H. Renon, Electrolyte solutions, Fluid Phase Equilib, vol.30, pp.181-195, 1986.
URL : https://hal.archives-ouvertes.fr/hal-01212236

J. M. Prausnitz, R. N. Lichtenthaler, and E. G. De-azevedo, Molecular thermodynamics of fluid-phase equilibria, 1999.

J. Cruz and H. Renon, A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentrations, AIChE J, vol.24, pp.817-830, 1978.

C. Chen, H. I. Britt, J. Boston, and L. Evans, Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems, AIChE J, vol.28, pp.588-596, 1982.

B. Sander, A. Fredenslund, and P. Rasmussen, Calculation of vapour-liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation, Chem. Eng. Sci, vol.41, pp.1171-1183, 1986.

W. Chapman, K. Gubbins, G. Jackson, and M. Radosz, SAFT: Equation-of-state solution model for associating fluids, Fluid Phase Equilib, vol.52, pp.31-38, 1989.

L. Blum, Solution of a model for the solvent-electrolyte interactions in the mean spherical approximation, J. Chem. Phys, vol.61, pp.2129-2133, 1974.

L. Blum and D. Wei, Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent, J. Chem. Phys, vol.87, pp.555-565, 1987.

L. Blum, F. Vericat, and W. Fawcett, On the mean spherical approximation for hard ions and dipoles, J. Chem. Phys, vol.96, pp.3039-3044, 1992.

L. Blum, F. Vericat, and W. R. Fawcett, Erratum: On the mean spherical approximation for hard ions and dipoles, J. Chem. Phys, vol.96, pp.10197-10197, 1992.

W. Liu, Y. Li, and J. Lu, A new equation of state for real aqueous ionic fluids based on electrolyte perturbation theory, mean spherical approximation and statistical associating fluid theory, Fluid Phase Equilib. 158, vol.160, pp.595-606, 1999.

S. Herzog, J. Gross, and W. Arlt, Equation of state for aqueous electrolyte systems based on the semirestricted non-primitive mean spherical approximation, Fluid Phase Equilib, vol.297, pp.23-33, 2010.

Z. Liu, Y. Li, and J. Lu, Low-density expansion of the solution of mean spherical approximation for ion-dipole mixtures, J. Phys. Chem. B, vol.106, pp.5266-5274, 2002.

J. Simonin, On the "Born" term used in thermodynamic models for electrolytes, J. Chem. Phys, vol.150, p.244503, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02188712

L. Blum, Solution of the mean spherical approximation for hard ions and dipoles of arbitrary size, J. Stat. Phys, vol.18, pp.451-474, 1978.

L. Blum, Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions, J. Chem. Phys, vol.58, pp.3295-3303, 1973.

D. Wei and L. Blum, The mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent: Approximate solution, pair correlation functions, and thermodynamics, J. Chem. Phys, vol.87, pp.2999-3007, 1987.

L. Blum and A. J. Torruella, Invariant expansion for two-body correlations: Thermodynamic functions, scattering, and the Ornstein-Zernike equation, J. Chem. Phys, vol.56, pp.303-310, 1972.

L. Blum, Invariant expansion. II. The Ornstein-Zernike equation for nonspherical molecules and an extended solution to the mean spherical model, J. Chem. Phys, vol.57, pp.1862-1869, 1972.

D. Levesque, J. J. Weis, and G. N. Patey, Charged hard spheres in dipolar hard sphere solvents. a model for electrolyte solutions, J. Chem. Phys, vol.72, pp.1887-1899, 1980.

D. Henderson, Some simple results for the properties of polar fluids, Condensed Matt. Phys, vol.14, pp.1-17, 2011.

S. A. Adelman and J. M. Deutch, Exact solution of the mean spherical model for strong electrolytes in polar solvents, J. Chem. Phys, vol.60, pp.3935-3949, 1974.

D. Wei and L. Blum, Nonprimitive model of electrolytes: Analytical solution of the mean spherical approximation for an arbitrary mixture of sticky ions and dipoles, J. Chem. Phys, vol.89, pp.1091-1100, 1988.

L. Blum and J. Høye, Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function, J. Phys. Chem, vol.81, pp.1311-1316, 1977.

L. Blum, Simple electrolytes in the mean spherical approximation, Theoretical Chemistry, Advances and Perspectives, vol.5, pp.1-66, 1980.

J. Salacuse and G. Stell, Polydisperse systems: Statistical thermodynamics, with applications to several models including hard and permeable spheres, J. Chem. Phys, vol.77, pp.3714-3725, 1982.

J. S. Høye and G. Stell, Thermodynamics of the MSA for simple fluids, J. Chem. Phys, vol.67, pp.439-445, 1977.

J. S. Høye and E. Lomba, Mean spherical approximation (MSA) for a simple model of electrolytes. I. Theoretical foundations and thermodynamics, J. Chem. Phys, vol.88, pp.5790-5797, 1988.

G. Das, M. C. Ramos, and C. Mccabe, Predicting the thermodynamic properties of experimental mixed-solvent electrolyte systems using the SAFT-VR+DE equation of state, Fluid Phase Equilib, vol.460, pp.105-118, 2018.

M. Golovko and I. Protsykevich, Analytic solution of the mean spherical approximation for ion-dipole model in a neutralizing background, J. Stat. Phys, vol.54, pp.707-733, 1989.

H. C. Andersen, D. Chandler, and J. D. Weeks, Optimized cluster expansions for classical fluids. III. Applications to ionic solutions and simple liquids, J. Chem. Phys, vol.57, pp.2626-2631, 1972.

G. Stell, Correlation functions and their generating functionals: General relations with applications to the theory of fluids, Phase transitions and critical phenomena, vol.5, pp.205-341, 1976.

H. C. Andersen and D. Chandler, Optimized cluster expansions for classical fluids. I. General theory and variational formulation of the mean spherical model and hard sphere Percus-Yevick equations, J. Chem. Phys, vol.57, pp.1918-1929, 1972.

H. Zhao, M. C. Ramos, and C. Mccabe, Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model, J. Chem. Phys, vol.126, p.244503, 2007.