.0

11

13

15

17

19

10

30

50

30

40

50

5

10

30

50

500

1000

2000

1e+01

1e+02

1e+03

1e+04

1e+05

iteration

f−
f∗  in

 4
0D

BO PCA−BO

Fig. 2: Mean target precision to the optimal value against the iteration for BO (red) and PCA-BO (blue),
on multi-modal functions F15-24 from the BBOB problem set, in three dimensionalities, 10D (top), 20D
(middle), and 40D (bottom). 30 independent runs are conducted and the shade area indicates the 95%
confidence interval of the mean target precision. The iteration counts the number of function evaluations
after evaluating the initial design points.
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Fig. 3: CPU time (in seconds) taken by PCA-BO and BO to complete the evaluation budget for all func-
tions and three dimensions. For each pair of problems and dimensions, we also applied the well-known
Mann–Whitney U test on the CPU time with the Holm–Bonferroni correction of p-values and a significance
level of 0.01. The red-colored test problems indicate that the CPU time of PCA-BO is significantly smaller
than BO based on the test.

find a promising point by saving computational resources. Afterwards, the selected point is mapped back to
the original feature space, it is evaluated, added to the sample set to increase the accuracy of the model,
and compared to the previous points to eventually update the optimum.
We empirically evaluated PCA-BO by testing it on the well-known COCO/BBOB benchmark suite. In
particular, we used the presented method to optimize two sets of multi-modal benchmarks, characterized by
either an adequate or weak global structure. We also ran the standard BO for comparison purposes. It is
clear from the results that PCA-BO achieves state-of-the-art BO performance for optimizing multi-modal
benchmarks with an adequate global structure, while it finds some difficulties when dealing with multi-modal
benchmarks with a weak global structure. We ascribe such inefficiency to the global nature of the PCA-BO
algorithm. In fact, when learning the the orthogonal linear transformation from all the evaluated points
during the run, the proposed algorithm cannot detect a clear and well-definite trend of the isocontour within
the function domain. Addressing this problem, by localizing the PCA strategy, is among our future goals.
Moreover, in case of weak global structure benchmarks, PCA-BO might also benefit from a different scheme
in the pre-tuning of the PCA algorithm: instead of weighting the sample set, a truncation scheme which only
selects a prescribed percentage of samples – ordered according to their function values – to train the linear
transformation parameters can be adopted. Within this study, we have assessed the performance of PCA-BO
not only in terms of the empirical convergence rate, but also tracking the CPU time elapsed to complete
the runs. Results showed that, except for the 10-variables test cases that can be efficiently addressed with
standard BO, the average CPU time throughout the different tested functions can be consistently reduced
by approaching the optimization problem with PCA-BO. In fact, training the GP model and optimizing the
acquisition function is a much cheaper procedure in a search space of reduced dimensionality than in the
full-dimensional space.

In the future, we will extend our study by applying a non-linear transformation when tuning the pa-
rameters for the PCA-mapping to the lower-dimensional feature space. One option is represented by the
Kernel Principal Component Analysis (KPCA) [32], which is a non-linear dimensionality reduction through
the use of kernels, more capable to capture the isocontour of the cost functions when variables are not
linearly correlated. Moreover, we will extend PCA-BO to make it capable of addressing real-world con-
strained applications, such as the optimization of mechanical structures subjected to static/dynamic loads.
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These problems are usually characterized by a great number of design variables and by costly evaluations,
requiring optimization techniques of affordable computational cost.
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