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On the solution of the mean spherical approximation (MSA) for ions in a dipolar

solvent in the general case

Jean-Pierre Simonin
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4 Place Jussieu, Case 51, F-75005, Paris, Francea)

This paper deals with the problem of a mixture of hard spherical ions and central

point dipoles, described within the mean-spherical approximation (MSA). In this

non-primitive model, the species have different diameters (unrestricted case). The

first purpose of this work is to establish clear and valid equations for this problem

and present a method to solve them. Formulas for the pressure, the internal and

Helmholtz energies, and the chemical potentials of the species are given and discussed.

The results are illustrated by considering a binary 1-1 electrolyte solution in a water-

like dipolar solvent.
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I. INTRODUCTION

In the last decades, numerical simulations of solutions have been developed at a rapid

pace. They have reached an appreciable level of reliability, but they are generally time-

consuming and not always suitable for practical applications.

The case of electrolyte solutions is challenging because it involves long- and short-range

electrostatic forces, the effect of which is not easy to account for. There seems to be presently

a renewed interest, and a significant demand, for analytic electrolyte models aimed at ap-

plications in various areas, such as industrial chemistry, food processing, refrigeration, oil

industry, geochemistry, water treatment, and environmental chemistry.

Two types of analytic models may be distinguished, namely those that regard the solvent

as a continuum (‘primitive’ models with implicit solvent), and those that explicitly consider

the solvent (‘non-primitive’ models). The latter may provide more information over the

former and have a higher degree of predictability, but they also represent a much more

difficult task.

Explicit solvent models for ionic solutions include some chemical engineering models1,2,

such as electrolyte-NRTL3,4 or UNIQUAC5, and more refined descriptions based on the

statistical-associated fluid theory (SAFT)6. In the latter case, the semi-restricted non-

primitive MSA model for a mixture of ions and dipoles (MSA-ID)7–10 has been employed

in a few studies11,12 in order to account for the effect of electrostatic interactions between

all species (ion-ion, ion-solvent and solvent-solvent), and that of volume exclusion. Here,

semi-restricted (denoted as SR hereafter) means that all ions have the same diameter, and

it is different from that of the solvent. In the MSA-ID model, the water and the ions

are represented as hard spheres bearing a central point dipole, and charged hard spheres,

respectively.

An important point is that valid equations are available for the SR MSA-ID9,10,12–14. Thus

the SR case constitutes a reference for testing equations derived in the general unrestricted

case, where the ions and the solvent dipoles are all of different diameters.

The unrestricted case was first tackled by L. Blum†15 who showed that the MSA equations

could be solved by using an invariant expansion formalism16, in order to properly account

for angular correlations involving the dipoles. In subsequent work, expressions for the ther-

modynamic properties were obtained8. The derivation undertaken by L. Blum constituted a
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real tour de force. However, the value of this achievement has not been fully recognized be-

cause the unrestricted case resulted in very numerous and cumbersome equations, for which

the method of solution was not quite clear. Moreover, some printed equations contained

typographical errors. It seems that these issues have deterred investigators from using these

formulas subsequently.

A clear and complete solution to the original unrestricted MSA-ID model is still missing.

This is a regrettable situation since most of the (very hard) work has already been done.

A solution would be interesting from a fundamental point of view, and it could be used

for applications, possibly in conjunction with other contributions (e.g., within the SAFT

framework) so as to compensate for deficiencies of the MSA.

In the present study, the following methodology was employed. The papers published

about the topic8,15,17 were analyzed closely. Every relation was cross-examined between the

available references. Misprints were identified by checking the consistency of the equations,

their homogeneity, and by ensuring that the relations in the SR case9 were recovered when

the sizes of the ions were taken to be equal. The minimum set of equations to solve was

determined, and dimensionless parameters were introduced for the unknowns (similarly to

the SR case). The same approach was employed as regards the thermodynamic properties.

This led to an expression of the electrostatic pressure, and to a discussion of the Helmholtz

energy, and ion and solvent chemical potentials.

The structure of this article is as follows. The next section outlines the equations derived

for an ion-dipole mixture within the MSA. A method is proposed to solve the set of equations.

The thermodynamic properties of the system are described and discussed. The third section

is devoted to an illustration, in which a binary electrolyte of a 1-1 salt in a dipolar solvent

mimicking water is considered. The set of MSA equations is solved numerically, and the

consistency of the equations is verified for this solution. Then the main features exhibited by

the thermodynamic quantities are analyzed. Finally, the results are summarized and some

prospects are presented in the conclusion section.

II. THE MSA-ID MODEL

Hereafter, we will denote Ref. 15 by B0, Ref. 8 by BW1, Ref. 17 by BW2, and Ref. 9

by BVF.
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A. General relations

In this work we consider a mixture of hard spherical cations and anions, and hard spheres

with a centrally embedded point dipole (the solvent), as a model of electrolyte solution. As

in B0, BW1 and BW2 the number of ions will be n− 1, and the solvent will be denoted by

index n. The dipole moment of the solvent particles is mn. The valence and diameter of an

ion i are Zi, and σi, respectively. A priori, the diameters σk (k = 1, . . . , n) are all different.

A binary 1-1 electrolyte is sketched in Figure 1.

-
+

-
+

FIG. 1. Sketch of a binary ion-dipole mixture considered in this work. All species have different

diameters.

The method devised by L. Blum to solve the equations of the MSA-ID model is quite

involved. Its basic principles were reported in 1978 in B0. A fundamental tool was the

use of the invariant expansion formalism16,18,19 for describing the correlations involving the

dipoles, which depend on their angular orientations.

The rotational invariants will be denoted as Φmnl(12), with {m,n, l} being a set of inte-

gers, and ‘12’ representing the vector r12 = r2 − r1. They are functions of the sole mutual

orientations of the particles located at 1 and 2 (for {m,n, l} ̸= {0, 0, 0}).

With this formalism, the pair potential between two particles may be written as follows20.

For two ions i and j of charges qi and qj at positions 1 and 2, respectively, one has,

uij(12) = u000
ij (r) Φ000(12), (1)
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in which r = r12, and,

u000
ij (r) = uHS

ij (r) +
1

4πϵ0

qiqj
r

, Φ000(12) = 1, (2)

with uHS
ij (r) the hard sphere (HS) interaction potential, uHS

ij = +∞ for r < σij and =0

otherwise, in which,

σij = (σi + σj)/2

For an ion i at position 1 and a dipole n at position 2,

uin(12) = u000
in (r) Φ000(12) + u011

in (r) Φ011(12), (3)

with u000
in (r) = uHS

in (r) and,

u011
in (r) = − 1

4πϵ0

qi mn

r2
, and Φ011(12) = r̂ · m̂n(2), (4)

in which m̂n(2) = mn(2)/mn is the unit vector along the dipole mn(2) at position 2, and r̂

is the unit vector r12/r12.

When a dipole is at position 1 and an ion j at 2 one has,

unj(12) = u000
nj (r) Φ

000(12) + u101
nj (r) Φ

101(12), (5)

with u000
nj = u000

jn = uHS
jn and,

u101
nj (r) =

1

4πϵ0

mn qj
r2

, and Φ101(12) = m̂n(1) · r̂, (6)

For two dipoles located at 1 and 2,

unn(12) = u000
nn (r) Φ

000(12) + u112
nn (r) Φ

112(12), (7)

with u000
nn (r) = uHS

nn (r), and,

u112
nn (r) = − 1

4πϵ0

mn
2

r3
, and Φ112(12) = 3(m̂n(1) · r̂)(m̂n(2) · r̂)− m̂n(1) · m̂n(2). (8)

With these notations the radial distribution functions (RDF’s) for ion-ion, ion-dipole,

dipole-ion, and dipole-dipole, are formally given by19,20,

gij(12) = g000ij (r) Φ000(12) = g000ij (r), (9)

gin(12) = g000in (r) Φ000(12) + h011
in (r) Φ011(12), (10)
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gni(12) = g000ni (r) Φ000(12) + h101
ni (r) Φ

101(12), (11)

gnn(12) = g000nn (r) Φ000(12) + h110
nn (r) Φ

110(12) + h112
nn (r) Φ

112(12), (12)

in which i and j designate ions. These relations contain functions denoted by h, rather than

g, because they tend to zero when r → 021, as the total correlation function h = g − 1 does

in simple systems.

A {110} contribution appears in gnn, which is not present in unn, with,

Φ110(12) = m̂n(1) · m̂n(2), (13)

In the case of an ion-dipole mixture in the MSA, only the rotational invariants appearing

in the above equations are involved in the expansions of the RDF’s20,22.

The functions g and h satisfy the following relations20,

g000ij = g000ji , g000in = g000ni , h011
in = −h101

ni . (14)

in which i and j denote ions.

B. Basic equations

Many relations are reported in references B0, BW1, and BW2. The first task was to

identify the equations required to solve the problem. The notations of BW1 and BW2 will

be used, except for B10, Ω10, and χ1 that will be replaced by B, Ω, and χ for convenience.

The first three fundamental equations (Eqs. (1.29), (1.30) and (1.32) of BW1) are,

n−1∑
i=1

ρi (a
0
i )

2 + ρn (a
1
n)

2 = α0
2, (15)

−
n−1∑
j=1

ρj a
0
j K

10
nj + a1n (1− ρnK

11
nn) = α0 α2, (16)

ρn

n−1∑
j=1

ρi (K
10
nj)

2 + (1− ρnK
11
nn)

2 = y1
2 + ρn α2

2, (17)

In these expressions, ρi is the number density of species i (ρi = Ni/V , with Ni the number

of particles i and V the volume), and,

α0
2 = βe2/ϵ0, α2

2 = βmn
2/(3ϵ0), y1 = β6/β12

2, (18)
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β6 = 1− b2/6, β12 = 1 + b2/12.

The definitions of α0 and α2 are Eqs. (1.18) and (1.19) of BW1 in the SI unit system,

β = 1/(kBT ) (with T the temperature and kB the Boltzmann constant), e is the charge of a

proton, ε0 is the permittivity of a vacuum, and b2 is a dimensionless parameter characteristic

of the dipole-dipole interaction9.

In Eqs. (15)-(17), a0i (for i ̸= n) and a1n are given by Eq. (1.39) of BW1,

a0i =
β6

σiDa

(
1

2
Ziβ6 −DG

i − πσi
2

2∆

n−1∑
k=1

ρk σk D
G
k

)
, (19)

a1n =
β6

2Da

(
1

2
σnB +

Ωβ3

Dβ6
2

)
, (20)

with,

B =
n−1∑
k=1

ρkZkmk, D = 1 +
ρnσn

2

4β6
2

n−1∑
k=1

ρk(σkmk)
2, (21)

Sm =
π

2∆

n−1∑
k=1

ρkσk
2mk, ηi =

1

β6

(mi + σiSm), (22)

DF
k =

1

2

[
β6(Nkσk + Zk)−

1

12
ρnσn

3Bσkmk

]
, Ω =

n−1∑
k=1

ρk σk mk D
F
k , (23)

DG
k = DF

k − ρnσn
2Ωσkmk/(4Dβ6

2), Dac =
n−1∑
k=1

ρk(D
F
k )

2, (24)

Da =
1

D

Dac +
1

32
ρnσn

2

n−1∑
{i,j}=1

ρiρj [(Niσi + Zi)mjσj − (Njσj + Zj)miσi]
2

 . (25)

In the latter expression, the summation is performed for both {i = i0,j = j0} and {i =

j0,j = i0}.

The expressions for Da in BW1 and BW2 (Eqs. (1.40) and (2.12), respectively) are

different from Eq. (25). They contain a minus sign after the term Dac. This seems to be

a misprint. Here this sign has been changed to a plus (+) sign. This modification ensures

that Eq. (62) below is fulfilled, and it gives consistent results when numerically solving the

system of equations (see Sec. III B below). It is not so if the minus sign is used.

In Eqs. (15)-(17), Kmn
ij is given by the general relation (Eq. (39) of B0 or (1.31) of BW1),

Kmn
ij ≡

∫ σij

λji

Qmn
ij (r) dr. (26)
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in which λji = (σj − σi)/2, and Qmn
ij is the Baxter factor correlation function (see, e.g., B0).

Its expression is given in Eq. (1.34) of BW1,

Qmn
ij (r) =

1

2
(r − σij)(r − λji)α

mn
ij + (r − σij) β

mn
ij , (27)

in which the parameters αmn
ij and βmn

ij will be defined below.

Another quantity related to Qmn
ij is Pmn

ij , which is defined in BW1 by Eqs. (1.35) and

(1.36), but these relations are incorrect. They may be obtained instead by considering Eq.

(41) of B0, which suggests that,

Pmn
ij = −Qmn

ij (λji) + Zi a
0
j , (28)

By virtue of Eq. (27) one has, for j ̸= n, Qmn
ij (λji) = −σi β

mn
ij , so that one gets from Eq.

(28),

Pmn
ij = σi β

mn
ij + Zi a

0
j , (29)

for any i = 1, . . . , n (but j ̸= n). For j = n, one has,

Pmn
in = σi β

mn
in + Zi a

1
n. (30)

For any i and j, the P ’s should satisfy the symmetry relations,

Pmn
ij = P nm

ji . (31)

instead of Eqs. (1.35) and (1.36) of BW1.

It was mentioned in BW1 that the P ’s should satisfy the following relations (‘sum rules’),

n−1∑
k=1

(δkj +
1

2
ρk σj P

00
kj )D

F
k =

1

2
Zjβ6, (32)

for j = 1, . . . , n− 1, with δkj the Kronecker symbol (δkj= 1 when k = j, and =0 otherwise),

and,
n−1∑
k=1

ρk P
01
kn D

F
k =

1

2
σnB. (33)

for the solvent.

The P ’s are expressed explicitly by Eq. (1.38) of BW1. The expressions for the β’s are

then found using Eqs. (29) and (30). One has,

β00
ij =

π

∆
σj −

1

2Dβ6

ρnσn
2miηj +

(
2

β6

DG
i − Zi

)
1

σi

a0j , (34)
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β00
in =

π

∆
σn, β00

nj =
π

∆
σj, (35)

β01
in = − β3

β6
2

mi

D
+

(
2

β6

DG
i − Zi

)
1

σi

a1n, β10
nj =

1

D

(
ηj +

1

β6
2 Ωa

0
j

)
, (36)

in which i and j designate ions, and,

1 +
1

2
ρnσn

2β11
nn =

1

D

(
β3

β6

+
1

2β6
2 ρnσn

2Ω a1n

)
, (37)

In Eq. (34), ∆ is defined by,

∆ = 1− π

6

n∑
k=1

ρk σk
3. (38)

in which the summation is done on all species (contrary to Eq. (54) of B0; see the discussion

following Eq. (60)).

It will be useful below to write,

β00
ij = β00,HS

ij + β00,el
ij , (39)

for ions i and j where,

β00,HS
ij =

π

∆
σj, (40)

is the purely HS contribution to β00
ij , and,

β00,el
ij = − 1

2Dβ6

ρnσn
2miηj +

(
2

β6

DG
i − Zi

)
a0j
σi

. (41)

is its electrostatic part.

The α’s appearing in Eq. (27) may be obtained conveniently from a relation given between

Eqs. (2.10) and (2.11) of Ref. 23,

αmn
ij = − 12

σi
3
Kmn

ij − 6

σi

βmn
ij , (42)

By using this relation, and Eqs. (27) and (26), one obtains,

α00
ij =

π

∆

(
2 +

n∑
k=1

ρkσk
2β00

kj + χa0j

)
, (43)

α00
in =

2π

∆

(
1 +

3

∆
σnX2

)
α00
nj =

2π

∆

(
1 +

3

∆
σjX2

)
, (44)

α01
in =

π

∆

(
n∑

k=1

ρkσk
2β01

kn + χa1n

)
α10
nj =

b2
β6σn

β10
nj +

1

β6

Ba0j , (45)
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in which i and j designate ions, and,

α11
nn = 2

b2
β6ρnσn

3

(
1 +

1

2
ρnσn

2β11
nn

)
+

1

β6

Ba1n, (46)

In these equations,

X2 =
π

6

n∑
k=1

ρkσk
2, χ =

n−1∑
k=1

ρkZkσk. (47)

The summations in Eqs. (43) and (45) run over all species. This will ensure that one recovers

the Percus-Yevick RDF at contact in Sec. II E below.

It stems from Eq. (27) that αmn
ij is the second derivative of Qmn

ij (r) w.r.t. r. For this

reason α00
ij for ions was denoted by Q′′

j in B0 and in Ref. 24. It does not depend on i, as

may be seen in Eqs. (43)-(44). It was checked that, if Eq. (43) is taken in the case of the

primitive model (ρn = 0), it yields the expression for Q′′
j reported in Eq. (2.12) of Ref. 24

(by using the relation
∑

k ρkσk(Nkσk + zk) = Pn
25).

It was also found that the first 2 equations of Eq. (1.50) of BW1 for K00
ij and K01

in contain

a minus sign after the term δik. They must be changed to a plus (+) sign. This modification

yields the relations for α00
ij and α01

in above.

In the next section we will need the value of the derivative of Qmn
ij (r) w.r.t. r at contact

(r = σij), denoted by Q′mn
ij . It stems from Eq. (27) that,

Q′mn
ij = βmn

ij +
1

2
αmn
ij σi. (48)

C. Introduction of dimensionless energy parameters

In the above equations, the mi’s, Ni’s and b2 are the unknowns to be determined. These

parameters correspond to ion-ion (Ni), ion-solvent (mi) and solvent-solvent (b2) interactions,

as shown by their definition in Eq. (1.40) of BW1. There is one Ni and one mi for every

ion in solution. Thus, for a solution comprised of nC cations and nA anions, this makes

2(nC + nA) + 1 unknown parameters to determine.

The dimension of Ni is L−1, that of mi is L (with L denoting a length), and b2 is di-

mensionless. It is useful to introduce new dimensionless parameters. This may be done by

first considering the SR case for a binary 1-1 electrolyte (cation 1 and anion 2), for which

σ1 = σ2 = σ. In that case, the use of Eqs. (1.26) and (1.40) of BW1 leads to, N1 = −N2 = N
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and m1 = −m2 = m. From Eq. (2.2) of BW1 one has,

N =
1

σ
b0, (49)

with b0 the dimensionless ion-ion energy parameter in the SR case (see BVF). This relation

results from the definition of Ni and Bi in Eq. (1.40) of BW1, and of b0 in Eq. (11) of BVF.

Besides, the definition of B in Eq. (1.40) of BW1 gives B = 2ρm, and Eq. (2.5) of BW1

gives a relation between B and b1 (the dimensionless ion-solvent energy parameter; see Eq.

(12) of BVF). From these two relations we get,

m =
1√
2ρρn

1

σσn

b1, (50)

Eqs. (49) and (50) suggest the introduction of new dimensionless parameters, b
(k)
0 and

b
(k)
1 , for each ion k, as,

Nk =
Zk

σk

b
(k)
0 , (51)

mk =
1√

2ρρn σn

Zk

σk

b
(k)
1 . (52)

These definitions will be used in Sec. III for an application of the model.

D. RDF’s at contact

The contact values of the RDF’s will be required in the next section. They can be

obtained from Eq. (3.3) in BW2 (Eq. (3.7) of BW1 contains misprints in the superscripts),

g000ij,c = Q′00
ij /(2πσij) ({i, j} = 1, . . . , n), h011

in,c = −
√
3Q′01

in/(2πσin) (i = ion), (53)

h110
nn,c = (Q′11

nn + 2q′)/(2
√
3πσn), h112

nn,c =
√
10(Q′11

nn − q′)/(2
√
3πσn), (54)

in which subscript c indicates that the RDF is taken at contact of the species, Q′ is given

by Eq. (48), the sign of h011
in,c in BW1 has been reversed so that it is positive for a cation

and negative for an anion (see the example in Sec. III B 2), and q′ is defined by,

q′ = − b2
ρnσn

2

β24

β12
2 . (55)

with β24 = 1− b2/24.

This expression is different from Eq. (3.10) of BW1. The term ρnσn
2 was added to the

denominator of q′ so as to recover the corresponding term in the SR case (note that q′ does
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not have exactly the same definition in BVF). The presence of this term ensures that Eq.

(55) is homogeneous. Indeed q′ has the same dimension as Q′, as seen Eq. (54), which is

that of a length since g and h are dimensionless.

One has,

h101
ni,c = −h011

in,c. (56)

which stems from Eq. (14). It was verified analytically that this relation is indeed satisfied

by using Eqs. (19)-(25), (36), and (48). This type of verification brings support to the

validity and consistency of the set of equations involved in the test.

It will be useful to break down the ion-ion RDF’s, g000ij,c , into HS and electrostatic contri-

butions. This may be done by using Eqs. (34), (43), and (48), which yields,

Q′00
ij = β00

ij +
πσi

∆
+

πσi

2∆

n∑
k=1

ρkσk
2 β00

kj +
π

2∆
σiχa

0
j , (57)

In this relation, β00
kj may be split into HS and electrostatic parts (Eqs. (40) and (41)). This

way, and by virtue of Eq. (53), one gets,

g000ij,c = g000,HS
ij,c + g000,elij,c , (58)

where,

g000,HS
ij,c =

1

∆
+

3

∆2

σiσj

σi + σj

X2, (59)

and,

g000,elij,c =
1

2πσij

(
β00,el
ij +

πσi

2∆

n∑
k=1

ρkσk
2 β00,el

kj +
π

2∆
σiχa

0
j

)
, (60)

An alternative symmetric expression may be found from Eq. (67) of B0,

g000,elij,c = − 1

4πσij

(
DΩ a0i a

0
j +

1

D
ρnσn

2ηiηj

)
, (61)

in which,

DΩ = 4Da/β
2
6 . (62)

In Eq. (59), one notices that g000,HS
ij,c coincides with the contact value of the RDF in the

Percus-Yevick (PY) approximation26, as is usual within the MSA24. This result confirms

the fact that the expression of ∆ in Eq. (38) must include the solvent in the summation.

As regards the other RDF’s g000in,c, g
000
ni,c and g000nn,c, it is found from Eqs. (35), (44), (48),

and (53), that they are purely HS RDF’s, given by the PY expression (Eq. (59)),

g000in,c = g000ni,c = gHS,000
in,c . (63)
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E. Expression for the pressure

The pressure of the system may be derived in the MSA from the work of Høye and Stell27.

The expression given in BW1 is partly incorrect.

From Eqs. (41) and (43) of Ref. 27 one obtains the relation,

βP el = J + J ′, (64)

in which J is given by Eq. (42) of this reference and Eq. (3.4) of BW1. By using Eqs. (3.2),

(3.3), and (3.11) of BW1, one gets,

J =
1

12π

(
α0

2
∑
i

ρiZiNi − 4α0 α2 ρnB − 6

σn
3
α2

2ρnb2

)
, (65)

An expression for J ′ (replacing Eq. (3.5) of BW1) is obtained from Eqs. (41) and (43) of

Høye and Stell27, which reads,

J ′ =
π

3

n∑
{i,j}=1

ρiρjσij
3
〈[
(gij,c)

2 − (gHS
ij,c )

2
]〉

, (66)

in which the brackets indicate that the quantity is averaged over the orientations20,28, and

the superscript HS means that gij,c is evaluated in the case of neutral hard spheres.

The expression of J ′ may be expanded by using Eqs. (9)-(12), taking into account the fact

that the rotational invariants constitute an orthogonal set of functions w.r.t. to orientation

average, that is
〈
Φmnl Φm′n′l′

〉
= 0 if {m,n, l} ̸= {m′, n′, l′}). Furthermore, as mentioned at

the end of the previous section, g000in,c, g
000
ni,c and g000nn,c are purely HS RDF’s. At the same time,

h011
kn,c, h

101
nk,c, h

110
nn,c, and h112

nn,c are purely electrostatic (see Eqs. (45)-(46) and (53)-(56)). By

combining these properties, and using Eq. (14) for h101
ni,c, one obtains,

J ′ = J ′
ion−ion + 2J ′

ion−n + J ′
n−n, (67)

where,

J ′
ion−ion =

π

3

n−1∑
{i,j}=1

ρiρjσij
3
[
(g000ij,c)

2 − (gHS,000
ij,c )2

]
, (68)

J ′
ion−n =

π

3

n−1∑
i=1

ρiρnσin
3 1

3
(h011

in,c)
2, (69)

where in which i and j designate ions, and,

J ′
n−n =

π

3
ρn

2σn
3

[
(h110

nn,c)
2 +

1

5
(h112

nn,c)
2

]
, (70)
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Eq. (68) for J ′
ion−ion differs from Eqs. (3.5) of BW1 and (3.3) of BW2, in which the term

(gHS,000
ij,c )2 is absent (note that in BW1 and BW2, the term h000

ij (σij) is g000ij,c of the present

work). It can be shown that these HS terms containing gHS,000
ij,c cancel out in the SR case (see

supplementary material), which allows one to recover the expression for J ′
ion−ion in BVF

(Eq. (90)).

In Eqs. (69) and (70), the factors 1/3 and 1/5 originate from the angle averages of the

squares of the rotational invariants,
〈(

Φmnl
)2〉

= 1/(2l+ 1) (note that Blum’s definition of

the rotational invariants differs slightly28 from that of Eqs. (4), (6), (8), and (13)).

By inserting Eq. (54) into Eq. (70) one obtains,

J ′
n−n =

1

12π
ρn

2σn

[(
Q′11

nn

)2
+ 2q′

2

]
. (71)

This expression has the same form as the last term of Eq. (86) in BVF in the SR case.

An important verification was done regarding the expression for the pressure. Namely,

it was checked that Eq. (64), together with Eqs. (55) and (67)-(71), leads exactly to the

relation for P el in the SR case (see BVF). This is a valuable result because it has been

shown that the SR expression for the pressure is valid14 (see also supplementary material).

It does not seem to be the case of an alternative expression for P el that contains a different

ion-dipole contribution (l = 1) to J ′29,30.

F. Internal and Helmholtz energies

The expression for the electrostatic contribution to the internal energy may be found in

Eq. (3.2) of BW1,

βEel

V
=

1

4π

(
α0

2
∑
i

ρiZiNi − 2α0α2ρnB − 2α2
2 1

σn
3
ρnb2

)
. (72)

with V the volume. It was verified that this equation leads to the correct expression for this

quantity in the SR case (Eq. (84) of BVF).

Regarding the Helmholtz energy, Ael, it could be proposed to use the following relation

presented in Eq. (3.16) of BW1,

βP el ?=
βEel

V
− βAel

V
, (73)

However, it is easy to show that this relation is valid only in the SR case (Eqs. (87) and

(104) of BVF), not in the general case of ions of different size. This may be seen in the case
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of the primitive model (PM), in the absence of explicit solvent (ρn = 0), for which the MSA

gives, by using Eqs. (3.4) and (3.7) of Ref. 24 (with βP el = ξ0∆Φ),

βP el,PM =
βEel,PM

V
− βAel,PM

V
− α2

0

8

(
Pn

∆

)2

, (74)

where Pn is a quantity that vanishes when the ions have equal diameters. This result shows

that Eq. (73) is not satisfied in the the general case of the primitive model. However, the

term in (Pn)
2 in this relation is generally small and has been sometimes neglected in the

literature24.

Therefore Eq. (73) cannot be expected to be satisfied either in the general case of the

MSA-ID model. One may write instead for Ael,

Ael = Ael,app + δAel, (75)

where,
βAel,app

V
=

βEel

V
− βP el, (76)

and δAel = 0 in the SR case. By virtue of Eqs. (64), (72), and (76), one gets,

βAel,app

V
=

1

6π

(
α0

2

n−1∑
i=1

ρiZiNi − α0α2 ρnB

)
− J ′. (77)

which is Eq. (3.11) of BW1. In the PM, it stems from Eq. (74) that βδAel,PM/V =

−(α2
0/8) (Pn/∆)2, which brings a small contribution to βAel,PM/V 24,25. Similarly, it is likely

that δAel is small as compared to Ael in the MSA-ID framework.

As for Ael, the formulas proposed in BW1 for the chemical potentials (Eqs. (3.13 and

(3.14)) must be modified as,

µel
k = µel,app

k + δµel
k , (78)

for all species, with δµel
k an expectedly small contribution. In this relation, the approximate

chemical potentials read,

βµel,app
i = Zi

1

4π

(
α0

2Ni − α0α2 ρnmi

)
, (79)

for the ions, and,

βµel,app
n = − 1

4π

(
α0α2B + 2α2

2 1

σn
3
b2

)
, (80)
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for the solvent. These contributions were determined in BW1 according to the method of

Høye and Stell27 (Eq. (39) of this reference in particular), which is the only way to obtain

them. They correspond to the mean electrostatic interaction energies per particle, that is,

µel,app
k = uel

k , (81)

Expressions for δµel
i and δµel

n may also be obtained, in principle, from the work of Høye

and Stell27. However, the derivation requires expressions for the direct correlation functions,

which is a difficult task in the MSA-ID. The calculation of these corrective terms will be

addressed in subsequent work.

As a consequence of Eq. (81) one may write that,

n∑
k=1

ρk µ
el,app
k =

Eel

V
, (82)

Then it stems from the general relation, A/V =
∑

k ρkµk −P , and Eqs. (75) and (82), that

the corrective terms are related by,

δAel

V
=

n∑
k=1

ρk δµk. (83)

The contributions δµel
i and δµel

n vanish in the SR case, and the resulting equations for

βµel
i and βµel

n are valid in that case14. It is shown in Sec. III B 4 below that the terms δµel
i

indeed seem to bring a rather small, albeit not negligible, contribution to µel
i in moderately

concentrated solutions.

III. APPLICATION TO THE CASE OF A BINARY 1-1 ELECTROLYTE

In this section we will specialize to the case of a binary 1-1 electrolyte of number density

ρs = ρ1 = ρ2, in which the cation and the anion have different diameters σ1 and σ2, and

valencies Z1 = +1 and Z2 = −1, respectively.

A. Handling of the equations

As mentioned in Sec. II C, there are 5 unknowns in this case, namely b
(1)
0 , b

(2)
0 , b

(1)
1 , b

(2)
1 ,

and b2. We now examine in which way these parameters may be determined in practice.
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First, as in the SR case, one has the 3 fundamental equations of the MSA-ID model, Eqs.

(15)-(17). These equations will be denoted as E1, E2, and E3, respectively.

Next, one may use the symmetry property of Pmn
ij , for which Eq. (31) gives the three

relations,

P 00
12 = P 00

21 , P 01
1n = P 10

n1 , P 01
2n = P 10

n2 . (84)

which will be numbered E4, E5, and E6, respectively.

Consequently, we have 6 equations and 5 unknowns. This suggests that one of the

equations may be derived from the others. Here E6 (P 01
2n = P 10

n2) was left aside in the search

of a solution. When the latter was obtained it was verified that E6 was also satisfied. This

verification served as a severe test for the validity of the equations being used in this process.

All equations were handled within the symbolic calculus software Maple.

First, it was found that b2 can be expressed as a function of the other parameters, b
(1)
0 ,

b
(2)
0 , b

(1)
1 , b

(2)
1 , of the salt density ρ, and of the sizes σi. The explicit expression of b2 is given

in the supplementary material addendum. The replacement of b2 by this expression in one

of the relations obeyed by the parameters gives a relation between the other 4 parameters,

b
(k)
i (i= 0,1; k=1,2).

For an optimal use of Maple in the numerical calculations, equations E1, E2, and E3 were

divided by α0
2, α0α2 and ρn α2

2, respectively, so that every term in these equations had a

suitable order of magnitude for the solver to find the numerical solution easily. In the same

way, E4 and E5 were entered in the form, 1 − P 00
12 /P

00
21 = 0, and 1 − P 01

1n/P
10
n1 = 0. It was

observed that the use of the equation giving b2 (Eq. (S5)), or the relation between the other

energy parameters, instead of, e.g., E5, generally made the determination of the solution

more difficult. Therefore the 5 original equations were retained and solved numerically

within Maple.

B. Example

To illustrate, let us further consider in this section a solution of a 1-1 salt at 25◦C,

comprised of ions of diameter σ1 = 2 Å and σ2 = 4 Å, in a ‘water-like’ solvent. The dipolar

solvent was modeled as in previous work14 by taking, mn ≃ 2.2203 D, and σn ≃ 2.4805 Å.

With these values the model gives a dielectric constant and a pressure for pure solvent that

mimic experimental data for pure water at 25◦C, that is εW = 78.4, and P = 1 atm for the
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density of water, dW = 0.99705 kg L−1.

The salt concentration is C. The case of moderately concentrated solutions (C ≤ 2 M)

will be considered. The number density of the solvent, ρn, was kept constant, equal to 0.95

times that of pure water.

1. Energy parameters

The set of dimensionless energy parameter values, Sb = {b(1)0 , b
(2)
0 , b

(1)
1 , b

(2)
1 , b2}, was deter-

mined in the first place. To begin with, it was verified that the solution to the SR case was

recovered numerically in the case σ1 = σ2 = 3.33 Å14. This check was fulfilled with a very

high precision.

The values of the energy parameters were obtained by starting from a rather low value of

C (e.g., C = 0.01 M) with typical values for the energy parameters, viz., b
(1)
0 = −0.05, b

(2)
0 =

−0.05, b
(1)
1 = 0.1, b

(2)
1 = 0.1, b2 = 2, in the case of a solvent mimicking water. Then the

concentration was increased gradually, in small increments of 0.1 M. At each step, the

solution for the set of parameters obtained at the previous step was used as an initial guess.

In all cases the parameters satisfied the following conditions: b
(k)
0 < 0, b

(k)
1 > 0, b2 < b

(0)
2 , for

k = 1, 2, and with b
(0)
2 the value of b2 when C = 0 (see Ref. 9 for its determination). These

inequalities are similar to the SR case (as regards b0, b1, and b2).

When, for a given salt concentration, the value of a set of energy parameters, Sb, was

used as an input in the 5 fundamental equations, E1 to E5, it was found that the latter

were satisfied to a very high precision. If for instance all numbers were expressed with 50

digits in Maple, the 5 equations were found to be satisfied to a precision better than 10−48.

At the same time, it was observed that equation E6 for P2n (1 − P 01
2n/P

10
n2 = 0), which

was not employed in the search of the solution, was satisfied to a precision of ∼ 2× 10−49.

This outcome was observed in all calculations with different values of the solvent and salt

concentration, and of the ion sizes. Similarly, it was observed that in all cases the sum rules

(Eqs. (32) and (33)) were verified with a comparable precision.

In contrast, when a slight change was made randomly in one of the equations, it was

found that E6 was not satisfied anymore. For example, replacing the plus sign in Eq. (25)

by a minus just before the 1/32 factor resulted in E6 being satisfied with a precision of 0.02

instead of 10−49 at C = 1 M. Furthermore, the sum rules were satisfied with precisions of
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∼ 0.002, 0.002, and 0.008, respectively. Hence, these 4 relations were not fulfilled when the

minus sign was used in Eq. (25).

One may conclude from this stringent test that the basic equations of the MSA-ID given

above in Sec. II B constitute a consistent, and therefore valid, set of relations. This repre-

sents the first important result of this work.

The result for the energy parameters is shown in Figures 2-4. The solution for b0, b1, and

b2 in the SR case for ions of diameter (σ1 + σ2)/2 is also plotted in these figures. It is seen

in Figure 2 that b
(1)
0 and b

(2)
0 are negative, and in Figure 3 that b

(1)
1 and b

(2)
1 are positive and

very close to each other up to C = 0.4 M. As in the SR case, they vanish in the absence

of salt. Fortuitously in the present case, b1 is nearly equal to b
(1)
1 on the whole range of C.

After a rapid variation at low concentration, b
(1)
1 and b

(2)
1 increase slowly with C. The value

of b2 (Figure 4) starts from a value of b
(0)
2 ∼ 2.1 for C = 0 (which value depends on the

density of dipoles), and then decreases smoothly with C.

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0  0.5  1  1.5  2

b
0

C (M)

FIG. 2. Energy parameters b
(k)
0 as a function of C. Solid line = b

(1)
0 , dashed line = b

(2)
0 , dashed-

triple-dotted line = b0 in the SR case for cation and anion of diameter 3 Å.

2. Distribution functions

The ion-ion RDF’s at contact are plotted in Figure 5, and the dipole-ion and dipole-dipole

RDF’s at contact are shown in Figure 6.

A striking feature observed in Figure 5 is that g00011,c and g00022,c are negative, which is clearly

unphysical. Moreover, g00011,c is of large magnitude, of the order of -30. The fact that the like-
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FIG. 3. Energy parameters b
(k)
1 as a function of C. Solid line = b

(1)
1 , dashed line = b

(2)
1 , dashed-

triple-dotted line = b1 in the SR case for cation and anion of diameter 3 Å.
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b
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FIG. 4. Plot of b2 as a function of C, compared to the SR case for ions of diameter 3 Å. Solid line

= b2, dotted line = b2 when σ1 = σ2 = 3 Å.

ion RDF’s can take negative values in the MSA is a well-known peculiarity that has been

underscored in the literature, e.g. in Refs. 25 and 31 in the case of the primitive model, and in

BW2 in the MSA-ID. This unsatisfactory outcome originates from the fact that, similarly to

the Debye-Hückel theory, the MSA is a linearized theory25. In the MSA, the approximation

on the direct correlation function cij, namely cij(r) = −βuij(r), is asymptotically correct at

large distances25,32, but it fails in general at short distance31. This shortcoming manifests

itself in the behavior of the contact RDF. At large dilution (of all components) one has

gij,c = 1 − βuij,c in the MSA (which can take large negative values in the case of like ions)
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FIG. 5. Contact ion-ion radial distribution functions vs. concentration. Solid line = g00011,c, dashed

line = g00012,c, dotted line = g00022,c.
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FIG. 6. Contact dipole-ion and dipole-dipole radial distribution functions vs. concentration. Solid

line = h0111n,c = −h101n1,c, dashed line = h101n2,c = −h0112n,c, dotted line = h110nn,c, dash-dotted line = h112nn,c.

instead of exp(−βuij,c) which is the correct low density limit31. The values of βuij,c (Eqs.

(2), (6), and (8)) in the present case are given in Table I.

We note moreover that, if one makes a comparison with what happens in the primitive

model (PM) of aqueous solutions, the background medium is a vacuum in the MSA-ID

model, with a permittivity that is nearly 80 times smaller than that of water in the PM.

This makes the direct interaction potentials much larger in the non-primitive model, and

the gii’s at contact much more negative, than in the PM (see Table I for the values of the

ion-ion potentials at contact in the PM; they are of a few kBT ). As an example, one finds for
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TABLE I. Absolute values of βuij,c at contact for the present system, in the MSA-ID model, and

in the primitive model (PM).

MSA-ID PM

βu00011,c 280 3.6

βu00022,c 140 1.8

βu00012,c 187 2.4

βu1011n,c 64.8

βu1012n,c 16.2

βu112nn,c 7.8

the present system in the PM (with a dielectric constant of 78.4) that the typical orders of

magnitude of g11,c, g12,c, and g22,c below 0.1 M are -2, +3, and -0.4, respectively, as compared

to -30, +15, and -5 in the MSA-ID as seen in Figure 5.

It was suggested in BW2 that the deficiency observed in the contact RDF values could

be corrected by using the exponential approximation31,33. The corrected like-ion RDF’s gii

would then be positive, and small, as observed in more accurate calculations (e.g., HNC

or simulations), but the unlike-ion RDF could be very large (as in the case of g00012,c here).

Application of this correction to a condensed phase like the one considered here might be

uncertain. The accuracy of the corrected RDF’s would remain to be investigated.

One notices in Figure 6 that h011
1n,c > h101

n2,c for any value of C. As noted in BW2, the

solvent (orientational) polarization density at a distance r from the ion is proportional to

the function h011
in (r). Therefore the observation that the function h011

1n,c for the cation-solvent

interaction at contact is larger than that for anion-solvent may be interpreted by the fact

that the smaller cation (1) is more strongly solvated than the anion (2).

Coincidentally, the functions h101
n2,c and h112

nn,c nearly cannot be distinguished from one

another in this example.

3. Pressure

The electrostatic pressure P el, and its contributions, computed from Eqs. (64), (65), and

(67), are plotted in Figure 7. In this figure, βPii, βPin, and βPnn, are defined as the ion-ion,

ion-solvent and solvent-solvent contributions to J in Eq. (65). Because of Eqs. (64) and
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(65), one has βP el = βPii + βPin + βPnn + J ′.
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FIG. 7. Contributions to electrostatic pressure, P el, vs. concentration. Solid line = P el, dashed

line = Pii, dotted line = Pin, dash-dotted line = Pnn, dashed-triple-dotted line = J ′/β.

It is seen in Figure 7 that P el is negative, as a result of the dominant effect of attractive

forces, it is nearly constant vs. concentration, and it takes high values. The total pressure,

which would be the sum of P el plus the HS pressure PHS, would be much smaller because

PHS is positive and would counterbalance P el.

The contributions Pii, Pin, and Pnn, are also negative, and J ′/β is positive. The ‘ion-ion

pressure’, Pii, is the minor contribution in this concentration range.

Let us now break down the contributions to J ′. Table II reports the values of J ′
ion−ion/β,

2J ′
ion−n/β, and J ′

n−n/β that appear in Eq. (67). The values of J ′(0)
ion−ion yielded by the

removal of the HS RDF’s, gHS,000
ij,c , in Eq. (68) for J ′

ion−ion (see the remark following Eq.

(70)) are also collected in this table.

TABLE II. Contributions to J ′/β (in bars; 1 bar = 105 Pa).

C (/M) J ′
ion−ion/β J ′(0)

ion−ion/β 2J ′
ion−n/β J ′

n−n/β

0.1 3 3 351 9858

0.5 72 75 1659 9466

1 265 276 3119 9039

2 923 975 5605 8334

It is observed that J ′
ion−ion brings a rather small contribution to J ′ for moderate salt
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concentrations below 2 M. At 2 M, it represents ∼6 % of the total value of J ′. It would

contribute more significantly at higher concentrations.

The values of the incorrect J ′(0)
ion−ion are close to those of J ′

ion−ion because gHS,000
ij,c is

significantly smaller than g000ij,c (the maximum value of gHS,000
ij,c is gHS,000

22,c ∼ 2.8 at 2 M, and

the value of J ′
ion−ion is dominated by g00011,c and g00012,c). The removal of gHS,000

ij,c in Eq. (68) has

a small effect on the value of J ′ in the present example.

In contrast, the effect of correcting Eq. (55) is found to be huge. Without the presence

of the term ρnσn
2 in the denominator of q′ the result for the pressure is in error by orders

of magnitude. For example, at 2 M, one gets a large and positive value, P el ∼ 6× 1020 bar

(when using the SI unit system), instead of -5759 bar.

4. Test of approximate Helmholtz energy and chemical potentials

The degree of accuracy of the approximate Helmholtz energy, Ael,app (Eq. (76)), and of

the approximate chemical potentials, µel,app
i (Eqs. (79) and (80)), was examined.

In the first case, this was done by comparing the derivative, P el,app ≡ −∂Ael,app/∂V , with

the pressure obtained from Eq. (64). The derivative was computed numerically from the

relation,
∂Ael,app

∂V
= V

∂(Ael,app/V )

∂V
+

Ael,app

V
.

by computing the values of the 2 terms of the r.h.s. and using Eq. (77) for Ael,app/V .

In the second case, the relation,

∂µel
i

∂V

∣∣∣∣
Nj

= −∂P el

∂Ni

∣∣∣∣
V,Nj ,j ̸=i

, (85)

with Ni the number of species of type i, was tested numerically by replacing µel
i by µel,app

i

(Eq. (79) or (80)) in the l.h.s. and comparing the result with that for the r.h.s., which was

computed numerically from Eq. (64). In the case of the salt, the relations for the two ions

were added and the following relation was used,

∂P el

∂N1

∣∣∣∣
V,N2,Nn

+
∂P el

∂N2

∣∣∣∣
V,N1,Nn

=
∂P el

∂Ns

∣∣∣∣
V,Nn

.

in which the subscript s designates the salt.

For a given value of the salt concentration, the degree to which the relations were fulfilled

was quantified by computing the relative deviations between the approximate and the ‘exact’
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results. They are denoted by DP = (P el,app − P el)/P el in the first case, and Dn (in the test

of Eq. (85) for i = n) and Ds (for the salt) in the second. The results are shown in Figure

8 for the system considered in this section.
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FIG. 8. Relative deviations, DP , Dn, and Ds (all in %). Solid line = −DP , dashed line = −Dn,

dotted line = −Ds (see text).

The main comments about the results of Figure 8 are as follows. All deviations are

negative. The deviation on the pressure, DP , is rather small (∼0.25 % at 2 M). The deviation

in the case of the salt, Ds, is more than 5 times larger than that for the solvent, Dn, which

suggests that Eq. (79) for the approximate ion chemical potential is less accurate than Eq.

(80) for that of the solvent.

Some further insight can be gained in the case where ρn = 0, which corresponds to the

primitive model of ionic solutions if the background is taken to be a dielectric continuum.

Interestingly, in that case, an expression for the term βδµel
i can be found explicitly. This

derivation is detailed in the supplementary material.

The value of the ratio, Ri = δµel
i /µ

el
i , was computed for each ion in the case of the 1-1 salt

considered above. A relative permittivity of 78.4 for the dielectric continuum was included

in the parameter α2
0 so as to mimic water as the solvent.

The result for −R1 and R2 is plotted in Figure 9.

It was found that the 2 chemical potentials µel
1 and µel

2 are negative (not shown). The

additional contributions are of opposite signs: δµel
1 > 0 for the smaller ion, and δµel

2 < 0

for the bigger. Figure 9 shows that the two ratios −R1 and R2 are increasing functions of

the salt concentration. Their values at 2 M are of a few percent. The corrective terms δµel
i
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FIG. 9. Variation of Ri = δµel
i /µ

el
i with salt concentration (with σ1 = 2 Å and σ2 = 4 Å). Solid

line = -R1 for the cation 1; Dashed line = R2 for the anion 2.

therefore make a rather small, though not negligible, contribution to µel
i .

A similar behavior of these terms is likely in the MSA-ID model.

IV. CONCLUSION

In this work, the equations for the ion-dipole mixture within the MSA have been analyzed.

A valid set of relations has been established and dimensionless energy parameters introduced

in the spirit of the SR case9. A method to solve the set of equations has been proposed.

An expression for the electrostatic contribution to the pressure has been obtained. This

expression is ‘exact’ within the MSA. This is not so as regards the Helmholtz energy, and

the ion and solvent chemical potentials, for which approximate expressions are available at

present. Corrective terms will have to be determined in subsequent work. Nonetheless the

approximate relations seem to provide estimations of reasonable accuracy.

An inherent deficiency of the MSA is observed in the like-ion radial distribution functions

at contact, which were found to be negative and of appreciable magnitude in the example

considered here. This behavior is amplified in the non-primitive MSA by the fact that the

ion-ion interaction potentials are much stronger than in the primitive model. In the latter

the dielectric constant of the solvent reduces greatly the amplitude of the negative like-ion

contact RDF’s.

The inaccuracy of the contact RDF’s casts some doubt on the accuracy of the electrostatic
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pressure. However the effect on the latter seems rather small at low and moderate salt

concentration. The exponential approximation could be employed in principle to correct the

RDF’s, but the accuracy of the result is uncertain. This point would have to be studied

more in depth.

In future work, it is planned to reconsider the approximate version of the MSA-ID model

proposed in BW2 in the light of the present work, and see if other approximations could be

developed. It will also be possible to examine the results obtained from the present frame-

work for the deviations from ideality in the case of ‘real’ electrolytes for which experimental

data are available. The description could be improved by combining it with suitable models

that would mitigate the main deficiencies of the MSA and/or account for additional effects

such as association or hydrogen bonding as has been done sometimes in the literature with

SAFT-like formulas combined with other versions of the non-primitive MSA11,12,34.

SUPPLEMENTARY MATERIAL

See supplementary material for more details on the recovery of the expression for the

pressure in the SR case, on the relation between the energy parameters bi in the case of a

binary 1-1 electrolyte, and on the calculation of the corrective term δµel
i for the ions in the

primitive model.
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The data that support the findings of this study are available from the corresponding

author upon reasonable request.

REFERENCES

1H. Renon, “Electrolyte solutions,” Fluid Phase Equilib. 30, 181–195 (1986).

2J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular thermodynamics

of fluid-phase equilibria (Prentice Hall, 1999).

3J.-L. Cruz and H. Renon, “A new thermodynamic representation of binary electrolyte

solutions nonideality in the whole range of concentrations,” AIChE J. 24, 817–830 (1978).

4C.-C. Chen, H. I. Britt, J. Boston, and L. Evans, “Local composition model for excess

Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated

electrolyte systems,” AIChE J. 28, 588–596 (1982).

5B. Sander, A. Fredenslund, and P. Rasmussen, “Calculation of vapour-liquid equilibria in

mixed solvent/salt systems using an extended UNIQUAC equation,” Chem. Eng. Sci. 41,

1171–1183 (1986).

6W. Chapman, K. Gubbins, G. Jackson, and M. Radosz, “SAFT: Equation-of-state solution

model for associating fluids,” Fluid Phase Equilib. 52, 31 – 38 (1989).

7L. Blum, “Solution of a model for the solvent-electrolyte interactions in the mean spherical

approximation,” J. Chem. Phys. 61, 2129–2133 (1974).

8L. Blum and D. Wei, “Analytical solution of the mean spherical approximation for an

arbitrary mixture of ions in a dipolar solvent,” J. Chem. Phys. 87, 555–565 (1987).

9L. Blum, F. Vericat, and W. Fawcett, “On the mean spherical approximation for hard ions

and dipoles,” J. Chem. Phys. 96, 3039–3044 (1992).

10L. Blum, F. Vericat, and W. R. Fawcett, “Erratum: On the mean spherical approximation

for hard ions and dipoles [J. Chem. Phys. 96, 3039 (1992)],” J. Chem. Phys. 101, 10197–

10197 (1994).

11W.-B. Liu, Y.-G. Li, and J.-F. Lu, “A new equation of state for real aqueous ionic fluids

based on electrolyte perturbation theory, mean spherical approximation and statistical

associating fluid theory,” Fluid Phase Equilib. 158-160, 595 – 606 (1999).

12S. Herzog, J. Gross, and W. Arlt, “Equation of state for aqueous electrolyte systems based

28



on the semirestricted non-primitive mean spherical approximation,” Fluid Phase Equilib.

297, 23 – 33 (2010).

13Z.-P. Liu, Y.-G. Li, and J.-F. Lu, “Low-density expansion of the solution of mean spherical

approximation for ion-dipole mixtures,” J. Phys. Chem. B 106, 5266–5274 (2002).

14J.-P. Simonin, “On the “Born” term used in thermodynamic models for electrolytes,” J.

Chem. Phys. 150, 244503 (2019).

15L. Blum, “Solution of the mean spherical approximation for hard ions and dipoles of

arbitrary size,” J. Stat. Phys. 18, 451–474 (1978).

16L. Blum, “Invariant expansion III: The general solution of the mean spherical model for

neutral spheres with electostatic interactions,” J. Chem. Phys. 58, 3295–3303 (1973).

17D. Wei and L. Blum, “The mean spherical approximation for an arbitrary mixture of ions in

a dipolar solvent: Approximate solution, pair correlation functions, and thermodynamics,”

J. Chem. Phys. 87, 2999–3007 (1987).

18L. Blum and A. J. Torruella, “Invariant expansion for two-body correlations: Thermo-

dynamic functions, scattering, and the Ornstein—Zernike equation,” J. Chem. Phys. 56,

303–310 (1972).

19L. Blum, “Invariant expansion. II. The Ornstein-Zernike equation for nonspherical

molecules and an extended solution to the mean spherical model,” J. Chem. Phys. 57,

1862–1869 (1972).

20D. Levesque, J. J. Weis, and G. N. Patey, “Charged hard spheres in dipolar hard sphere

solvents. a model for electrolyte solutions,” J. Chem. Phys. 72, 1887–1899 (1980).

21D. Henderson, “Some simple results for the properties of polar fluids,” Condensed Matt.

Phys. 14, 33001:1–17 (2011).

22S. A. Adelman and J. M. Deutch, “Exact solution of the mean spherical model for strong

electrolytes in polar solvents,” J. Chem. Phys. 60, 3935–3949 (1974).

23D. Wei and L. Blum, “Nonprimitive model of electrolytes: Analytical solution of the mean

spherical approximation for an arbitrary mixture of sticky ions and dipoles,” J. Chem.

Phys. 89, 1091–1100 (1988).

24L. Blum and J. Høye, “Mean spherical model for asymmetric electrolytes. 2. Thermody-

namic properties and the pair correlation function,” J. Phys. Chem. 81, 1311–1316 (1977).

25L. Blum, “Simple electrolytes in the mean spherical approximation,” in Theoretical Chem-

istry, Advances and Perspectives, Vol. 5, edited by H. Eyring and D. Henderson (Academic

29



Press: New York, 1980) pp. 1–66.

26J. Salacuse and G. Stell, “Polydisperse systems: Statistical thermodynamics, with ap-

plications to several models including hard and permeable spheres,” J. Chem. Phys. 77,

3714–3725 (1982).

27J. S. Høye and G. Stell, “Thermodynamics of the MSA for simple fluids,” J. Chem. Phys.

67, 439–445 (1977).

28J. S. Høye and E. Lomba, “Mean spherical approximation (MSA) for a simple model of

electrolytes. I. Theoretical foundations and thermodynamics,” J. Chem. Phys. 88, 5790–

5797 (1988).

29G. Das, M. C. dos Ramos, and C. McCabe, “Predicting the thermodynamic properties

of experimental mixed-solvent electrolyte systems using the SAFT-VR+DE equation of

state,” Fluid Phase Equilib. 460, 105 – 118 (2018).

30M. Golovko and I. Protsykevich, “Analytic solution of the mean spherical approximation

for ion-dipole model in a neutralizing background,” J. Stat. Phys. 54, 707–733 (1989).

31H. C. Andersen, D. Chandler, and J. D. Weeks, “Optimized cluster expansions for classical

fluids. III. Applications to ionic solutions and simple liquids,” J. Chem. Phys. 57, 2626–

2631 (1972).

32G. Stell, “Correlation functions and their generating functionals: General relations with

applications to the theory of fluids,” in Phase transitions and critical phenomena, Vol. 5b

(Academic Press London, 1976) pp. 205–341.

33H. C. Andersen and D. Chandler, “Optimized cluster expansions for classical fluids. I.

General theory and variational formulation of the mean spherical model and hard sphere

Percus-Yevick equations,” J. Chem. Phys. 57, 1918–1929 (1972).

34H. Zhao, M. C. dos Ramos, and C. McCabe, “Development of an equation of state for

electrolyte solutions by combining the statistical associating fluid theory and the mean

spherical approximation for the nonprimitive model,” J. Chem. Phys. 126, 244503 (2007).

30


