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Optimal Mutation Rates
for the (1 + λ) EA on OneMax

Maxim Buzdalov1 and Carola Doerr2

1 ITMO University, Saint Petersburg, Russia,
2 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. The OneMax problem, alternatively known as the Hamming
distance problem, is often referred to as the “drosophila of evolutionary
computation (EC)”, because of its high relevance in theoretical and em-
pirical analyses of EC approaches. It is therefore surprising that even for
the simplest of all mutation-based algorithms, Randomized Local Search
and the (1+1) EA, the optimal mutation rates were determined only
very recently, in a GECCO 2019 poster.
In this work, we extend the analysis of optimal mutation rates to two
variants of the (1 + λ) EA and to the (1 + λ) RLS. To do this, we use
dynamic programming and, for the (1 + λ) EA, numeric optimization,
both requiring Θ(n3) time for problem dimension n. With this in hand,
we compute for all population sizes λ ∈ {2i | 0 ≤ i ≤ 18} and for problem
dimension n ∈ {1000, 2000, 5000} which mutation rates minimize the
expected running time and which ones maximize the expected progress.
Our results do not only provide a lower bound against which we can
measure common evolutionary approaches, but we also obtain insight
into the structure of these optimal parameter choices. For example, we
show that, for large population sizes, the best number of bits to flip is
not monotone in the distance to the optimum. We also observe that the
expected remaining running time are not necessarily unimodal for the
(1 + λ) EA0→1 with shifted mutation.

1 Introduction

Evolutionary algorithms (EAs) are particularly useful for the optimization of
problems for which algorithms with proven performance guarantee are not
known; e.g., due to a lack of knowledge, time, computational power, or access to
problem data. It is therefore not surprising that we observe a considerable gap
between the problems on which EAs are applied, and those for which rigorously
proven analyses are available [12].
If there is a single problem that stands out in the EA theory literature, this is
the OneMax problem, which is considered to be “the drosophila of evolutionary
computation” [15]. The OneMax problem asks to maximize the simple linear
function that counts the number of ones in a bit string, i.e., OM(x) =

∑n
i=1 xi.

This function is, of course, easily optimized by sampling the unique optimum
(1, . . . , 1). However, most EAs show identical performance on OneMax as on
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any problem asking to minimize the Hamming distance H(z, ·) to an unknown
string z, i.e., fz(x) = n−H(z, x), which is a classical problem studied in various
fields of Computer Science, starting in the early 60s [14]. In the analysis of
EAs, OneMax typically plays the role of a benchmark problem that is easy
to understand, and on which one can easily test the hill-climbing capabilities
of the considered algorithm; very similar to the role of the sphere function in
derivative-free numerical optimization [1,17].
Despite its popularity, and numerous deep results on the OneMax problem
(see [12] for examples), there are still a number of open questions, and this even
for the simplest settings in which the problem is static and noise-free, and the
algorithms under consideration can be described in a few lines of pseudo-code.
One of these questions concerns the optimal mutation rates of the (1 + λ) EA,
i.e., the algorithm which always keeps in memory a best-so-far solution x,
and which samples in each iteration λ “offspring” by applying standard bit
mutation to x. By optimal mutation rates we refer to the values that minimize
the expected optimization time, i.e., the average number of function evaluations
needed until the algorithm evaluates for the first time an optimal solution. It is
not very difficult to see that the optimal mutation rate of this algorithm as well
as of its Randomized Local Search (RLS) analog (i.e., the algorithm applying a
deterministic mutation strength rather than a randomly sampled one) depend
only on the function value OM(x) of the current incumbent [2,3,10]. However,
even for λ = 1 the optimal mutation rates were numerically computed only
in the recent work [4]. Prior to [4], only the rates that maximize the expected
progress and those that yield asymptotically optimal running times (in terms of
big-Oh notation) were known, see discussion below.
It was shown in [4] that the optimal mutation rates are not identical to those
maximizing the expected progress, and that the differences can be significant
when the current Hamming distance to the optimum is large. In terms of
running time, however, the drift-maximizing mutation rates are known to
yield almost optimal performance, which is another result that was proven
only recently [10] (more precisely, it was proven there for Randomized Local
Search (RLS), but the result is likely to extend to the (1+1) EA and its
(1 + λ) variants).
Our Contribution. We extend in this work the results from [4] to the
case λ ∈ {2i | i ∈ [0..18]}. As in [4] we do not only focus on the standard
(1 + λ) EA, but we also consider the (1 + λ) equivalent of RLS and we consider
the (1 + λ) EA with the “shift” mutation operator suggested in [7]. The shift
mutation operator 0 → 1 flips exactly one randomly chosen bit when the
sampled mutation strength of the standard bit mutation operator equals zero.
Differently from [4] we do not only store the optimal and the drift-maximizing
parameter settings for the three different algorithms, but we also store the
expected remaining running time of the algorithm that always applies the same
fixed mutation rate as long as the incumbent has distance d to the optimum
and that applies the optimal mutation rate at all distances d′ < d. With these
values at hand, we can compute the regret of each mutation rate, and summing
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these regrets for a given (1+λ)-type algorithm gives the exact expected running
time, as well as the cumulative regret, which is the expected performance loss
of the considered algorithm against the optimal strategy.
Our results extend the main observation shared in [4], which states that, for the
(1+1) EA, the drift-maximizing mutation rates are not always also optimal, to
the (1 + λ) RLS and to both considered (1 + λ) EAs. We also show that the
drift-maximizing and the optimal mutation rates are almost identical across
different dimensions, when compared against the normalized distance d/n.
We also show that, for large population sizes, the optimal number of bits to
flip is not monotone in the distance to the optimum. Moreover, we observe
that the expected remaining running time is not necessarily unimodal for
the (1 + λ) EA0→1 with shifted mutation. Another interesting finding is that
some of the drift-maximizing mutation strengths of the (1 + λ) RLS with
λ > 1 are even, whereas it was proven in [10] that for the (1+1) EA the
drift-maximizing mutation strength must always be uneven. The distance d at
which we observe even drift-maximizing mutation strengths decreases with λ,
whereas its frequency increases with λ.
Applications of Our Results in the Analysis of Parameter Control
Mechanisms. Apart from providing several data-driven conjectures about the
formal relationship between the optimal and the drift-maximizing parameter
settings of the investigated (1 + λ) algorithms, our results have immediate
impact on the analysis of parameter control techniques. Not only do we provide
an accurate lower bound against which we can measure the performance of other
algorithms, but we can also very easily identify where potential performance
losses originate from. We demonstrate such an example in Sec. 6, and recall
here only that, despite its discussed simplicity, OneMax is a very commonly
used test case for all types of parameter control mechanisms – not only for
theoretical studies [9], but also in purely empirical works [21,24].
OneMax Does Not Require Offspring Population. It is well known that,
for the optimization of OneMax, the (1+1) EA is the most efficient among the
(1+λ) EAs [20] when measuring performance by fitness evaluations. In practice,
however, the λ offspring can be evaluated in parallel, so that – apart from
mathematical curiosity – the influence of the population size, the problem size,
and the distance to the optimum on the optimal (and on the drift-maximizing)
mutation rates also has practical relevance.
Related Work. Tight running time bounds for the (1 + λ) EA with static
mutation rate p = c/n are proven in [18]. For constant λ, these bounds were
further refined in [19]. The latter also presents optimal static mutation rates for
selected combinations of population size λ and problem size n.
For the here-considered dynamic mutation rates, the following works are most
relevant to ours. Bäck [2] studied, by numerical means, the drift-maximizing
mutation rates of the classic (1+λ) EA with standard bit mutation, for problem
size n = 100 and for λ ∈ {1, 5, 10, 20}. Mutation rates which minimize the
expected optimization time in big-Oh terms were derived in [3, Theorem 4].
More precisely, it was shown there that the (1 + λ) EA using mutation rate
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Algorithm 1: Blueprint of an elitist (1 +λ) unbiased black-box algorithm
maximizing a function f : {0, 1}n → R.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample k(i) ∼ D(n, f(x));

5 y(i) ← flipk(i)(x);

6 evaluate f(y(i));

7 y ← select
(

arg max{f(y(i)) | i ∈ [λ]}
)

;

8 if f(y) ≥ f(x) then x← y;

p(λ, n, d) = max{1/n, ln(λ)/(n ln(en/d))} needs O
(

n
lnλ + n logn

λ

)
function

evaluations, on average, to find an optimal solution. This is asymptotically
optimal among all λ-parallel mutation-only black-box algorithms [3, Theorem 3].
Self-adjusting and self-adaptive (1 + λ) EAs achieving this running time were
presented in [11] and [13], respectively.

2 OneMax and (1 + λ) Mutation-Only Algorithms

As mentioned, the classical OneMax function OM simply counts the number
of ones in the string, i.e., OM : {0, 1}n → R, x 7→

∑n
i=1 xi. For all algorithms

discussed in this work, the behavior on OM is identical to that on any of the
problems OMz : {0, 1}n → R, x 7→ n−H(z, x) := |{i ∈ [n] | xi 6= zi}|. We study
the maximization of these problems.

Algorithm 1 summarizes the structure of the algorithms studied in this work.
All algorithms start by sampling a uniformly chosen point x. In each iteration,
λ offspring y(1), . . . , y(λ) are sampled from x, independently of each other. Each
y(i) is created from the incumbent x by flipping some k(i) bits, which are pair-
wise different, independently and uniformly chosen (this is the operator flip

in line 4). The best of these λ offspring replaces the incumbent if it is at least
as good as it (line 8). When arg max{f(y(i)) | i ∈ [λ]} contains more than one
point, the selection operator select chooses one of them, e.g., uniformly at ran-
dom or via some other rule. As a consequence of the symmetry of OneMax, all
results shown in this work apply regardless of the chosen tie-breaking rule.

What is left to be specified is the distribution D(n, f(x)) from which the
mutation strengths k(i) are chosen in line 3. This is the only difference between
the algorithms studied in this work.
Deterministic vs. Random Sampling: The Randomized Local Search vari-
ants (RLS) use a deterministic mutation strength k(i), i.e., the distributions
D(n, f(x)) are one-point Dirac distributions. We distinguish two EA variants:
the one using standard bit mutation, denoted (1 + λ) EAsbm, and the one using
the shift mutation suggested in [7], which we refer to as (1+λ) EA0→1. Standard
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bit mutation uses the binomial distribution Bin(n, p) with n trials and success
probability p. The shift mutation operator uses Bin0→1(n, p), which differs from
Bin(n, p) only in that all probability mass for k = 0 is moved to k = 1. That is,
with shift mutation we are guaranteed to flip at least one bit, and the probability
to flip exactly one bit equals (1− p)n + np(1− p)n−1. In both cases we refer to
p as the mutation rate.
Optimal vs. Drift-maximizing Rates: Our main interest is in the optimal
mutation rates, which minimize the expected time needed to optimize OneMax.
Much easier to compute than the optimal mutation rates are the drift-maximizing
ones, i.e., the values which maximize the expected gain E[f(y) − f(x) | y ←
flipk(x), k ∼ D(n, f(x))], see Sec. 3.
Notational Convention. We omit the explicit mention of (1 + λ) when the
value of λ is clear from the context. Also, formally, we should distinguish between
the mutation rate (used by the EAs, see above) and the mutation strengths (i.e.,
the number of bits that are flipped). However, to ease presentation, we will just
speak of mutation rates even when referring to the parameter setting for RLS.

3 Computation of Optimal Parameter Configurations

We compute the optimal parameters using the similar flavor of dynamic program-
ming that has already been exploited in [4]. Namely, as our algorithms behave
on OM identically regardless which parent they have at the particular distance
to the optimum d, we compute the optimal parameters and the corresponding
remaining time expectations for Hamming distance d to the optimum after we
have computed them for all smaller distances d′ < d. We denote by T ∗D,O(n, λ, d)
the minimal expected remaining time of a (1 + λ) algorithm with mutation rate
distribution D ∈ {RLS, sbm, 0 → 1}, optimality criterion O ∈ {opt,drift}, and
population size λ on a problem size n ∈ N when at distance d ∈ [0..n]. We
also denote the distribution parameter (mutation strength in the case of RLS,
mutation probability in the case of the EAs) by ρ, and the optimal distribution
parameter for the current context as ρ∗D,O(n, λ, d).

Let Pn,D(d, d′, ρ) be the probability of sampling an offspring at distance d′

to the optimum, provided the parent is at distance d, the problem size is n, the
distribution function is D, and the distribution parameter is ρ. The expected
remaining time TD,O(n, λ, d, ρ), which assumes that at distance d the algorithm
consistently uses parameter ρ and at all smaller distances it uses the optimal
(time-minimizing or drift-maximizing, respectively) parameter for that distance,
is then computed as follows:

TD,O(n, λ, d, ρ) =
1

(Pn,D(d, d, ρ))λ
+
∑d−1

d′=1
T ∗D,O(n, λ, d′) · Pλn,D(d, d′, ρ), (1)

where Pλn,D(d, d′, ρ) =
(∑d

t=d′ Pn,D(d, t, ρ)
)λ
−
(∑d

t=d′+1 Pn,D(d, t, ρ)
)λ
.

To compute T ∗D,O(n, λ, d), Eq. (1) is used, where direct minimization of ρ
is performed when O = opt, and the following drift-maximizing value of ρ is
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Fig. 1. Optimal parameters ρ∗RLS,opt(n, λ, d) for different values of λ and n = 1000 as
a function of d, the distance to the optimum

substituted when O = drift: ρn,D(d) = arg maxρ
∑d−1
d′=0(d− d′) · Pλn,D(d, d′, ρ).

Another difference to the work of [4] is in that we do not only compute the
expected remaining running times T ∗D,O(n, λ, d) when using the optimal mutation
rates ρ∗D,O(n, λ, d), but we also compute and store TD,O(n, λ, d, ρ) for suboptimal
values of ρ. For RLS we do that for all possible values of ρ, which are integers
not exceeding n, while for the (1 + λ) EA we consider ρ = 2i/5−10/n for all
i ∈ [0; 150]. We do this not only because it gives us additional insight into the
sensitivity of TD,O(n, λ, d, ρ) with respect to ρ, but it also offers a convenient way
to detect deficits of parameter control mechanism; see Sec. 6 for an illustrated
example. Since our data base is hence much more detailed than that of [4], we
also re-consider the case λ = 1.
Our code has the Θ(n3) runtime and Θ(n2) memory complexity. The code is
available on GitHub [6], whereas the generated data is available on Zenodo [5].

4 Optimal Mutation Rates and Optimal Running Times

Fig. 1 plots the optimal parameter settings ρ∗RLS,opt(n, λ, d) for fixed dimension

n = 103 and for different values of λ, in dependence of the Hamming distance
d to the optimum. We observe that the mutation strengths ρ∗RLS,opt(n, λ, d) are
nearly monotonically increasing in λ, as a result of having more trials to generate
an offspring with large fitness gain. We also see that, for some values of λ, the
curves are not monotonically decreasing in d, but show small “bumps”. Simi-
lar non-monotonic behavior can also be observed for drift-maximizing mutation
strengths ρ∗RLS,drift(n, λ, d), as can be seen in Fig. 2.

We show now that these “bumps” are not just numeric precision artifacts,
but rather a (quite surprising) feature of the parameter landscape. For a small

6



Table 1. Drifts for n = 30, λ = 512, d = 7, 8, ρ ∈ [1..10]. See Appendix A for derivation

d ρ = 1 2 3 4 5 6 7 8 9 10

7 0.5000 2.0000 2.9762 2.9604 3.0434 2.7009 2.5766 2.2292 1.7457 1.3854
8 0.5000 2.0000 2.9984 3.4601 3.3583 3.3737 3.2292 2.9124 2.7323 2.3445

Fig. 2. Non-monotonicity in optimal (left) and drift-optimal (right) mutation strengths
for n = 1000 and selected λ

Fig. 3. Left: ρ∗RLS,opt(n, λ, d) for λ ∈ {2, 64} and n ∈ {1k, 2k}, in dependence of d/n.
Right: Normalized maximal distance d/n at which flipping k ∈ [1..7] bits is optimal
for RLS, for n = 103 and λ ∈ {2i | 0 ≤ i ≤ 18}.

example that can be computed by a human we consider n = 30 and λ = 512. For
d = 7 and 8, we compute the drifts for mutation strengths in [1..10] (the details
of these computation are given in Appendix A). These values are summarized in
Table 1. Here we see that the drift-maximizing mutation for d = 7 is 5, whereas
for d = 8 it is 4. This example, in fact, serves two purposes: first, it shows that
even the drift-maximizing strengths can be non-monotone, and second, that the
drift-maximizing strengths can be even for non-trivial problem sizes, which – as
mentioned in the introduction – cannot be the case when λ = 1 [10].
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Fig. 4. Left: Expected mutation strengths of the time-minimizing parameter settings
for the (1+λ) RLS and two (1+λ) EAs, λ ∈ {2, 16, 2048}, using standard bit mutation
(SBM) and shift mutation (SHF), respectively. Values are for n = 1000 and plotted
against the Hamming distance to the optimal solution. Right: Same for λ ∈ {16, 2048}
with an emphasis on small distances.

In the left chart of Fig. 3 we show that at least small ρ∗RLS,opt(n, λ, d) are quite

robust with respect to the problem dimension n ∈ {1, 2} · 103, if the Hamming
distance d to the optimum is appropriately scaled as d/n. The chart plots the
curves for λ ∈ {2, 64} only, but the observation applies to all tested values of λ.
In accordance to our previous notes, we also see that for λ = 64 there is a regime
for which flipping two bits is optimal. For small population sizes λ, we also obtain
even numbers for certain regimes, but only for much larger distances.

The maximal distances at which flipping k bits is optimal are summarized in
the chart on the right of Fig. 3. Note here that the curves are less smooth than
one might have expected. For instance, for n = 103, flipping three bits is never
optimal for λ = 64, and flipping seven bits is never optimal for λ = 29 and 210.

In Fig. 4 we compare the optimal (i.e., time-minimizing) parameter settings of
the (1+λ) variants of RLS, the EA0→1, and the EAsbm. To obtain a proper com-
parison, we compare the mutation strength ρ∗RLS,opt(n, λ, d) with the expected
number of bits that flip in the two EA variants, i.e., nρ∗sbm,opt(n, λ, d) for the
EA using standard bit mutation and nρ∗sbm,opt(n, λ, d) + (1− ρ∗sbm,opt(n, λ, d))n

for the EA using the shift mutation operator. We show here only values for
λ ∈ {2, 16, 1024}, but the picture is similar for all evaluated λ.
We observe that, for each λ, the curves are close together. While for λ = 1
the curves for standard bit mutation were always below that of RLS, we see
here that this picture changes with increasing λ. We also see a sudden decrease
in the expected mutation strength of the shift operator when λ is small. In
fact, it is surprising to see that, for λ = 2, the value drops from around 5.9
at distance 373 to 1 at distance 372. This is particularly interesting in light of
a common tendency in state-of-the-art parameter control mechanisms to allow
only for small parameter updates between two consecutive iterations. This is the
case, for example, in the well-known one-fifth success rule [22,8,23]. Parameter
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control techniques building on the family of reinforcement learning algorithms
(see [16] for examples) might catch such drastic changes more efficiently.
Non-surprisingly, the expected mutation strengths of the optimal standard bit
mutation rate and the optimal shift mutation rate converge as the distance to
the optimum increases.

5 Sensitivity of the Optimization Time w.r.t the
Parameter Settings

In this section, we present our findings on the sensitivity of the considered (1+λ)
algorithms to their mutation parameters. To do this, we use not only the expected
remaining times T ∗D,O(n, λ, d) that correspond to optimal parameter values, but
also TD,O(n, λ, d, ρ) for various parameter values ρ, which correspond to the
situation when an algorithm uses the parameter ρ while it remains at distance d,
and switches to using the optimal parameter values (time-minimizing forO = opt
and drift-maximizing for O = drift, respectively) once the distance is improved.
For reasons of space we focus on O = opt.

We use distance-versus-parameter heatmaps as a means to show which
parameter values are efficient. As the non-optimality regret δD,O(n, λ, d, ρ) =
TD,O(n, λ, d, ρ) − T ∗D,O(n, λ, d) is asymptotically smaller than the remaining
time, we derive the color from the value τ(ρ) = exp(−δD,O(n, λ, d, ρ)). Note
that τ(ρ) ∈ (0; 1], and the values close to one represent parameters that are
almost optimal by their effect. The parameters where τ(ρ) ≈ 0.5, on the other
hand, correspond to a regret of roughly 0.7, that is, if the parameters satisfy
τ(ρ) ≥ 0.5 throughout the entire optimization, the total expected running time
is greater by at most 0.7n/2 than the optimal time for this type of algorithms.

Fig. 5 depicts these regrets for RLSopt on n = 103 and λ ∈ {1, 512}. The
stripes on the fine-grained plot for λ = 1 expectedly indicate, as in [4], that
flipping an even number of bits is generally non-optimal when the distance to
the optimum is small, which is the most pronounced for ρ = 2. This also indicates
that the parameter landscape of RLS is multimodal, posing another difficulty to
parameter control methods. The parameter-time landscape remains multimodal
for λ = 512, but the picture is now much smoother around the optimal parameter
values.

Fig. 6 plots the regret for the (1 + λ) EAsbm (top) and the (1 + λ) EA0→1

(bottom) with λ = 1 (left) and λ = 512 (right). The pictures for standard
and shift mutations are very similar until the distance is so small that one-bit
flips become nearly optimal. We also see that bigger population sizes result in
a lower sensitivity of the expected remaining optimization time with respect to
the mutation rate. In fact, we see that, even for standard bit mutation, param-
eter settings that are much smaller than the typically recommended mutation
rates (e.g., ρ = 1/(10n)) are also good enough when the distance is Ω(n), as the
probability to flip at least one bit at least once is still quite large.
The plot for the (1+1) EA0→1 deserves separate attention. Unlike other plots in
Fig. 6, it demonstrates a bimodal behavior with respect to the mutation proba-
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Fig. 6. Relative expected remaining optimization times for the (1+λ) EAsbm,opt (top)
and the (1 + λ) EA0→1,opt (bottom) with λ = 1 (left) and λ = 512 (right)

bility ρ even for quite large distances d < n/2. We zoom into this effect by dis-
playing in Fig. 7 the expected remaining optimization times for d ∈ {370, 376}.
Since mutation probability is a more likely candidate for parameter control than
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the number of bits to flip, this insight is even more important for parameter
control.

Drift-Maximization vs. Time-Minimization. We note, without diving
into the details, that the observation that the optimal mutation parameters are
not identical to the drift maximizing ones, made in [4] for (1 + 1) algorithms,
extends to (1 + λ)-type algorithms with λ > 1. More precisely, it applies to all
tested dimensions and population sizes λ. We note, though, that the disadvan-
tage T ∗RLS,drift(n, λ, d) − T ∗RLS,opt(n, λ, d) decreases with increasing λ. Since the
difference is already quite small for the case λ = 1 (e.g., for n = 1000, it is
0.242), we conclude that this difference, albeit interesting from a mathemati-
cal perspective, has very limited relevance in empirical evaluations. This is good
news for automated algorithm configuration techniques, as it implies that simple
regret (e.g., in the terms of one-step progress) is sufficient to derive reasonable
parameter values – as opposed to requiring cumulative regret, which, as Sec. 3
shows, is much more difficult to track.

6 Applications in Parameter Control

Fig. 8 displays the experimentally measured mean optimization times, averaged
over 100 runs, of (1) the standard (1 +λ) EA with static mutation rate ρ = 1/n,
(2) RLSopt, (3) the (1 + λ) EA0→1,opt, and of (4–5) the “two-rate” parameter
control mechanism suggested in [11], superposed here to the (1+λ) EA0→1 with
two different lower bounds ρmin at which the mutation rate is capped.

With such pictures, we can infer how far a certain algorithm is from an opti-
mally tuned algorithm with the same structure, which can highlight its strengths
and weaknesses. However, it is difficult to derive insights from just expected
times. To get more information, one can record the parameter values produced
by the investigated parameter control method and draw them atop the heatmaps
produced as in Sec. 5. An example of this is shown in Fig. 9. An insight from
this figure, that may be relevant to the analysis of strengths and weaknesses of
this method, would be that the version using ρmin = 1/n cannot use very small
probabilities and is thus suboptimal at distances close to the optimum, whereas
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the version using ρmin = 1/n2 falls down from the optimal parameter region too
frequently and too deep.

7 Conclusions

Extending the work [4], we have presented in this work optimal and drift-
maximizing mutation rates for two different (1 + λ) EAs (using standard bit
mutation and shift mutation, respectively) and for the (1 + λ) RLS. We have
demonstrated how our data can be used to detect weak spots of parameter
control mechanisms. We have also described two unexpected effects of the de-
pendency of the expected remaining optimization time on the mutation rates:
non-monotonicity in d (Sec. 4) and non-unimodality (Sec. 5). We plan on ex-
ploring these effects in more detail, and with mathematical rigor. Likewise, we
plan on analyzing the formal relationship of the optimal mutation rates with
the normalized distance d/n. As a first step towards this goal, we will use the
numerical data presented above to derive close-form expressions for the expected

12



remaining optimization times TD,O(n, λ, d, ρ) as well as for the optimal configu-
rations ρ∗D,O(n, λ, d). Finally, we also plan on applying similar analyses to more
sophisticated benchmark problems.
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A Derivation of the Drift Values in Table 1

We recall that for OM the probability P (d, d′, ρ) to sample one individual at distance d′ < d from the optimum when the
parent is at distance d from the optimum by flipping exactly ρ bits equals

For convenience we say that P (d, d, ρ) = 1 −
∑d−1
t=0 P (d, t, ρ), which has the meaning under elitist selection. Under elitist

selection, it holds that P (d, d, ρ) can be expressed as 1−
∑d−1
t=0 P (d, t, ρ).

The values for n = 30, d = 7, d′ ∈ [0..7], ρ ∈ [1..10] are presented below.

d′ 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 1

2035800 0 0 0
1 0 0 0 0 0 1

84825 0 1
254475 0 0

2 0 0 0 0 1
6786 0 161

2035800 0 1
56550 0

3 0 0 0 1
783 0 23

28275 0 77
254475 0 1

16965
4 0 0 1

116 0 115
20358 0 1771

678600 0 49
56550 0

5 0 7
145 0 23

783 0 253
16965 0 539

84825 0 7
3393

6 7
30 0 69

580 0 1265
20358 0 12397

407160 0 49
3770 0

7 23
30

138
145

253
290

253
261

6325
6786

5566
5655

98417
101790

16852
16965

11153
11310

1881
1885

The values for n = 30, d = 8, d′ ∈ [0..8], ρ ∈ [1..10] are presented below.

d′ 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 1

5852925 0 0
1 0 0 0 0 0 0 1

254475 0 1
650325 0

2 0 0 0 0 0 4
84825 0 176

5852925 0 1
130065

3 0 0 0 0 4
10179 0 77

254475 0 28
216775 0

4 0 0 0 2
783 0 176

84825 0 2156
1950975 0 32

78039
5 0 0 2

145 0 110
10179 0 539

84825 0 392
130065 0

6 0 28
435 0 176

3915 0 154
5655 0 17248

1170585 0 532
78039

7 4
15 0 22

145 0 308
3393 0 539

10179 0 3724
130065 0

8 11
15

407
435

121
145

1243
1305

3047
3393

5489
5655

47861
50895

88616
90045

125932
130065

129124
130065
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We also recall that the probability Pλ(d, d′, ρ) for the best of λ offspring to appear exactly at distance d′ when the parent
is at distance d and exactly ρ bits are flipped in each offspring is:

Pλ(d, d′, ρ) =

(
d∑

t=d′

P (d, t, ρ)

)λ
−

(
d∑

t=d′+1

P (d, t, ρ)

)λ
.

The values for n = 30, λ = 512, d = 7, d′ ∈ [0..7], ρ ∈ [1..10] are presented below, trying best to preserve precision visually.

d′ 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 2.51 · 10−4 0 0 0

1 0 0 0 0 0 6.02 · 10−3 0 2.01 · 10−3 0 0

2 0 0 0 0 7.27 · 10−2 0 3.97 · 10−2 0 9.01 · 10−3 0

3 0 0 0 4.80 · 10−1 0 3.39 · 10−1 0 1.43 · 10−1 0 2.97 · 10−2

4 0 0 1− 1.19 · 10−2 0 1− 1.24 · 10−1 0 1− 2.92 · 10−1 0 3.55 · 10−1 0

5 0 1− 9.95 · 10−12 0 1− 4.80 · 10−1 0 1− 3.45 · 10−1 0 1− 1.78 · 10−1 0 1− 3.67 · 10−1

6 1− 8.29 · 10−60 0 1.19 · 10−2 0 5.10 · 10−2 0 2.52 · 10−1 0 1− 3.65 · 10−1 0

7 8.29 · 10−60 9.95 · 10−12 4.47 · 10−31 1.20 · 10−7 2.27 · 10−16 2.97 · 10−4 3.21 · 10−8 3.27 · 10−2 7.79 · 10−4 3.37 · 10−1

The values for n = 30, λ = 512, d = 8, d′ ∈ [0..8], ρ ∈ [1..10] are presented below, trying best to preserve precision visually.

d′ 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 8.75 · 10−5 0 0

1 0 0 0 0 0 0 2.01 · 10−3 0 7.87 · 10−4 0

2 0 0 0 0 0 2.39 · 10−2 0 1.53 · 10−2 0 3.93 · 10−3

3 0 0 0 0 1.82 · 10−1 0 1.43 · 10−1 0 6.39 · 10−2 0

4 0 0 0 1− 2.70 · 10−1 0 1− 3.61 · 10−1 0 4.26 · 10−1 0 1.89 · 10−1

5 0 0 1− 8.16 · 10−4 0 1− 1.85 · 10−1 0 1− 1.78 · 10−1 0 1− 2.64 · 10−1 0

6 0 1− 1.61 · 10−15 0 2.70 · 10−1 0 3.37 · 10−1 0 1− 4.41 · 10−1 0 1− 2.17 · 10−1

7 1− 1.08 · 10−69 0 8.16 · 10−4 0 3.13 · 10−3 0 3.27 · 10−2 0 1.99 · 10−1 0

8 1.08 · 10−69 1.61 · 10−15 5.83 · 10−41 1.50 · 10−11 1.21 · 10−24 2.37 · 10−7 2.15 · 10−14 2.77 · 10−4 6.60 · 10−8 2.43 · 10−2

Finally, the drift for ρ is
∑d−1
d′=0(d− d′) · Pλ(d, d′, ρ), so the drift values are, for both d, with row-best values bold:

d 1 2 3 4 5 6 7 8 9 10
7 0.5000 2.0000 2.9762 2.9604 3.0434 2.7009 2.5766 2.2292 1.7457 1.3854
8 0.5000 2.0000 2.9984 3.4601 3.3583 3.3737 3.2292 2.9124 2.7323 2.3445
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