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Abstract. It is well known that evolutionary algorithms (EAs) achieve peak performance only when
their parameters are suitably tuned to the given problem. Even more, it is known that the best param-
eter values can change during the optimization process. Parameter control mechanisms are techniques
developed to identify and to track these values.
Recently, a series of rigorous theoretical works confirmed the superiority of several parameter control
techniques over EAs with best possible static parameters. Among these results are examples for con-
trolling the mutation rate of the (1 + λ) EA when optimizing the OneMax problem. However, it was
shown in [Rodionova et al., GECCO’19] that the quality of these techniques strongly depends on the
offspring population size λ.
We introduce in this work a new hybrid parameter control technique, which combines the well-known
one-fifth success rule with Q-learning. We demonstrate that our HQL mechanism achieves equal or
superior performance to all techniques tested in [Rodionova et al., GECCO’19] and this – in contrast
to previous parameter control methods – simultaneously for all offspring population sizes λ. We also
show that the promising performance of HQL is not restricted to OneMax, but extends to several other
benchmark problems.

Keywords: Parameter Control · Q-Learning · Offspring Population Size

1 Introduction

The problem of selecting suitable parameter configurations for an evolutionary algorithm is frequently con-
sidered to be one of the most essential drawbacks of evolutionary computation methods, and possibly a
major obstacle towards wider application of these optimization techniques in practice [30].

Automated configuration techniques such as SPOT [3], irace [31], SMAC [23], hyperband [29], MIP-
EGO [41], BOHB [21], and many others have been developed to assist the user in the decisive task of
selecting suitable parameter configurations. These parameter tuning methods, however, require to test differ-
ent parameter combinations before presenting a recommendation. They are therefore rather time-consuming,
and are not applicable when the possibility for such training is not given, e.g., when the problem is truly
black-box, with no/only little information about its fitness landscape structure.

An orthogonal approach to solve the algorithm configuration problem is parameter control, which does
not require a priori training, and aims at identifying suitable parameter combinations on the fly, i.e., while
executing the optimization [20, 26, 30]. Apart from being more generally applicable than parameter tuning,
parameter control also bears the advantage of being able to adjust the search behavior of the evolutionary
algorithm to the different stages of the optimization process. Most state of the art evolutionary algorithms
therefore make use of parameter control, in particular in the continuous domain, where a decreasing search
radius is needed to eventually converge towards an optimal point. However, one should not forget that
parameter control mechanisms, too, introduce their own hyperparameters, which need to be adequately set
by the user prior to running the algorithm. Here again one can apply parameter tuning (e.g., via so-called
per-instance algorithm configuration [4]), but the general hope is that the setting of the hyperparameters is
less critical to achieve reasonable performance.
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However, while parameter control is routinely used in numerical optimization, its potential remains far
from being well exploited in the optimization of problems with discrete decision variables, where it has only
recently re-gained momentum as a now very active area of research. In particular in the sub-domain of
runtime analysis, parameter control has enjoyed rising attention in the last years, as summarized in [9].

A particularly well-researched topic in the theory literature for parameter control in discrete optimization
heuristics is the (1 + λ) Evolutionary Algorithm (EA) with dynamic mutation rates and fixed offspring
population size λ optimizing the OneMax problem (the problem of controlling λ has also been addressed,
e.g., in [28], but has received much less attention so far). Not only was this problem one of the first ones for
which dynamic mutation schemes were approximated [2], and not only is it frequently used as a test case
for empirical works [6], but it is also one of the few problems for which we have a very solid theoretical
understanding.

Extending the previous work from [17], we have presented at GECCO’19 a comparative empirical study
of several mechanisms suggested in the theory literature [36]. Among other findings, we demonstrated that
the efficiency of all benchmarked techniques depends to a large extent on the offspring population size λ. For
example, we observed that the 2-rate (1 + λ) EA suggested in [14] is the best among the tested algorithms
when λ is smaller than 50. For larger offspring population sizes, however, this algorithm is outperformed by
a (1 +λ) EA which uses the one-fifth success rule to control the mutation rate. We also observed in [36] that
the ranking of the algorithms was identical for all tested dimensions n ∈ [104..105].

Our Results. The results presented in [36] raise the question if one can achieve stable performance across all
offspring population sizes λ. We address this problem by introducing a new parameter control scheme, which
hybridizes the one-fifth success rule with Q-learning. More precisely, we first introduce the (1 + λ) QEA,
which uses Q-learning only to control the mutation rate. The (1 +λ) QEA learns for each optimization state
whether it should increase or decrease the current mutation rate (we use constant factor changes). We show
that the (1+λ) QEA performs efficiently on OneMax for all observed values of λ when an appropriate lower
bound pmin for the mutation rate is used. In absence of a well-tuned lower bound, however, the performance
of the (1 + λ) QEA drops significantly. We show that this dependence on the value of pmin can be mitigated
by a hybridization of the (1 + λ) QEA with the one-fifth success rule. More precisely, the hybrid Q-learning
EA (the (1 + λ) HQEA) extends the (1 + λ) QEA by using the one-fifth success rule in states that have not
been visited before and for those for which the (1 + λ) QEA is ambiguous with respect to the two available
actions.

We show that, on OneMax, the (1+λ) HQEA outperforms or at least performs on par with all algorithms
tested in [36], and this simultaneously for all tested values of λ ∈ [1..212] and also for both considered lower
bounds for the mutation rate, pmin = 1/n and pmin = 1/n2, respectively. It therefore solves the issue of the
other control mechanisms previously suggested in the theory literature. Note here that we do not have a
theoretical convergence analysis of the (1 + λ) HQEA. Given its complexity, it may be beyond the current
state of the art in runtime analysis, as it requires to keep track of multiple states, which are highly dependent.
We are nevertheless confident that the robust performance of the (1 +λ) HQEA encourages further work on
learning-based parameter control, and their hybridization with other classical control methods.

In the last parts of this paper we also show that the promising performance of the (1 + λ) HQEA is not
restricted to OneMax. More precisely, we show that it performs well also on the LeadingOnes function,
as well as on several benchmark functions suggested in [16].

Related Work. We are not the first to use reinforcement learning (RL) as a parameter control technique.
An exhaustive survey of RL-based parameter control approaches can be found in [26]. Particularly, there
are parameter control approaches based on techniques for the Multi-Armed Bandit Problem (MAB), see [22]
(and references mentioned therein) and [12] for a theoretical investigation of MAB-based parameter control.

In many of the known approaches, RL algorithms are used to select the parameter values directly. For
numerical parameters, however, most common techniques require to either discretize the value space [24] or
to make use of quite sophisticated techniques [1, 19, 37], which are rather difficult to grasp without expert
knowledge.
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In contrast to such a direct selection of the parameter values, we use in this work an indirect approach
which uses as actions the possibility to increase the current parameter value by some fixed multiplier, or
decrease it. As we shall see below, this yields a simple, yet efficient, control mechanism. Like most common
parameter control techniques, including those studied in this work, this indirect approach has the advantage
of a smoother transition of the mutation rates between consecutive iterations. This behavior is beneficial
if the optimal parameter values do not change abruptly, which is the case in many problems analyzed in
theoretical works [10, 13], but also the case in many applications of evolutionary algorithms to machine
learning problems, including hyperparameter optimization itself [34]. Exceptions to this rule exist, of course,
and the jump functions [18] are a classical example for a problem requiring such an abrupt change. In such
cases it may take the the parameter control mechanisms some time to adjust the mutation rate to the
appropriate scale.

We note that a similar indirect control approach has been described in [33], where an indirect control
of the step size of the (1+1) evolution strategy (ES) is described. In contrast to our work, however, this
approach (which uses SARSA – another common reinforcement learning algorithm – instead of Q-learning)
did not manage to outperform the (1+1) ES with suitably tuned static step sizes.

2 Previous (1 + λ) EAs with Dynamic Mutation Rates

We briefly review the algorithms studied in [36] and summarize their main findings. We assume in our
presentation that the algorithms operate on a problem f : {0, 1}n → R, with the objective to maximize this
function.

The (1 + λ) EA. The standard (1 + λ) EA is an elitist algorithm, which always keeps a current best
solution x in its memory. The (1 + λ) EA is initialized with a point chosen from the search space {0, 1}n
uniformly at random. In each iteration, λ offspring are sampled by applying standard bit mutation to the
parent x, i.e., the algorithm creates λ offspring y(1), . . . , y(λ) by creating λ copies of x and flipping each bit
in these copies with some probability 0 < p < 1. The variable p is commonly referred to as the mutation
rate. We set it to p = 1/n in our experiments, which is a standard recommendation and often a fall-back
value if no indication is given that larger values could be beneficial. The best of the λ offspring (ties broken
uniformly at random) replaces the parent if it is at least as good. The (1 + λ) EA continues until some
user-defined termination criterion is met (see “implementation details” below for our setting).

The (1+λ) EA(A, b). The (1+λ) EA(A, b) extends the (1+λ) EA by an adaptive choice of the mutation
rate p. Its (1+1) variant was suggested in [15], and we use a straightforward extension to the (1 + λ) EA
by updating the mutation rate p by Ap if the best of the λ offspring is at least as good as the parent and
by decreasing the mutation rate to bp otherwise. It is ensured that the mutation rate does not fall below
some minimal mutation rate pmin > 0 and that it does not exceed pmax = 1/2, by capping the value of p
appropriately where required. As argued in [11], this update rule is essentially a one-fifth success rule, even
if this term was not mentioned in [15]. The one-fifth success rule was originally suggested in [8,35,38] and its
interpretation for the discrete optimization is due to [27]. More precisely, the idea is that the mutation rate
should remain constant if a certain ratio of iterations is successful (i.e., produces a solution of better than
previous-best quality). In our work, this success ratio is 1/2, whereas the traditional rule suggests a success
ratio of 1/5.

The (1 + λ) EA(A, b) has three hyperparameters, A, b, and pmin. In our experiments, we set A = 2,
b = 1/2, and consider pmin ∈ {1/n, 1/n2}. We initialize p by 1/n. Note that these values are not specifically
tuned, but we chose them to be consistent with previous works, and in particular with [36]. The reader
interested in the sensitivity of the performance of the (1 + λ) EA(A, b) with respect to these parameters is
referred to [15] and [11] for an empirical and a theoretical investigation, respectively.

The 2-rate (1 +λ) EAr/2,2r. The (1 +λ) EAr/2,2r suggested in [14] uses two different mutation rates in
each iteration: half the offspring are created with mutation rate p/2 and the other λ/2 offspring are sampled
with mutation rate 2p. The mutation rate is parametrized as p = r/n in the (1 + λ) EAr/2,2r. The value
of r is updated after each iteration by a random decision which gives preference to the rate by which the
best offspring has been created. The latter is selected with probability 3/4, whereas the other one of the two
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tested mutation rates is chosen with probability 1/4. As in the (1+λ) EA(A, b), the mutation rate is capped
at pmin ∈ {1/n2, 1/n} and pmax = 1/2, respectively.

Implementation details. We briefly summarize a few common assumptions made in all our algorithms.

Shift Mutation Strategy. All algorithms described above use standard bit mutation as variation op-
erator. To avoid sampling offspring that are identical to the parent (these offspring would not bring any
new information to our optimization process, and are therefore useless), we use the “shift” operation sug-
gested in [5]. If an offspring equals its parent, this strategy simply flips a randomly chosen bit. We write
y ← mutate(x, p) if y is sampled by applying the shift mutation operator with mutation rate p to x.

Termination Criterion and Runtime Measure. We focus in this work on the runtime (also known
as optimization time), which we measure in terms of generations that are needed until an optimal solution is
evaluated for the first time. Since we only study algorithms with static offspring population size λ, the classical
runtime in terms of function evaluations is easily obtained by multiplication with λ. As common in the
academic benchmarking of EAs, our termination criterion is thus the state f(x) = max{f(y) | y ∈ {0, 1}n}.

Strict vs. Non-Strict Update Rules. We have presented in the previous section the algorithms
as originally suggested in the literature. However, in our initial experiments we have made an interesting
observation that the (1 + λ) EA(A, b) can substantially benefit from a slightly different parameter update
rule, which replaces p by Ap only if the best offspring y is strictly better than the parent, i.e., if it satisfies
f(y) > f(x). We perform all experiments for the strict and the classical (non-strict) update rules, which –
together with the two lower bounds pmin = 1/n2 and pmin = 1/n – yields four different settings for each
benchmark problem. For reasons of space we can only comment on a few selected cases below. The detailed
results are available in the appendix. We mostly focus on the case of the strict update rule, if not stated
otherwise.

3 Hybridizing Q-Learning and the 1/5-th Success Rule

The main contribution of our work is an algorithm that avoids the drawbacks of the above-mentioned
(1 +λ) EA variants observed on OneMax, and shows stable performance for all values of λ. We will achieve
this by hybridizing the (1 + λ) EA(A, b) with Q-learning.

Q-learning is a method that falls into the broader category of reinforcement learning (RL). Q-learning
aims at learning, from the data that it observes, a policy that tells an agent which action to apply in a given
situation. For this, it maintains a state-action matrix, in which it records its guess for what the expected
reward of each action in each of the states is. For a given state s, the action a maximizing this expected
reward is chosen and executed. The environment returns a numerical reward and a representation of its
state. The reward is used to update the state-action matrix, according to some rules that we shall discuss
in the next paragraphs. The Q-learning process repeats until some termination criterion is met. The goal of
the agent is to maximize the total reward. A smooth introduction to RL can be found in [39].

The (1 + λ) QEA. We apply Q-learning to control the mutation rate of the (1 + λ) EA with fixed
offspring population size λ. We first present in Alg. 1 the basic (1 + λ) QEA. Its hybridization with the
1/5-th success rule will be explained further below. The (1 + λ) QEA considers only two actions: whether
to multiply the current mutation rate p by the factor A > 1 (action amult) or whether to multiply it by the
factor b < 1 (action adivide). As mentioned in the introduction, the advantage of this action space is a smooth
transition of the mutation rates between consecutive iterations, compared to a possibly abrupt change when
operating directly on the parameter values.

We use as reward the relative fitness gain, i.e., (max f(y(i))−f(x))/f(x) (where we use the same notation
as in the description of the (1+λ) EA, i.e., x denotes the parent individual and y(1), . . . , y(λ) its λ offspring).
This reward is computed in line 12. Note here that several other reward definitions would have been possible.
We tried different suggestions made in [25] and found this variant to be the most efficient. The new state
s′ is computed as the number of offspring y(i) that are strictly better than the parent (lines 13-16). With
the reward and the new state at hand, the efficiency estimation Q(s, a) is updated in line 18, through
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Algorithm 1: The (1 + λ) QEA, Q-learning highlighted in blue font

1 Input: population size λ, learning rate α, learning factor γ;
2 Initialization:
3 x← random string from {0, 1}n;
4 p← 1/n;
5 for all states si ∈ [0 . . . λ] and all actions ai ∈ {amult, adivide} do Q(si, ai)← 0;
6 s, a← undefined;
7 Optimization: while termination criterion not met do

8 for i = 1, . . . , λ do y(i) ← mutate(x, p);

9 x∗ ← arg maxy(i) f(y(i));

10 xold ← x;
11 if f(x∗) ≥ f(x) then x← x∗;

12 r ← f(x∗)
f(xold)

− 1 ; // reward calculation

13 s′ ← 0;
14 for i = 1, . . . , λ do

15 if f(y(i)) > f(xold) then
16 s′ ← s′ + 1 ; // state calculation

17 if s 6= undefined and a 6= undefined then
18 Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s′, a′)−Q(s, a));

19 s← s′;
20 if Q(s′, amult) = Q(s′, adivide) then
21 a← select amult or adivide equiprobably;
22 else
23 a← arg maxa′ Q(s′, a′);

24 p← ap ; // update mutation rate

25 p← min(max(pmin, p), pmax) ; // capping mutation rate

a standard Q-learning update rule. Note here that action a is the one that was selected in the previous
iteration (lines 20-23), and it resulted in moving from the previous state s to the current state s′.

After this update, the (1 + λ) QEA selects the action to be used in the next iteration, through simple
greedy selection if possible, and through an unbiased random choice otherwise; see lines 20-23. The mutation
rate p is then updated by this action (line 24) and capped to remain within the interval [pmin, pmax] if needed
(line 25).

Hyperparameters. The (1 + λ) QEA has six hyperparameters, the constant factors of the actions amult

and adivide, the upper and lower bounds for the mutation rate pmin and pmax, and two hyperparameters
originating from the Q-learning methodology itself (line 18), the learning rate α and the discount factor
γ. In our experiments, we use amult = 2, adivide = 1/2, pmax = 1/2, α = 0.8, and γ = 0.2. These values
were chosen in a preliminary tuning step, details of which we have to leave for the full report due to space
restrictions. For pmin we show results for two different values, 1/n2 and 1/n, just as we do for the other
parameter control mechanisms.

The (1 +λ) HQEA, the Hybrid Q-learning EA. In the hybridized (1 +λ) QEA, the (1 +λ) HQEA,
we reconsider the situation when the Q(s, a) estimations are equal. This situation arises in two cases: when
the state s is visited for the first time or when the same estimation was learned for both actions amult

and adivide. In these cases, the learning mechanism cannot decide which action is better, and an action is
selected uniformly randomly. The (1 + λ) HQEA, in contrast, borrows in this case the update rule from
the (1 + λ) EA(A, b) algorithm, i.e., action amult is selected if the best offspring is strictly better than the
parent, otherwise adivide is chosen. Formally, we obtain the (1 + λ) HQEA by replacing in Alg. 1 line 21 by
the following text:

if f(x∗) > f(xold) then a← amult else a← adivide. (1)
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Strict vs. Non-Strict Update Rules. As mentioned at the end of Sec. 2, we experiment both with
a strict and a non-strict update rule. Motivated by the better performance of the strict update rule, the
description of the (1 + λ) QEA and the (1 + λ) HQEA use this rule. The non-strict update rules can be
obtained from Alg. 1 by replacing the strict inequality in line 15 by the non-strict one. Similarly, for the
(1 + λ) HQEA, we also replace “iff(x∗) > f(xold)” in (1) by “iff(x∗) ≥ f(xold)”.

4 Empirical comparison of parameter control algorithms

We now demonstrate that, despite the seemingly minor change, the (1 + λ) HQEA outperforms both its
origins, the (1 + λ) QEA and the (1 + λ) EA(A, b), on several benchmark problems. We recall that the
starting point of our investigations were the results presented in [36], which showed that the performance of
the (1 + λ) EA variants discussed in Sec. 2 on OneMax strongly depends on (1) the offspring population
size λ, and on (2) the bound pmin at which we cap the mutation rate. The (1 + λ) HQEA, in contrast, is
shown to yield stable performance for all tested values of λ and for both tested values of pmin.

Experimental setup. All results shown below are simulated from 100 independent runs of each algo-
rithm. We report statistics for the optimization time, i.e., for the random variable counting the number of
steps needed until an optimal solution is queried for the first time. Since the value of λ is static, we report
the optimization times as number of generations; classical running time in terms of function evaluations
can be obtained from these values by multiplying with λ. For OneMax, we report average optimization
times, for consistency with the results in [36] and with theoretical results. However, for some of the other
benchmark problems, the dispersion of the running times can be quite large, so that we report median values
and interquartile ranges instead. Please also note that we use logarithmic scales in all runtime plots.

In the cases of large dispersion, we also performed the rank-sum Wilcoxon test to question statistical
significance [7]. More precisely, we compared the (1 + λ) HQEA to each of the other algorithms. As the
input data for the test, the runtimes of all 100 runs of each of the two compared algorithms were used. The
significance level was set to p0 = 0.01.

The value of λ is parameterized as 2t, with t taking all integer values ranging from 0 to 12 for OneMax
and from 0 to 9 for all other problems. The problem dimension, in contrast, is chosen in a case-by-case basis.
We recall that it was shown in [36] that the dimension did not have any influence on the ranking of the
algorithms on OneMax. This behavior can be confirmed for the here-considered algorithm portfolio (results
not shown due to space limitations).

4.1 Stable Performance on OneMax

Fig. 1 summarizes our empirical results for the 104-dimensional OneMax problem, the problem of maximiz-
ing the function Om : {0, 1}n → [0..n], x 7→∑n

i=1 xi. For pmin = 1/n2, our key findings can be summarized
as follows. (i) For small λ up to 24, all the parameter control algorithms perform similarly and all of them
seem to be significantly better than the (1 + λ) EA with static mutation rates. (ii) Starting from λ > 25

for the (1 + λ) EA(A, b) and from λ > 26 for the (1 + λ) QEA and the (1 + λ) EAr/2,2r, these algorithms
are outperformed by the (1 + λ) EA. (iii) The (1 + λ) HQEA is the only parameter control algorithm that
substantially improves the performance of the (1+λ) EA for all considered values of λ. The advantage varies
from 21% for λ = 212 to 38% for λ = 1.

For the less generous pmin = 1/n lower bound, we observe the following.(i) Overall, the performance is
worsened compared to the 1/n2 lower bound. In particular, for small values of λ, most of the algorithms are
indistinguishable from the (1 + λ) EA, except for the (1 + λ) EAr/2,2r, which is even substantially worse.
(ii) However, for λ ≥ 29, the (1 + λ) EAr/2,2r starts to outperform the (1 + λ) EA, in strong contrast to
the situation for the 1/n2 lower bound. (iii) Our (1 + λ) HQEA is the only method which is never worse
than the (1 + λ) EA and still outperforms it for λ > 26. With the growth of λ, the advantage grows as well:
while the (1 + λ) EA with λ = 212 needs 1738 generations, on average, the (1 + λ) HQEA only requires
1379 generations, an advantage of more than 20%. (iv) It is worth noting that the (1 + λ) QEA in this case
performs on par with the (1 + λ) HQEA.
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Fig. 1: Average number of generations and its standard deviation needed to locate the optimum of the
OneMax problem

Overall, we thus see that the (1 + λ) HQEA is the only considered parameter control algorithm, which
stably performs on par or better than the (1 + λ) EA and all of the other algorithms for all values of λ and
for both values pmin ∈ {1/n2, 1/n}.

4.2 Stable Performance on Other Benchmark Problems

LeadingOnes. The LeadingOnes problem asks to maximize functions of the type Loz,σ : {0, 1}n →
R, x 7→ max{i ∈ [n] | ∀j ≤ i : xσ(i) = zσ(i)}, where σ is simply a permutation of the indices 1, . . . , n (the
classic Lo function uses the identity). We study the n = 103-dimensional variant of this problem.

For pmin = 1/n2 all the methods – including the (1 + λ) EA– show very similar performance, with the
difference between the best and the worst of the five algorithms varying from 3% to 6% for each offspring
population size λ, which is of the same order as the corresponding standard deviations. For the 1/n lower
bound, the situation is similar, except that the (1 + λ) EAr/2,2r performs substantially worse than the
(1 + λ) EA for all considered values of λ, and the difference varies from 45% to 93%.

As a result, the (1 +λ) HQEA generally performs on par with the (1 +λ) EA for all considered values of
λ and both considered lower bounds on the mutation rate. Particularly, for pmin = 1/n2 it is strictly better
in 6 of the 10 cases, and in the other cases the disadvantages are 0.3%, 0.3%, 0.7%, and 1.1%.

Neutrality. The Neutrality function is a W-model transformation [42] that we apply to OneMax. It
is calculated the following way: a bit string x is split into blocks of length k each, and each block contributes
0 or 1 to the fitness value according to the majority of values within the block. In line with [42] and [16] we
considered k = 3. We study the n = 103-dimensional version of this problem. The results are summarized in
Fig. 2.

For pmin = 1/n2 we obtain the following observations. Most of the parameter control methods perform
poorly, i.e. worse than the (1 + λ) EA. The exception is (1 + λ) EA(A, b), which performs better than the
(1 + λ) EA for several values of λ (in particular, λ = 26, 27).

The lower bound pmin = 1/n turns out to be preferable for all the algorithms: for large offspring population
sizes λ, they all perform better than the standard (1 + λ) EA. Our (1 + λ) HQEA is usually one of the best
algorithms, but however, for λ = 27 and λ = 28 it seems to be worse than the (1+λ) EA(A, b). The Wilcoxon
test results did not confirm the significance of this difference though (the p-values are greater than 0.04 in
both cases).

For this problem we also observe that switching from the strict update rule to the non-strict version
is beneficial for the (1 + λ) HQEA, the (1 + λ) QEA, and the (1 + λ) EA(A, b), regardless of the value of
pmin. It is worth noting that with these values of hyper-parameters the (1 +λ) HQEA performs significantly
better on high values of the population size (λ ≥ 25) than all the other considered methods (the p-values
are between 1.6 · 10−9 and 3.9 · 10−18).

7



21 25 29
102

103

λ

M
ed

ia
n
ru
n
ti
m
e

(a) pmin = 1/n2

(1 + λ) EA 2-rate (A, b) QEA HQEA

21 25 29
102

103

λ

(b) pmin = 1/n

21 25 29
102

103

λ

(c) pmin = 1/n2, ≥ rule

21 25 29
102

103

λ

(c) pmin = 1/n, ≥ rule

Fig. 2: Median number of generations and the corresponding interquartile ranges needed to locate the opti-
mum of the Neutrality problem

Plateaus. Plateau is an extension of the W-model suggested in [16]. This transformation operates on the
function values, by setting Plateau(f(x)) := bf(x)/kc+1, for a parameter k that determines the size of the
plateau. We superpose this transformation to OneMax, and study performances for dimension n = 1000.

Small plateaus, k = 2. For k = 2, pmin = 1/n2, and 2 ≤ λ ≤ 26, all considered parameter control
algorithms improve the performance of the (1+λ) EA. For large values of λ (starting from λ = 27), however,
the runtimes of the (1 + λ) EA and the parameter control algorithms are hardly distinguishable. The only
exception for large λ is the proposed (1 + λ) HQEA, which performs a bit better than the (1 + λ) EA. The
Wilcoxon test suggests that the difference is significant with the p-values less than 3.9 · 10−18.

The results obtained when using pmin = 1/n are less successful, as most of the parameter control methods
just perform on par with the (1 + λ) EA in this case. The (1 + λ) HQEA shows nevertheless a stable and
comparatively good performance for all offspring population sizes λ. The (1 + λ) EAr/2,2r performs worse
than the (1 + λ) EA in this case.

Plateaus with k = 3. We also considered a harder version of the problem with a larger size of the plateau,
for which we use k = 3. As the total running time for this problem is much larger than for k = 2, we had to
restrict our experiments to a smaller problem size n = 100.

For pmin = 1/n2 we cannot see any clear improvement of parameter control over the (1 + λ) EA any
more. Moreover, for λ ≥ 27, the (1 + λ) EA seems to be the best performing algorithm.

Interestingly, for the 1/n lower bound the situation is pretty similar to the k = 2 case. All the parameter
control algorithms perform on par with the (1 +λ) EA (with only slight differences at λ = 24, 26), except for
the (1 + λ) EAr/2,2r, which performs worse. It seems that as the problem gets harder, a larger lower bound
is preferable, which seems to be natural, as with a bigger plateau, a higher mutation rate is needed to leave
it. Let us also mention that the (1 + λ) HQEA performs stably well for all considered values of λ in this
preferable configuration.

Ruggedness. We also considered the W-Model extension F9 from [16], which adds local optima to the
fitness landscape by mapping the fitness values to r2(f(x)) := f(x) + 1 if f(x) ≡ n mod 2 and f(x) < n,
r2(f(x)) := max{f(x)− 1, 0} for f(x) ≡ n+ 1 mod 2 and f(x) < n, and r2(n) := n. This transformation is
superposed on OneMax of size n = 100.

For pmin = 1/n2, all the considered parameter control algorithms significantly worsen the performance of
the (1 +λ) EA. Even the (1 +λ) EAr/2,2r, which, untypically, performs the best among all these algorithms,
is still significantly worse than the (1 + λ) EA.
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The situation improves for pmin = 1/n and the parameter control algorithms show similar performance
as the (1 + λ) EA. The only exception is again (1 + λ) EAr/2,2r, whose performance did not change much
compared to the case pmin = 1/n2.

5 Conclusions and Future Work

To address the issue of unstable performance of several parameter control algorithms on different values
of population size reported in [36], we proposed the Q-learning based parameter control algorithm, the
(1 + λ) QEA, and its hybridization with the (1 + λ) EA(A, b), the (1 + λ) HQEA. The algorithms were
compared empirically on OneMax and five more benchmark problems with different characteristics, such
as neutrality, plateaus and presence of local optima. Our main findings may be summarized as follows.

On simple problems, i.e. OneMax, LeadingOnes, and Plateau with k = 2 the (1 + λ) HQEA is the
only algorithm which always performs on par or better than the other tested algorithms for all the considered
values of λ and both mutation rate lower bounds.

On the harder problems, i.e., Neutrality, Plateau with k = 3, and Ruggedness, the (1 + λ) HQEA
performance depends on the lower bound (the same is true for the other algorithms). For pmin = 1/n, the
(1 + λ) HQEA still performs on par with or better than the other algorithms for all values of λ in almost all
cases.

The (1 + λ) QEA is usually worse than the (1 + λ) HQEA. There are a number of examples where
(1+λ) EA(A, b) is significantly worse as well. The hybridization of these two algorithms seems to be essential
for the observed good performance of the (1 + λ) HQEA.

As next steps, we plan on investigating more possible actions for the Q-learning part. For example, one
may use several different multiplicative update rules, to allow for a faster adaptation when the current rate
is far from optimal. This might in particular be relevant in dynamic environments, in which the fitness
functions (and with it the optimal parameter values) change over time. We also plan on identifying ways
to automatically select the configuration of the Q-learning algorithms, with respect to its hyper-parameters,
but also with respect to whether to use the strict or the non-strict update rule. In this context, we are
investigating exploratory landscape analysis [32,40].
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