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Assuming sufficiently many terms of an n-dimensional table defined over a field are given, we aim at guessing the linear recurrence relations with either constant or polynomial coefficients they satisfy. In many applications, the table terms come along with a structure: for instance, they may be zero outside of a cone, they may be built from a Gröbner basis of an ideal invariant under the action of a finite group. Thus, we show how to take advantage of this structure to reduce both the number of table queries and the number of operations in the base field to recover the ideal of relations of the table. In applications like in combinatorics, where all these zero terms make us guess many fake relations, this allows us to drastically reduce these wrong guesses. These algorithms have been implemented and, experimentally, they let us handle examples that we could not manage otherwise.

Furthermore, we show which kind of cone and lattice structures are preserved by skewpolynomial multiplication. This allows us to speed the guessing of linear recurrence relations with polynomial coefficients up by computing sparse Gröbner bases or Gröbner bases of an ideal invariant under the action of a finite group in a ring of skew-polynomials.

Introduction

Problem statement and motivations. Given a sequence v = (v i 1 ,...,i n ) i 1 ,...,i n ≥0 , we consider the table made of a finite subset of its terms. Computing or guessing linear recurrence relations satisfied by such a table is a fundamental problem in coding theory for cyclic codes [START_REF] Bose | On a class of error correcting binary group codes[END_REF][START_REF] Hocquenghem | Codes correcteurs d'erreurs[END_REF] of dimension n ≥ 1, combinatorics and computer algebra for solving sparse linear systems, performing sparse polynomial interpolation, polynomial least-square approximation and Gröbner bases changes of orderings in n ≥ 1 variables [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF]. Furthermore, computing these relations with polynomial coefficients in the indices allows us to predict the growth of its terms, to classify the differential nature of their generating series or to evaluate said generating series [START_REF] Mezzarobba | Truncation Bounds for Differentially Finite Series[END_REF].

Depending on the context, an upper bound on the number of table terms might be known in order to guess these relations. For instance, in coding theory, this is related to the length and the minimum distance of the code. In the Gröbner bases change of orderings application, an upper bound is given by the degree of the ideal and the number of variables. Whenever no upper bound is known, one is still restricted to only consider a finite number of table terms to guess the linear recurrence relations the table satisfies. Thus, some of these relations may be proven incorrect when tested with many more table terms; further such relations will be called fake relations. This happens for instance in combinatorics where the nature itself of the table may be unknown.

In many applications, the table comes with a structure. For instance, in combinatorics, for nD-space walks in the nonnegative orthant, v i 0 ,i 1 ,...,i n counts the number of ways to reach (i 1 , . . . , i n ) ∈ N n in i 0 steps of size 1 [START_REF] Bostan | On 3-dimensional lattice walks confined to the positive octant[END_REF][START_REF] Bousquet-Mélou | Walks confined in a quadrant are not always D-finite[END_REF]. Therefore, v i 0 ,i 1 ,...,i n is trivially 0 outside the cone i 1 , . . . , i n ≤ i 0 . Thus, computationwise, not considering these terms would reduce the size of the table and thus might be beneficial for guessing the linear recurrence relations satisfied by the table. Hence, the goal is to exploit this structure to both reduce the number of table queries and the number of operations to guess the Gröbner basis of the ideal of relations.

Prior results. We distinguish two cases: the one-dimensional case, where tables are with one index, and the multidimensional one, where tables have n > 1 indices.

In the one-dimensional case, given the first D terms of a table, the Berlekamp-Massey algorithm [START_REF] Berlekamp | Nonbinary BCH decoding[END_REF][START_REF] Massey | Shift-register synthesis and BCH decoding[END_REF] guesses the linear recurrence relations with constant coefficients of smaller order. Using fast extended Euclidean algorithm, this algorithm can do so in O(M(D) log D) operations in the base field [START_REF] Brent | Fast solution of Toeplitz systems of equations and computation of Padé approximants[END_REF], where M(D) = O(D log D log log D) [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF] is a cost function for multiplying two univariate polynomials of degree at most D. Through Hermite-Padé approximants, the Beckermann-Labahn algorithm [START_REF] Beckermann | A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants[END_REF] can be used to guess several relations with polynomial coefficients including the one of minimal order. Let us notice that finding relations with polynomial coefficients is a special case of Hermite-Padé approximants for which the Beckermann-Labahn algorithm is not quasi-optimal in the input size.

In the multidimensional case, several algorithms were designed for guessing linear recurrence relations with constant coefficients satisfied by the first terms of the tables using linear algebra routines. For instance, the Berlekamp-Massey-Sakata algorithm [START_REF] Sakata | Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array[END_REF][START_REF] Sakata | Extension of the Berlekamp-Massey algorithm to N Dimensions[END_REF][START_REF] Sakata | The BMS Algorithm[END_REF], the Scalar-FGLM algorithm [START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF][START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF] or the Artinian Gorenstein border basis algorithm [START_REF] Mourrain | Fast Algorithm for Border Bases of Artinian Gorenstein Algebras[END_REF]. Given sufficiently many terms, the first two return a Gröbner basis of the ideal of relations while the third one returns a border basis of this ideal. Furthermore, in [START_REF] Berthomieu | A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations[END_REF] the authors designed an algorithm extending both the Berlekamp-Massey-Sakata and the Scalar-FGLM algorithms using polynomial arithmetic and in [START_REF] Berthomieu | Guessing Linear Recurrence Relations of Sequence Tuples and P-recursive Sequences with Linear Algebra[END_REF], they extended the Scalar-FGLM algorithm for guessing relations with polynomial coefficients. However, none of these algorithms were designed to take the structure of the table terms into account. Another classical technique is the "ansatz + linear system solving" approach for finding relations. Usually the ansatz allows the user to find a set of relations, then a postprocessing is needed in order to recover, for instance, the Gröbner basis of the ideal spanned by the computed relations. Though, if the ansatz is far from being tight, then the linear system to solve might be equivalent to the one of the Scalar-FGLM algorithm.

Gröbner bases are the output of several algorithms for guessing linear recurrence relations and are a fundamental tool in polynomial systems solving. In many applications, polynomials systems come with a structure, for instance they span an ideal globally invariant under the action of a finite group G or their supports are in a cone. From the table viewpoint, these are related to only considering table terms lying either on a lattice [START_REF] Kauers | Why you should remove zeros from data before guessing[END_REF] or in a cone.

In [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF], the authors show that for such an ideal, Gröbner bases computations through the F 4 [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF], F 5 [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5 )[END_REF] and FGLM [START_REF] Faugère | Efficient Computation of Zerodimensional Gröbner Bases by Change of Ordering[END_REF] algorithms can be sped up with a factor depending on |G|, whenever the characteristic of the field of coefficients does not divide |G|. To do so, they essentially 2 perform |G| parallel smaller computations. In particular for the FGLM algorithm, this factor is |G| 2 , see [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF]Theorem 10]. Likewise, in [START_REF] Steidel | Gröbner bases of symmetric ideals[END_REF], the author proposed algorithms for computing Gröbner bases of symmetric ideals over the rationals or a finite field.

In [START_REF] Bender | Towards Mixed Gröbner Basis Algorithms: The Multihomogeneous and Sparse Case[END_REF][START_REF] Faugère | Sparse Gröbner bases: The unmixed case[END_REF], the authors show that if C is a semi-group of Z n containing 0 and no pair of opposite elements and if f 1 , . . . , f s are polynomials with support in the corresponding monomial set T(C)

≔ x i 1 1 • • • x i n n (i 1 , . . . , i n ) ∈ C
, then one can consider the ideal spanned by f 1 , . . . , f s in the subalgebra of polynomials with support in T(C). Modifying classical Gröbner bases algorithms, they obtain a sparse Gröbner basis, a set of generators with support in T(C) of this ideal that behaves like a Gröbner basis. This allows them to speed Gröbner basis computations up by taking into account the sparsity of the union of the supports of the original generators of the ideal.

Main results. We design variants of the Scalar-FGLM algorithm which guess linear recurrence relations for an n-dimensional table v, given as polynomials in x 1 , . . . , x n . The original algorithm is recalled in page 9.

We first prove that restraining the Scalar-FGLM algorithm to terms of a table lying on a cone makes it compute a sparse Gröbner basis of the ideal of relations of the table. More precisely, we obtain Theorem 3.2, a simplified version of which is as follows.

Theorem 1.1. Let C be a semi-subgroup of N n containing 0. Let ≺ be a monomial ordering. Let T ⊂ T(C) be a finite set of monomials ordered for ≺, such that for all

µ 1 , µ 2 ∈ T(C), if µ 1 µ 2 ∈ T , then µ 1 and µ 2 are in T . Let v be a n-dimensional table with nonzero elements v i 1 ,...,i n only if (i 1 , . . . , i n ) ∈ C.
Then, if T is large enough, the output of the Scalar-FGLM called on v, T and ≺ is the reduced sparse Gröbner basis of the ideal of relations of v with support in T(C).

Let us remark that this allows us to remove trivial constraints on the relations induced by the zero terms outside of the cone, yielding in practice many fewer guessed relations that eventually fail. On the one hand, as a byproduct, this allows us to reduce the number of table queries to guess the relations. For instance, for a subtable of the Gessel walk, using 3 491 table terms, we can guess 142 relations amongst which 136 are fake and only 6 are correct. On the other hand taking only table terms in a cone allows us to consider table terms much further, which in turn allow us to guess more relations. Indeed, with 3 010 terms in a cone of the same table, we guess 21 relations and all of them are correct. We refer to Table 1 for more details. Let us also notice that these fake relations may hide correct ones as their leading monomials could divide the leading monomials of correct relations.

In the next theorem, we now consider table terms lying on a lattice Λ and affine translates thereof. This allows us to design a parallel variant of the Scalar-FGLM algorithm, called the Lattice Scalar-FGLM algorithm and given in page 13. Assuming the fundamental domain of Λ has L integer points, this variant essentially deals with L sets of table terms of sizes roughly divided by L. The following theorem is a simplified version of Theorem 3.4. Theorem 1.2. Let Λ be a sublattice of Z n . Let ≺ be a monomial ordering. Let T ⊂ T be a finite set of monomials ordered for ≺, such that for all µ 1 , µ 2 ∈ T , if µ 1 µ 2 ∈ T , then µ 1 and µ 2 are in T .

Let f 1 , . . . , f s be polynomials spanning a zero-dimensional ideal I of degree D such that for all 1 ≤ i ≤ s, there exists a ∈ Z n such that the support of f i is included in

T(a + Λ) ≔ x i 1 1 • • • x i n n (i 1 , . . . , i n ) ∈ a + Λ . Let v be a n-dimensional generic table whose ideal of relations is I. 3
Then, if T is large enough, then the output of the Lattice Scalar-FGLM called on v, T and ≺ is the reduced Gröbner basis of the ideal of relations of v. Furthermore, each polynomial in this Gröbner basis has its support in a set T(a + Λ).

Finally, we also make an adaptive variant of the Lattice Scalar-FGLM algorithm, following what has been done for the Scalar-FGLM. This adaptive variant, given in page 21, aim at reducing the number of table queries using the shape of the staircase associated to the Gröbner basis of the ideal of relations of the table.

Structure of the paper. We first recall in Section 2 the classical connection between linear recurrence relations with polynomial coefficients and skew-polynomials in 2n variables. Then, we recall how using linear algebra routines on a special kind of matrix, a multi-Hankel one, the Scalar-FGLM algorithm, and its adaptive variant the Adaptive Scalar-FGLM algorithm, guesses linear recurrence relations.

In Section 3, we design variants of the Scalar-FGLM algorithm that take the table structure into account for guessing linear recurrence relations, then we prove Theorems 3.2 and 3.4. As an application, we provide a modification of the Sparse-FGLM algorithm [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF] whenever the ideal is globally invariant under the action of a finite group.

The same kind of variants of the Adaptive Scalar-FGLM algorithm are then designed, in Section 4. Likewise, we prove Theorem 4.2 in this section. Then, we show how one can perform skew-polynomial operations in order to preserve the cone and lattice structures of the support of the polynomials.

Finally, in Section 5, we report on our speedup using our C implementation of the Sparse-FGLM algorithm when the ideal is invariant under the action of a finite group. We also guess linear recurrence relations satisfied by nD-space walks with and without exploiting the cone structure of the table and then test further the guessed relations. We then report on how the cone structure allows us to guess fewer fake linear recurrence relations.

Preliminaries

Tables and relations

In all this paper, we take the convention that 0 ∈ N. For n ∈ N, n ≥ 1, we let i = (i 1 , . . . , i n ) ∈ N n , x = (x 1 , . . . , x n ) and

x i = x i 1 1 • • • x i n n .
For a subset S of N n , we let T(S) = {x s |s ∈ S} be the set of monomials with exponents in S. To ease the presentation, we let T ≔ T(N n ). Finally, for a polynomial f = s∈S f s x s , we let supp f = {s ∈ S| f s 0} be its support.

Let K be a field and v ∈ K N n be a n-indexed sequence with values in

K, that is v = (v i 1 ,...,i n ) (i 1 ,...,i n )∈N n .
There is a natural correspondence between finite linear combinations of terms of v and polynomials in K[x 1 , . . . , x n ]. For g = s∈S γ s x s , with S a finite subset of N n , we can write g v ≔ s∈S γ s v s . Hence shifting a relation by an index i comes down to multiplying the corresponding polynomial by x i since

gx i v = s∈S γ s v s+i .
In particular, a polynomial g defines a linear recurrence relation with constant coefficients, or C-relation for short, on v if, and only if, for all i ∈ N n , gx i v = 0. The set of all such polynomials is an ideal of K[x] called the ideal of C-relations of v, see for instance Finally, a nonzero sequence v is said to be C-finite if together with a finite number of terms of v and a finite number of C-relations, one can recover all the terms of v. This is equivalent to requiring that the ideal of C-relations of v is 0-dimensional, see also [START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF]Definition 2 and Proposition 3], where such sequences are called linear recursive.

Example 2.1. On the one hand, the terms v i, j = (5

+ 4i + 3 j)2 i+ j + (3 + 6i + j)5 i+ j of v ∈ F N 2
7 can all be computed thanks to v 0,0 = v 0,1 = v 0,2 = 1, v 1,0 = 0 and the C-relations, for all (i, j)

∈ N 2 , v i+1, j+1 + 3v i, j = v i+2, j + v i, j+2 + 6v i, j = v i, j+3 + 4v i+1, j + 6v i, j+1 = 0.
On the other hand, they can also be computed knowing v 0,0 = v 0,1 = v 0,2 = v 0,3 = 1 and that for all

(i, j) ∈ N 2 , v i, j+4 + 6v i, j+2 + 2v i, j = v i+1, j + 2v i, j+3 + 5v i, j+1 = 0.
Thus, the ideal of C-relations of v is the 0-dimensional one xy + 3, x 2 + y 2 + 6, y 3 + 4x + 6y = y 4 + 6y 2 + 2, x + 2y 3 + 5y and v is C-finite.

On the other hand, the binomial sequence, b = b i, j (i, j)∈N 2 = i j (i, j)∈N 2 , satisfies Pascal's rule: for all (i, j) ∈ N 2 , b i+1, j+1b i, j+1b i, j = 0. Moreover, one can show that this relation spans all the other C-relations, i.e. its ideal of C-relations is the 1-dimensional one xyy -1 , thus b is not C-finite.

Furthermore, some sequences satisfy linear recurrence relations with coefficients that are polynomials in the indices of the sequence, or P-relations for short. For instance, the binomial sequence satisfies the following two P-relations for all (i, j) ∈ N 2 :

( j + 1) b i, j+1 -(i -j) b i, j = 0 (i + 1 -j) b i+1, j -(i + 1) b i, j = 0.
Combining them by shifting the former by index (0, 1) and then adding the latter yields

(i -j)b i+1, j+1 -(i -j)b i, j+1 -(i -j)b i, j = 0.
This proves that Pascal's rule holds whenever i j.

We thus aim at representing the former relations as polynomials g 1 and g 2 such that for all (i, j) ∈ N 2 , g 1 x i y j v = g 2 x i y j v = 0. For instance, we could say that the first one corresponds to ( j + 1)x i y j+1 -(ij)x i y j v = (( j + 1)y -(ij)) x i y j v = 0, but this would mean that g 1 has coefficients in i and j, which are meaningless on their own. To circumvent this, in [START_REF] Berthomieu | Guessing Linear Recurrence Relations of Sequence Tuples and P-recursive Sequences with Linear Algebra[END_REF], the authors introduced new variables t = (t 1 , . . . , t n ), such that t p behaves like x p ∂ p , where ∂ p is the differential operator with respect to x p . That is,

t k x i v ≔ t k 1 1 • • • t k n n x i v = (x 1 ∂) k 1 • • • (x n ∂ n ) k n x i v = i k 1 1 • • • i k n n x i v = i k 1 1 • • • i k n n v i = i k v i .
Then, the [.] v notation is naturally K-linearly extended to polynomials in t and x. Therefore, the 2n variables t 1 , . . . , t n , x 1 , . . . , x n follow, for all 1 ≤ p, q ≤ n and p q, the commutation rules x p x q = x q x p , t p t q = t q t p , t p x q = x q t p and t p x p = x p (t p + 1), making polynomials in t and x quasi-commutative. The ring of skew-polynomials in t and x, satisfying the quasi-commutative rules defined above, will be denoted K[t] x while the ring of skew-polynomials in x with coefficients in K(t) will simply be denoted K(t) x . Now, a P-relation is given by a finite subset S of N n and polynomials

γ s ∈ K[t] for s ∈ S, such that ∀i ∈ N n , s∈S γ s (s + i)v s+i = 0. This relation corresponds to the polynomial g = s∈S γ s (t)x s ∈ K[t] x such that for all i ∈ N n , gx i v = 0. Remark 2.2. While we can obviously find polynomials γs ∈ K[t] such that s∈S γs (i)v s+i = s∈S γ s (s + i)v s+i = gx i v = 0, the notation with the γ s (s + i)'s makes more explicit the corre- sponding polynomial g in K[t] x . Example 2.3. Let t = t 1 , u = t 2 , x = x 1 and y = x 2 .
Then, the P-relations satisfied by the binomial sequence can be rewritten as

( j + 1) b i, j+1 -(i -j) b i, j = ( j + 1) x i y j+1 -(i -j) x i y j v 0 = ux i y j+1 -(t -u) x i y j v 0 = (uy -(t -u)) x i y j v and (i + 1 -j) b i+1, j -(i + 1) b i, j = (i + 1 -j) x i+1 y j -(i + 1) x i y j v 0 = (t -u) x i+1 y j -(t + 1) x i y j v 0 = ((t -u) x -(t + 1)) x i y j v . Thus, g 1 = uy -(t -u) and g 2 = (t -u) x -(t + 1) in K[t, u] x, y .
The set of all such polynomials is a right ideal of K[t] x . Indeed, it is stable by multiplication on the right by any monomial x i as requested. Furthermore, since

t ℓ x j t k x i = t ℓ (t -j) k x j+i , t ℓ x j t k x i v = t ℓ (t -j) k x j+i v = ( j + i) ℓ i k v j+i = i k t ℓ x j+i v .
In other words, multiplying on the right by t k x i corresponds to multiplying on the right by x i and to multiply the evaluation by a constant, namely i k . Thus if gx i v vanishes, then so does gt k x i v . Such relations allow one to compute new terms of the sequence, though integer roots of the leading coefficient may prevent some computations. For instance, one cannot compute b i+1,i+1 from b i,i+1 using (i + 1j)b i+1, j -(i + 1)b i, j and j = i + 1 as the coefficient in front of b i+1, j vanishes. Thankfully, for this sequence, one can use the other relation ( j + 1)b i, j+1 -(ij)b i, j with i = j + 1 to achieve this goal.

Sequences satisfying P-relations form a large set. Among them, there are the P-finite ones. In particular, analogously to the C-finite case, a nonzero sequence v such that a finite number of its terms and a finite number of P-relations allows one to recover all of its terms is P-finite.

Example 2.4 (Cont. of Example 2.3). The ideal of P-relations of b in

K[t, u] x, y is uy -(t -u), (t -u)x -(t + 1), xy -y -1 . Furthermore, since (xy -y -1) (t -u) = (t -u) xy -(t + 1 -u) y -(t -u) = ((t -u) x -(t + 1)) y + (uy -(t -u)) ,
in K(t, u) x, y , its ideal of P-relations is only spanned by uy -(tu) and (tu)x -(t + 1).

Note that P-finite sequences are actually those whose generating series are D-finite and there exist P-finite sequences that do not satisfy the above prerequisites.

Gröbner bases

This section briefly recalls some basic definitions on Gröbner bases. The interested reader will find more details in [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF] in the commutative case and [START_REF] Levandovskyy | Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation[END_REF]Chapter 2] in the quasi-commutative one.

For T the set of monomials in K[t] x , a monomial ordering ≺ on T is a total order relation satisfying the following three properties

1. ∀m ∈ T , 1 m; 2. ∀m, m ′ , s ∈ T , m m ′ ⇒ ms m ′ s and sm sm ′ .
For a monomial ordering ≺ on K[t] x , the leading monomial of f , denoted lm ≺ ( f ), is the greatest monomial in the support of f for ≺. For an ideal I, we let lm ≺ (I) = {lm ≺ ( f ), f ∈ I}. We recall briefly the definition of a Gröbner basis and of its associated staircase.

Definition 2.5. Let I be a nonzero ideal of K[t] x and let ≺ be a monomial ordering. A set

G ⊆ I is a Gröbner basis of I if for all f ∈ I, there exists g ∈ G such that lm ≺ (g)| lm ≺ ( f ), it is reduced if for any g, g ′ ∈ G, and g g ′ , any monomial m ∈ supp g ′ satisfies lm ≺ (g) ∤ m. The staircase of G is defined as S = Staircase(G) = {s ∈ T , ∀g ∈ G, lm ≺ (g) ∤ s}.
More generally, a set S will be said to be a staircase if for two monomials µ 1 and µ 2 such that µ 1 µ 2 ∈ S , we have µ 1 ∈ S and µ 2 ∈ S .

Let us recall that Staircase(G) is also the canonical basis of K[t]

x /I as a K-vector space. Gröbner basis theory allows us to choose any monomial ordering, among which we mainly use, on the x variables, the lex(x n ≺ • • • ≺ x 1 ) ordering which satisfies x i ≺ x j if, and only if, there exists 1 ≤ p ≤ n such that for all q < p, i q = j q and i p < j p , see [16, Chapter 2, Definition 3];

drl(x n ≺ • • • ≺ x 1 )
ordering which satisfies x i ≺ x j if, and only if,

i 1 + • • • + i n < j 1 + • • • + j n or i 1 + • • • + i n = j 1 + • • • + j n
and there exists 2 ≤ p ≤ n such that for all q > p, i q = j q and i p > j p , see [16, Chapter 2, Definition 6].

We will also use monomial orderings on the t and x variables. Since we want to freely switch from K[t] x to K(t) x and vice versa, it makes sense to choose an ordering such that t k ≺ x ℓ for any k and ℓ, such as lex(

t n ≺ • • • ≺ t 1 ≺ x n ≺ • • • x 1 ) or drl(t n ≺ • • • ≺ t 1 ≺ • • • ≺ x 1 )
. The latter is more suitable as it allows us to enumerate all the monomials in t and x in increasing order.

Structured Gröbner bases

The cones we are dealing with are those that are submonoids of N n . These are subsets C of N n such that 0 ∈ C and for all i, j ∈ C, (i + j) ∈ C.

Given such a cone C and polynomials with support in its associated set of monomials T(C) = x i ∈ T i ∈ C , one may want to perform all the polynomial operations with monomials in T(C) in order to take advantage of the structure of the support when computing a Gröbner basis of the ideal they span. While, this is not always possible, one can achieve this goal by considering the ideal the polynomials span in the subalgebra defined by C.

This leads to the definition of sparse Gröbner basis with support in T(C) that uses its monoid structure. Let f 1 , . . . ,

f s ⊆ K[C] be polynomials. We let I = f 1 , . . . , f s C = s k=1 f k q k q 1 , . . . , q s ∈ K[C] be the ideal spanned by f 1 , . . . , f s in K[C]. Then, a sparse Gröbner basis of I for a monomial or- dering ≺ is a generating set G = {g 1 , . . . , g r } ⊆ K[C] such that for all f ∈ I, lm ≺ ( f ) = lm ≺ (g)m for some g ∈ G and m ∈ T(C).
The associated staircase Staircase(G) of G is the set of monomials s in T(C) such that for any g ∈ G, there is no monomial m ∈ T(C) such that s = lm ≺ (g)m.

Let us notice that for

C = N n , K[C] = K[N n ] = K[x]
and sparse Gröbner bases are classical Gröbner bases. Furthermore, like classical Gröbner bases, sparse Gröbner bases allow one to solve the ideal membership problem in K[C] in an effective way.

For a lattice Λ ⊆ Z n , we let Λ ≥0 = Λ ∩ N n be its nonnegative cone, so that, naturally, Z n ≥0 = N n . In particular, Λ and Λ ≥0 are cones and we may intersect them with another cone. For a ∈ Z n , we also denote by a + Λ the affine lattice obtained by translating Λ by a and likewise we can consider its intersection with a cone. In particular, (a

+ Λ) ≥0 = (a + Λ) ∩ N n .
Given a lattice Λ, its affine translates a 0 + Λ = Λ, . . . , a L + Λ and polynomials f 1 , . . . , f k , each with supports in an associated set of monomials T((a ℓ + Λ) ≥0 ), then a reduced Gröbner basis of f 1 , . . . , f k satisfies also this support property. This allows one to speed the Gröbner bases computations up by essentially performing L computations in parallel with input of sizes divided by L.

Multi-Hankel matrices

Given a table v and a polynomial g ∈ K[t] x , in order to determine if a polynomial g is in the ideal of P-relations of v, one must check that gx i v = 0 for all i. As only a finite number of terms of v are known, only a finite number of such tests can be done. Definition 2.7. Let T be a finite subset of T N 2n , the set of monomials in t 1 , . . . , t n , x 1 , . . . , x n , and X be a finite subset of T(N n ), the set of monomials in x 1 , . . . , x n .

The multi-Hankel matrix H X,T is the matrix whose rows are indexed by X and columns by T and whose coefficient at row x i and column t k x j is t k x j+i v .

A vector in the right kernel of this matrix corresponds to a polynomial g with support in T such that gm v = 0 for all m ∈ X.

Example 2.8. Let v = (v i, j ) (i, j)∈N 2 be a table and T = {1, u, t, y, x, uy, ty, ux, tx} ⊂ T N 2n and X = 1, y, x, y 2 , xy, x 2 ⊂ T(N n ) be two sets of monomials, then their multi-Hankel matrix is

H X,T =                          1 u t y x uy ty ux tx 1 v 0,0 0 0 v 0,1 v 1,0 v 0,1 0 0 v 0,1 y v 0,1 v 0,1 0 v 0,2 v 1,1 2v 0,2 0 v 1,1 v 1,1 x v 1,0 0 v 0,1 v 1,1 v 1,1 v 1,1 v 1,1 0 2v 2,0 y 2 v 0,2 2v 0,2 0 v 0,3 v 1,2 3v 0,3 0 2v 1,2 v 1,2 xy v 1,1 v 1,1 v 1,1 v 1,2 v 2,1 2v 1,2 v 1,2 v 2,1 2v 2,1 x 2 v 2,0 0 2v 2,0 v 2,1 v 3,0 v 2,1 2v 2,1 0 3v 3,0                          .
We give some computation details. The coefficient on the third column (t) and first row ( 1) is

[t × 1] v = tx 0 y 0 v = 0 1 v 0,0 = 0.
Likewise, the coefficient on sixth column (uy) and the second to

last row (xy) is uyxy v = uxy 2 v = 2 1 v 1,2 = 2v 1,2
. Note that rows are only indexed with monomials in x and not in t, x since the row labeled with t k x i , k 0 would be a multiple of the row labeled with x i .

The Scalar-FGLM algorithm

The Scalar-FGLM algorithm [START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF][START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF], takes as input the table v and a set of monomials T , which is a staircase, and computes the right kernel of the multi-Hankel matrix H T,T . Vectors in this kernel can be seen as polynomials in K[x] and these polynomials with a leading term minimal for the partial order induced by the division are the ones returned by the algorithm. Furthermore, if T is ordered for a monomial ordering ≺ and contains the staircase and the leading monomials of the reduced Gröbner basis of the ideal of C-relations of v for ≺, then the Scalar-FGLM algorithm returns this Gröbner basis.

As our goal is to extend the Scalar-FGLM algorithm in order to deal with table terms lying on a cone or a lattice, we recall this algorithm.

Algorithm 1: Scalar-FGLM The algorithm computes the column rank profile of the matrix H T,T , that is the set of leftmost linearly independent columns of the matrix. Since these columns are independent from the previous ones, their labels cannot be the leading monomial, for ≺, of any polynomial in the ideal of C-relations, thus they are in the associated staircase of the reduced Gröbner basis of this ideal for ≺. If T is not large enough, a monomial m could be detected as not lying in the staircase while one of its multiples does, hence there is a stabilization process to add m to the staircase if this happens, see [START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF]Example 3]. Then, each output polynomial is computed by solving a linear system involving its leading monomial and the monomials in the staircase.

Input: A table v = (v i ) i∈N n with coefficients in K, a monomial
Example 2.9 (Cont. of Example 2.1). Let us recall that a Gröbner basis of the ideal of Crelation of v is xy + 3, x 2 + y 2 + 6, y 3 + 4x + 6y for drl(y ≺ x), hence this ideal has degree 4. Therefore, the staircase of the Gröbner basis of this ideal for lex(y ≺ x), or any monomial ordering, can only contain monomials x i y j with (i + 1) × ( j + 1) ≤ 4 and it suffices to take T = 1, y, y 2 , y 3 , y 4 , x, xy, x 2 , x 3 , x 4 to recover the staircase and the Gröbner basis. The column rank profile of H T,T is given by S = 1, y, y 2 , y 3 so that L = y 4 , x, xy, x 2 , x 3 , x 4 . Then, the linear systems H S ,S γ + H S ,{y 4 } = 0 and H S ,S γ + H S ,{x} = 0 yield the Gröbner basis y 4 + 6y 2 + 2, x + 2y 3 + 5y .

In many applications, for instance the Gröbner bases change of orderings one through the Sparse-FGLM algorithm, the computation of a single table element is costly. Therefore, we may want to reduce the number of table queries performed by the Scalar-FGLM algorithm. Algorithm 1 called on a set T requires # 2T table terms, where 2T is the Minkowski sum of T with itself. To reduce this number of queries, the goal is to let the multi-Hankel grow step by step. We start with the 1 × 1 matrix

1 1 [1] v . If [1] v = v 0
0, then 1 is in the associated staircase of the Gröbner basis of the ideal of Crelations of v, otherwise it stops and returns the set of relations {1}. The algorithm extends a full-rank matrix H S ,S into H S ∪{m},S ∪{m} with m greater, for ≺, than any monomial in S . Now, there are two possibilities, either the new matrix has full rank or it is not and the column labeled with m is linearly dependent from the other ones. In the former case, m is actually in this staircase and S is replaced by S ∪ {m}. In the latter case, a polynomial with support in S ∪ {m} and leading monomial, for ≺, m is found and no multiples of m will ever be proposed to extend the multi-Hankel matrix. The algorithm stops either when no monomials can be added to the staircase or when the size of the staircase has reached a threshold given in input. There is, however, a possibility of finding wrong relations if the first terms of the table exceptionally satisfies a relation of smaller order, for instance if v 0 = 0. This problem can be circumvented by testing relations further, that is adding a small buffer of constraints, i.e. rows of the matrix. This can be noticed for instance when the relations are suspiciously small or in FGLM applications where the degree of the ideal is known in advance.

Guessing with structures

In this section, we show how to guess linear recurrence relations of a table by taking the structure of the table terms into account. We first start with the case where only table terms in a cone are considered. Then, we study how to guess these relations when table terms are in a lattice or some affine translates thereof.

Terms in a cone

In this subsection, we aim at describing how we can take advantage of the structure of a given cone C to recover the ideal of relations of a table v by only considering table terms inside the cone. That is, we aim at guessing polynomials g ∈ K[C] such that for all x i ∈ T(C), gx i v = 0. This latter condition is the guessing part as we will only be able to ensure that gx i v = 0 for all x i in a finite subset T of T(C).

To do so, two strategies are at our disposal and they both rely on the generators of C as a submonoid of N n . Let us denote by a 1 , . . . , a ν a set of generators of C, i.e. for all i ∈ C, there exists j ∈ N ν such that i = j 1 a 1 + • • • + j ν a ν . Then, note that, first and foremost, there is no reason for ν to be less than or equal to n. Second, even if ν is minimal and a 1 , . . . , a ν is a generating set, there is no reason for ( j 1 , . . . , j ν ) to be unique.

Example 3.1. The cone C = i ∈ N 2 i 1 ≤ 2i 2 , i 2 ≤ 2i 1 is spanned by a 1 = (1, 1), a 2 = (1, 2
) and a 3 = (2, 1) so that C = j 1 a 1 + j 2 a 2 + j 3 a 3 a 1 = (1, 1), a 2 = (1, 2), a 3 = (2, 1), ( j 1 , j 2 , j 3 ) ∈ N 3 . Yet, we have the two decompositions (3, 3) = 3a 1 = a 2 + a 3 .

The first strategy is designed to only consider table terms lying in C. Assuming a generating set a 1 , . . . , a ν of C is known, the set of monomials T(C) can be defined as

T(C) = x j 1 a 1 • • • x j ν a ν ( j 1 , . . . , j ν ) ∈ N ν .
The second strategy makes use of a new set of variables y = (y 1 , . . . , y ν ), so that y 1 represents x a 1 , etc and an auxiliary table w = (w j ) j∈N ν defined by w j = v j 1 a 1 +•••+ j ν a ν . Then, two monomials y j and y k represent the same monomial x i if, and only if

, i = j 1 a 1 + • • • + j ν a ν = k 1 a 1 + • • • + k ν a ν .
This implies that both w j and w k are equal to v i . Thus, w satisfies extra relations coming from these multiple equivalent writings. They are given by binomials, namely y jy k . Hence, not all monomials in T(N ν ) are of interest and we clean them up by using the binomial ideal I(C) they span, for instance by reducing y j to y k .

In practice, both strategies are equivalent. They only differ in how they enumerate table terms v i with i ∈ C. Note, though, that the second strategy requires computing a Gröbner basis of I(C), for instance using [START_REF] Koppenhagen | An Optimal Algorithm for Constructing the Reduced Gröbner Basis of Binomial Ideals[END_REF] while the first one only requires checking that a monomial has already been generated. However, such a Gröbner basis computation should not be the bottleneck compared to the computations of the table terms or the linear algebra routines for the guessing step.

Since the first strategy comes down to directly calling the Scalar-FGLM algorithm with a set of monomials T ⊂ T(C), this yields Theorem 3.2. Theorem 3.2. Let C be a submonoid cone of N n spanned by the minimal set of generators {a 1 , . . . , a ν }. Let ≺ be a monomial ordering on T , the set of monomials in n variables, and let T ⊂ T(C) be a staircase ordered for ≺.

Then, the Scalar-FGLM algorithm called on table v, T and ≺ returns a set of polynomials G with support in T(C), such that for all s ∈ T \ lm ≺ (G) , s is in the associated staircase of a sparse Gröbner basis of the ideal of C-relations of v for ≺.

Furthermore, if the ideal of C-relations of v is 0-dimensional and has a reduced sparse Gröbner basis with support in T for ≺, then the output of the Scalar-FGLM algorithm called on v and T is this reduced sparse Gröbner basis.

Proof. As the Scalar-FGLM algorithm computes kernel vectors of H T,T , the corresponding polynomials can only have support in T(C).

Let S be the associated staircase of a sparse Gröbner basis of the ideal of C-relations of v.

Let us show first that no monomial m S is found in the staircase by the algorithm. As m ∈ lm ≺ (I), there exist α s ∈ K, for all s ∈ S such that m + s∈S α s s ∈ I, thus t m + s∈S α s s v = 0 for all t ∈ T . Since T ⊂ T , this means that the column labeled with m is linearly dependent from the previous ones and neither m nor any multiple thereof is in the staircase associated to the output. Hence, the computed staircase is included in the correct staircase.

Let us now assume that the ideal of C-relations of v is 0-dimensional, that is S is finite. We shall show by contradiction that the matrix H S ,S has full rank, so that the output of the Scalar-FGLM algorithm called on T ⊃ S is a reduced Gröbner basis whose associated staircase contains 11

S . Let us assume that H S ,S has not full rank and let m S be the smallest monomial for ≺ such that rank H S ,S ∪{m} > rank H S ,S , such a monomial exists for otherwise a monomial in S would be the leading monomial of a relation. Let R be any finite subset of S ∪ {µ|µ m}, which is also a staircase containing S ∪ {m}. By minimality of m, for ≺, rank H S ,R = rank H S ,S ∪{m} > rank H S ,S and in particular the column labeled with m must be independent from the previous ones. Thus, no polynomial with leading monomial m can be in the ideal of relations and m is in the staircase of this ideal. This is a contradiction with the assumption that m is not in S . Since S ⊆ T , the algorithm correctly computes a superset of the staircase S and thus the algorithm discovers the correct staircase.

Finally, the polynomials of the sparse Gröbner basis are found by linear algebra.

Concerning the second strategy, since I(C) is spanned by binomials, the reduced Gröbner basis G of I(C) for ≺ is made of binomials, see for instance [16, Chapter 5, Section 3, Exercise 13]. Note that while the result is only asked to be proved for the lexicographic ordering, the given hint can be used to show that the statement holds for any monomial ordering. Thus, any monomial in T(N ν ) reduces to a single monomial modulo G and we denote by T(N ν )/I(C) the set of monomials that cannot be reduced by G. Furthermore, if y j ∈ T(N ν ), then any monomial y k ∈ T(N ν ) that divides y j is in T(N ν )/I(C). Indeed, if y k were not, then it would be a leading monomial in I(C) and so would y j . Hence, one can always pick a finite staircase T ⊂ T(N ν )/I(C) and call the Scalar-FGLM algorithm with T and ≺. Then, by construction, it remains to replace the output polynomials in K[y] by the corresponding ones in K[x]. They will naturally have support in T(C).

Example 3.3 (Continuation of Example 3.1).

It is clear that 3a 1 = a 2 + a 3 generates all the other different ways to decompose an element of C, hence I(C) = y 3 1y 2 y 3 . Thus, when listing the monomials for drl(y 1 ≺ y 2 ≺ y 3 ) in T(N ν )/I(C), we will skip any multiple of y 3 1 .

Terms in a lattice

Let Λ ≥0 be the set of nonnegative terms of a sublattice of Z n , we aim at guessing the recurrence relations of a table v by following Λ ≥0 . Since a lattice is a special case of a cone, by Theorem 3.2, restricting ourselves to only considering the subtable (v i ) i∈Λ ≥0 shall make us guess the reduced sparse Gröbner basis of the ideal of relations of v in K[Λ ≥0 ].

Yet, doing so would in some way make us forget the extra structure coming with a sublattice: namely its fundamental domain, i.e. the quotient group Z n /Λ. Indeed, if a set of polynomials { f 1 , . . . , f r } is such that for all k, there exists a k ∈ Z n /Λ such that supp f k ⊂ (a k + Λ) ≥0 , then a classical reduced Gröbner basis G = {g 1 , . . . , g s } of the ideal it spans in K[x] satisfies the same property. Therefore, if we expect, or even can ensure beforehand, that the reduced Gröbner basis of the ideal of relations of v also satisfies this property, we aim at guessing this Gröbner basis by working in parallel on several smaller multi-Hankel matrices whose sizes have been divided by # (Z n /Λ).

To do so, considering an input set of monomials T ⊂ T , we shall split it up into T =

a∈Z n /Λ T a ,
with T a = T ∩ T (a + Λ) ≥0 , and then call the Scalar-FGLM algorithm on v and T a for each a. However, the table terms that appear in H T a ,T a are v i with i ∈ (2a + Λ) ≥0 . Thus, we might never consider certain table terms. To circumvent this, we always add the row and the column labeled with 1 in these matrices. This yields the Lattice Scalar-FGLM algorithm or Algorithm 2 and Theorem 3.4.

Algorithm 2: Lattice Scalar-FGLM

Input: A table v = (v i ) i∈N n with coefficients in K, a monomial ordering ≺, a staircase T ordered for ≺, a nonnegative lattice Λ ⊆ Z n , a set A ⊆ N n containing 0 such that Λ + A = Z n . Output: A truncated reduced Gröbner basis. Partition T into T = a∈A T a with T a = T ∩ T (a + Λ) ≥0 .

For all a ∈ A do

Build the matrix H {1}∪Ta,{1}∪Ta . Compute its column profile rank S a .

S ≔ a∈A S a .
For all m ∈ T \ S do // make S a staircase

If ∃s ∈ S such that m | s ∈ S then S ≔ S ∪ {m}. L ≔ T \ S sorted for ≺. G ≔ ∅. While L ∅ do g ≔ min ≺ L Find a ∈ A such that g ∈ T (a + Λ) ≥0 . Solve the linear system H S a ,S a γ + H S a ,{g} = 0. G ≔ G ∪ g + s∈S a γ s s .
Remove g and any of its multiples from L. Return G.

Theorem 3.4. Let Λ be a sublattice of Z n with fundamental domain A. Let ≺ be a monomial ordering on T and let T ⊂ T be a finite staircase ordered for ≺.

Then, the Lattice Scalar-FGLM algorithm called on table v, T and ≺ returns a truncated Gröbner basis of an ideal whose polynomials are each with support in {1} ∪ T (a + Λ) ≥0 , with a ∈ A.

Furthermore, let G be a reduced Gröbner basis for ≺ satisfying this support property. Let S be the associated staircase and v be a generic C-finite table whose ideal of relations is spanned by G. Let T be a staircase containing S and the leading monomials of all the polynomials in G.

Then, there exists a non empty Zariski open set of values for the table terms [s]

v of v, with s ∈ S, such that the Lattice Scalar-FGLM algorithm called on v, ≺, T and A correctly guesses G.

Proof. This proof follows mostly the same steps as that of Theorem 3.2.

As the algorithm computes kernel vectors of matrices H {1}∪Ta,{1}∪Ta , the corresponding polynomials can only have support in {1} ∪ T (a + Λ) ≥0 .

Let S be the associated staircase of a reduced Gröbner basis of the ideal of C-relations of v. For each a ∈ A, we let S a = S ∩ T (a + Λ) ≥0 .

Let us show first that no monomial m S is found in the staircase by the algorithm. As m ∈ lm ≺ (I), there exist g = lm ≺ (g) + α s ∈S a α s s ∈ I such that lm ≺ (g) ∈ T (a + Λ) ≥0 and lm ≺ (g)|m. Thus, m lm ≺ (g) g ∈ I and for all t ∈ T , t m lm ≺ (g) g v = 0. In particular, this is true for all t ∈ T b , with m ∈ T b , so that the column labeled with m is linearly dependent from the previous ones in H {1}∪Tb,{1}∪Tb . Hence, neither m nor any of its multiples is in the staircase associated to the output. That is, the computed staircase is included in the correct staircase.

It remains to prove the last statement. Let v be a sequence whose ideal of relations I is spanned by G. First, from the proof of the Scalar-FGLM algorithm, we know that the matrix H S,S has full rank. For any a ∈ A, we let S a = {1} ∪ (S ∩ T((a + Λ) ≥0 )). If H S a ,S a has full rank, then for m ∈ lm ≺ (G) ∩ T((a + Λ) ≥0 ), this matrix allows us to determine the polynomial in G with leading monomial m. Thus, the algorithm correctly returns G.

For each a ∈ A, we know that the matrix H S a ,S has full rank. Now, to recover a relation with support in T(a + Λ) ≥0 , generically, it suffices to consider sufficiently many shifts of this relations. And in particular, we can take the shifts induced by monomials in S a , meaning that the matrix H S a ,S a generically has full rank. Remark 3.5. Adding a row labeled with 1 in the matrices is necessary to prevent computations of incorrect relations when one of them is divisible by a non trivial monomial. Let us consider a unidimensional table v satisfying the relation x 4 ax 2 with a ∈ K and let Λ = 2Z and T = 1, x, x 2 , x 3 , x 4 , so that T 0 = 1, x 2 , x 4 and T 1 = x, x 3 . We thus build the matrices

H T 0 ,T 0 =              1 x 2 x 4 1 [1] v x 2 v x 4 v x 2 x 2 v x 4 v x 6 v x 4 x 4 v x 6 v x 8 v              =           1 x 2 x 4 1 v 0 v 2 av 2 x 2 v 2 av 2 a 2 v 2 x 4 av 2 a 2 v 2 a 3 v 2           , H T 1 ,T 1 =        x x 3 x x 2 v x 4 v x 3 x 4 v x 6 v        = x x 3 x v 2 av 2 x 3 av 2 a 2 v 2 .
By hypothesis, clearly the column labeled with x 4 is linearly dependent from the ones with label 1 and x 2 . However, since x 4ax 2 v = x 6ax 4 v = 0, the column labeled with x 3 is linearly dependent from the column labeled with x in the second matrix. Therefore, these matrices do not allow us to recover that x 3 is in the staircase of the ideal of relations of the input table.

Yet, the matrix

H {1}∪T 1 ,{1}∪T 1 =              1 x x 3 1 [1] v [x] v x 3 v x [x] v x 2 v x 4 v x 3 x 3 v x 4 v x 6 v              =           1 x x 3 1 v 0 v 1 v 3 x v 1 v 2 0 x 3 v 3 0 0          
has its column labeled with x 3 independent from the previous two if, and only if, v 3 0, allowing us to detect that x 3 is in the staircase.

Example 3.6. Consider the table v = 2 i ( j + 1 mod 3) (i, j)∈N 2 defined over Q. Using, for instance, the Berlekamp-Massey-Sakata or the Scalar-FGLM algorithms, we can easily show that its ideal of relations is y 3 -1, x -2 . Let us consider the lattice Λ = (0, 3)Z + (1, 0)Z, so that A = {(0, 0), (0, 1), (0, 2)} and T = 1, y, y 2 , y 3 , y 4 , y 5 , x .

Then, Algorithm 2 builds the matrices

H T 0 ,T 0 =           1 y 3 x 1 1 1 2 y 3 1 1 2 x 2 2 4           , H T 1 ,T 1 =           1 y y 4 1 1 2 2 y 2 0 0 y 4 2 0 0           , H T 2 ,T 2 =           1 y 2 y 5 1 1 0 0 y 2 0 2 2 y 5 0 2 2           .
So that S 0 = {1}, S 1 = {1, y} and S 2 = 1, y 2 . Hence S = 1, y, y 2 , L = y 3 , y 4 , y 5 , x . This yields the linear systems H S 0 ,S 0 γ + H S 0 ,{y 3 } = 0 and H S 0 ,S 0 γ + H S 0 ,{x} = 0 allowing us to recover y 3 -1 and x -2. Notice that w = 2 i ( j mod 3) (i, j)∈N 2 has the same ideal of relations. Yet, the algorithm will build the matrices

H T 0 ,T 0 =           1 y 3 x 1 0 0 0 y 3 0 0 0 x 0 0 0           , H T 1 ,T 1 =           1 y y 4 1 0 1 1 y 1 2 2 y 4 1 2 2           , H T 2 ,T 2 =           1 y 2 y 5 1 0 2 2 y 2 2 1 1 y 5 2 1 1          
, so that S 0 = ∅, S 1 = {1, y}, S 2 = 1, y 2 and S = 1, y, y 2 . Since the linear systems H S 0 ,S 0 γ + H S 0 ,{x 3 } = 0 and H S 0 ,S 0 γ + H S 0 ,{y} = 0 are empty, they do not allow us to recover x 3 -1 and y -2.

Indeed, ∅ = S 0 S ∩ T(Λ ≥0 ) = {0}.
Yet, for the table

w ′ = (1 + λy)x i y j v
, the algorithm builds the matrices

H T 0 ,T 0 =           1 y 3 x 1 λ λ 2λ y 3 λ λ 2λ x 2λ 2λ 4λ           , H T 1 ,T =           1 y y 4 1 λ 1 + 2λ 1 + 2λ y 1 + 2λ 2 2 y 4 1 + 2λ 2 2           , H T 2 ,T 2 =           1 y 2 y 5 1 λ 2 2 y 2 2 1 + 2λ 1 + 2λ y 5 2 1 + 2λ 1 + 2λ           .
It is clear that S 0 = {1}, provided λ 0, S 1 = {1, y}, provided 4λ 2 + 2λ + 1 0, and S 2 = 1, y 2 , provided 2λ 2 + λ -4 0. All in all, the algorithm succeeds for w ′ as long as λ does not satisfy λ(4λ 2 + 2λ + 1)(2λ 2 + λ -4) = 0.

Remark 3.7. While we assume that Λ is a sublattice of Z n , hence of rank n, it can actually be any Z-submodule of smaller rank ν. However, this means we can only guess an ideal of relations in ν variables so that it may not be the whole ideal of relations. Nevertheless, this kind of restriction can be of interest in the P-finite application where the kernel equation makes us study the P-finite nature of a subsequence where some indices are set.

Application to Gröbner basis change of orderings with the action of a matrix group

In [START_REF] Faugère | Sparse FGLM algorithms[END_REF], the authors propose a variant of the FGLM algorithm [START_REF] Faugère | Efficient Computation of Zerodimensional Gröbner Bases by Change of Ordering[END_REF], the so-called Sparse-FGLM algorithm, relying on guessing C-relations. More precisely, from the input Gröbner basis G, they build a random table v whose ideal of relations is G . To do so, first, for each monomial s in the staircase associated to G, they pick at random the table term [s] v , then they compute the other table terms using the C-relations induced by G. Finally, applying an algorithm for guessing C-relations on this table and the second input ordering, they obtain the Gröbner basis of the ideal of relations of this table for this second ordering. If the first Gröbner basis spans a Gorenstein ideal [START_REF] Brachat | Symmetric tensor decomposition[END_REF][START_REF] Elkadi | Introduction à la résolution des systèmes polynomiaux[END_REF], then with high probability, the output Gröbner basis is a Gröbner basis of the same ideal and thus the target one.

In particular, assuming generic properties, detailed below, on the polynomials that span the ideal we want to compute a Gröbner basis of, this algorithm comes down to computing products of a sparse matrix and some vectors and solving Hankel systems.

The goal of this section is to extend this approach to abelian group actions on the ideal. In particular, we will restrict ourselves to finite abelian matrix group actions, that is finite abelian subgroups of GL(n) where A ∈ GL(n) acts on f (x) ∈ K[x] by sending it to f (Ax).

Finite matrix group actions

We start by recalling some results on finite matrix group actions on ideals of K

[x].
Let G be a finite abelian matrix group. By the invariant factors theorem, there exist

q 1 | • • • | q ℓ such that G ≃ Z/q 1 Z × • • • × Z/q ℓ Z
and in particular, for any g ∈ G, g q ℓ = 1 and q ℓ is minimal for this property.

Furthermore if |G| = q 1 • • • q ℓ is not divisible by the characteristic of the coefficient field K, then there exists a primitive q ℓ th root of unity ζ such that the matrices in G are simultaneously diagonalizable powers of ζ on the diagonals, see [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF]Theorem 2]. After this diagonalization process, which comes down to a linear change of variables, for each matrix in G, there exist natural numbers 0 ≤ ε 1 , . . . , ε n ≤ q ℓ -1 such that x i is sent onto ζ ε i x i by this matrix.

Definition 3.8 ([25, Definition 3]). Let G ≃ Z/q 1 Z × • • • × Z/q ℓ Z, with q 1 | • • • | q ℓ ,
be a diagonal subgroup of GL(n) and ζ be a q ℓ th root of unity, then there exist matrices D 1 , . . . , D n spanning G such that each D i has order q i .

For each monomial m ∈ T , there exist (µ 1 , . . . , µ ℓ ) ∈ Z/q 1 Z × • • • × Z/q ℓ Z such that for all i, m is sent onto ζ µ i q ℓ /q i m by D i . Then, m is said to have G-degree (µ 1 , . . . , µ ℓ ).

Furthermore, a polynomial is G-homogeneous if all its monomials have same G-degree.

From this, one can prove that the G-degree of the product of two monomials is the sum of their G-degrees. Since the G-degree of the monomial 1 is (0, . . . , 0), the subset of monomials of G-degree (0, . . . , 0) is a sublattice T(Λ ≥0 ) of T . A consequence of this is that if f 1 , . . . , f s are G-homogeneous polynomials, then a reduced Gröbner basis of f 1 , . . . , f s is made of Ghomogeneous polynomials as well and f 1 , . . . , f s is stable by the action of G, see [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF]Theorem 4].

Gröbner bases change of orderings

From the reduced drl Gröbner basis G of such an ideal, it then makes sense to apply the Sparse-FGLM algorithm in order to obtain the reduced lex Gröbner basis. Since we already know that the support of each polynomial in the target Gröbner basis lies on a lattice, or an affine translate thereof, we can use Algorithm 2 to guess the relations on the table that is built by the algorithm. Furthermore, since the table is built with its first table terms picked at random, no fake relations, like in Example 3.6, should be guessed. Proposition 3.9. Let G be an abelian group as in Definition 3.8.

Let f 1 , . . . , f s be generic polynomials of degree d 1 , . . . , d s such that I = f 1 , . . . , f s is zerodimensional stable by the action of G.

Let ≺ and < be a monomial orders and let G and H be the reduced Gröbner basis of I for ≺ and <respectively.

Then, the guessing step of H when calling the Sparse-FGLM algorithm on G, ≺ and < can be sped up using the Lattice Scalar-FGLM algorithm by a factor O(|G| ω-1 ) instead of the Scalar-FGLM algorithm. G-degree as x D n and x δ i n has same G-degree as x i for 1 ≤ i ≤ n -1. Therefore, for 1 ≤ i ≤ n, supp g i = x δ i n , x δ i +d n , . . . , x

δ i + D-1-δ i d d n .
Thus, the polynomial g n can be computed by solving the following Hankel system

                      x δn n x δn +d n ••• x D-d n x δn n x 2δ n n v x 2δ n +d n v • • • x D-d+δ n n v x δn +d n x 2δ n +d n v x 2δ n +2d n v • • • x D-d+δ n n v . . . . . . . . . . . . x δn + ⌊ D-1-δn d ⌋ d n =x D-d n x D-d n v x D-d+δ n n v • • • x 2D-2d n v                       γ +                      x D n x δn n x D+δ n n v x δn +d n x D+δ n +d n v . . . . . . x D-d n x 2D-d n v                      = 0.
Denoting M n the matrix of the multiplication by

x n in K[x]/I, 1 =        1 0 . . . 0      
 and r a vector picked at random, the table terms x i n v are defined as r T M i n 1. This is done by computing

v 0 = r T , v 1 = v 0 M n , v 2 = v 1 M n , .
. . and then extracting the first coordinate of each vector to simulate the multiplication by 1.

Since we do not need all the terms but only v 2δ n , v 2δ n +d , v 2δ n +2d , . . ., we first compute v 2δ n and M d n in order to perform big steps. Let us notice that, following [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF], by Property M, the columns of matrix M n are of two types. If a monomial m in the staircase is such that mx n is still in the staircase, then the column corresponding to m is trivial, it is a vector of the canonical basis. Otherwise, m is the leading monomial of a polynomial g in the reduced Gröbner basis and the column corresponding to m is the coefficient vector of its normal form, namely mg. Usually, these latter vectors are denser than the former. Then, M d n has the same shape as M n , it has trivial and non-trivial columns. Furthermore, if M n has k non-trivial columns, then M d n has at most max(D, kd) non-trivial columns. From [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF] and the genericity assumption on I, we know we can split M n in |G| 2 matrices of size at most ⌈D/|G|⌉. Furthermore, its non-trivial columns are evenly split in the small matrices, i.e. the number of non-trivial columns of each small matrix is at most ⌈k/|G|⌉. Then, we can multiply all these small matrices accordingly to obtain the splitting of M d n . Now, polynomials g 1 , . . . , g n-1 can be computed by solving a similar Hankel system: 

                                    x δ i n x δ i +d n ••• x δ i + D-1-δ i d d n x δn n x δ i +δ n n v x δ i +δ n +d n v • • • x δ i +δ n + D-1-δ i d d n v x δn +d n x δ i +δ n +d n v x δ i +δ n +2d n v • • • x δ i +δ n + D-1-δ i d +1 d n v . . . . . . . . . . . . x D-d n x δ i +D-d n v x δ i +δ n +D-d n v • • • x δ i +δ n + D-1-δ i d -1 d+D n v                                     γ +                      x i x δn n x i x δ n n v x δn +d n x i x δ n +d n v . . .       x δn -δ i n x i x δn n x i x 2δ n -δ i n v x δn +d n x i x 2δ n +d-δ i n v . . . . . . x D-d n x i x D-d+δ n -δ i n v                      . Proposition 3 
≺ • • • ≺ x 1 ) Gröbner basis, G, of I from its drl(x n ≺ • • • ≺ x 1 ) Gröbner basis using # (S ∩ T(Λ ≥0 )) + (S ∩ T(Λ ≥0 )) ∪ lm ≺ (G) table terms and O nkD 2 |G| operations.
Proof. Since the ideal I satisfies Property S, the staircase S associated to its lex(

x n ≺ • • • ≺ x 1 ) Gröbner basis is 1, x n , . . . , x D-1 n . Therefore, by definition of d, S ∩T(Λ ≥0 ) = 1, x d n , . . . , x ⌊ D-1 d ⌋d n
. Thus, the matrix rows labels are in bijection with a subset of S ∩ T(Λ ≥0 ) while the matrix column labels and the column-vector label are in bijection with a subset of (S ∩ T(Λ ≥0 )) ∪ lm ≺ (G). This show that only # (S ∩ T(Λ ≥0 )) For the constant vectors of the Hankel systems, we need to extract the coefficients corresponding to x i of vectors v 2δ n -δ i + jd for each i and each j. First, let us notice that each vector v 2δ n -δ i has been computed in order to obtain v 2δ n . Then, the others are computed by successive multiplications by M d n , as for the vectors v 2δ n + jd . Thus, they can be obtained in O(nkD 2 /|G|) operations.

+ (S ∩ T(Λ ≥0 )) ∪ lm ≺ (G)
Finally, these linear systems are Hankel of size O(D/d) sharing the same matrix and thus can be solved in O M D d n + log D d operations, see [START_REF] Brent | Fast solution of Toeplitz systems of equations and computation of Padé approximants[END_REF]. This step is therefore not the bottleneck of the algorithm.

Adaptive approach

The Adaptive Scalar-FGLM algorithm

A drawback of the Scalar-FGLM algorithm is that, in order to return the correct Gröbner basis, it needs to be called with a staircase T that contains both the support of the Gröbner basis and its associated staircase. Without the help of an oracle, which we have in a multi-modular setting for instance, it is not an easy task to find such a T . Thus, an adaptive variant was designed by the authors in [START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF][START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF] in order to discover the associated staircase and the Gröbner basis step by step. As a byproduct, it also minimizes the number of table queries.

Given a table v and a monomial ordering ≺, the Adaptive Scalar-FGLM starts with the empty set S = ∅. At each step, S is a staircase and a subset of the correct one. Then, for a monomial x i such that S ∪ x i is also a staircase, if H S ∪{x i },S ∪{x i } has a greater rank than H S ,S , then S is replaced by S ∪ x i . Otherwise we have found a relation with leading monomial x i and we shall never try any multiple of x i as a new term in S .

In the cone setting, as in Section 3.1, the two strategies can be used. If we build an auxiliary table w ∈ K N ν , then the Adaptive Scalar-FGLM algorithm can directly be called on w provided we only try to add monomials y j that are in ν )/I(C). If we rather call it on the original table v ∈ K N n , then we modify the algorithm so that only monomials in T(C) are used. Furthermore, once a relation with leading monomial x i is found, we shall never try any multiple x i+ j in the cone, i.e. with x j ∈ T(C).

Example 4.1. Consider the linear King walk v = v i 0 ,i 1 (i 0 ,i 1 )∈N 2 counting the number of ways to reach i 1 in i 0 steps of size 1 starting from 0 in the nonnegative ray. It is clear that v i 0 ,i 1 = 0 whenever either i 1 > i 0 or i 0 + i 1 = 1 mod 2, so that we shall only consider the cone C = (i 0 , i 1 ) ∈ N 2 i 0 + i 1 = 0 mod 2, i 1 ≤ i 0 = (1, 1)N + (0, 2)N.

Assume we consider the lex(x 1 ≺ x 0 ) ordering, so that T(C) = 1, x 0 x 1 , x 2 0 , x 2 0 x 2 1 , x 4 0 , . . . . 1 which has full rank.

We build the matrix

2. We increase the matrix by adding monomials in T(C) so we build

1 x 0 x 1 1
1 1

x 0 x 1 1 1 which does not have full rank, so we have found the fake relation x 0 x 1 -1.

3. We increase the matrix to 

         
which has full rank.

And so on.

In the lattice setting however, we need to be more careful. We shall make one matrix per element in Z n /Λ and each time we must add an extra column and an extra row, they will be added to the matrix corresponding to the monomial labeling the extra column. If there is no rank increase, then as usual a relation is found and no multiple of this monomial will ever label any new column in any matrix. This yields Algorithm 3 and Theorem 4.2.

Z/pZ. The Sparse-FGLM algorithm [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF] has been implemented in C, as part of the msolve library [START_REF] Berthomieu | msolve: A library for solving polynomial systems[END_REF][START_REF] Berthomieu | msolve: A library for solving polynomial systems[END_REF], it generates a scalar table first and then guesses its C-relation with the Berlekamp-Massey algorithm. Notice that the table generation is the bottleneck of the method, but it is also the part that benefit the most from the occurred speedup. In the column Sparse-FGLM, we use the whole multiplication matrix, while in the column lattice Sparse-FGLM, we use the n nonzero blocks of the multiplication matrix to perform the computations and taking advantage of the action of Z/nZ. We also compare with Maple 2019 where we use Groebner:-FGLM to compute a Gröbner basis for an ordering eliminating all the variables but the last one. As expected by Proposition 3.10, using the splitting of the multiplication matrix allows us to divide the computation time by n. 

[ 5 ,

 5 Definition 2 and Proposition 4].

Definition 2 . 6 (

 26 [START_REF] Faugère | Sparse Gröbner bases: The unmixed case[END_REF] Definition 3.1] and[START_REF] Bender | Towards Mixed Gröbner Basis Algorithms: The Multihomogeneous and Sparse Case[END_REF] Definition 3.3]). Let C ⊆ N n be a cone and T(C) be its associated set of monomials. Then, K[C], the set of polynomials with support in T(C), is an algebra.

  ordering ≺, a sufficiently large staircase T and ordered for ≺. Output: A reduced Gröbner basis of the ideal of C-relations of v. Build the matrix H T,T . Compute the set S ⊆ T of smallest monomials, for ≺, such that rank H S ,S = rank H T,T . For all m ∈ T \ S do // stabilize S for the division If ∃s ∈ S such that m | s then S ≔ S ∪ {m}.L ≔ T \ S sorted for ≺. G ≔ ∅. While L ∅ do g ≔ min ≺ L Solve the linear system H S ,S γ + H S ,{g} = 0. G ≔ G ∪ g + s∈S γ s s .Remove g and any of its multiples from L. Return G.

  .10. Let I ⊂ K[x] be a zero-dimensional ideal of degree D, invariant under the action of a finite diagonal matrix group G. Let us assume that I satisfies both properties S and M and that the matrix M n has k non-trivial columns. Let furthermore S be the staircase associated to the lex(x

n ≺ • • • ≺ x 1 ) Gröbner basis of I, T(Λ ≥0 ) be the set of monomials of G-degree 0 and for A, B ⊆ T , A + B = {ab|a ∈ A, b ∈ B} be the Minkowski sum of A and B.

Then, we can recover the lex(x n

  table terms are required. Since I also satisfies Property M, M n has k non-trivial columns and Dk columns that are vectors of the canonical basis. Furthermore, these non-trivial columns correspond to Ghomogeneous polynomials, so each of them has at most O(D/|G|) nonzero coefficients. Thus, M n has O(kD/|G|) nonzero coefficients. Now, computing v 2δ n requires 2δ n multiplications between M n and a vector. Hence v 2δ n can be computed in O (δ n kD/|G|) operations. It remains to compute v 2δ n + jd = r T M

	2δ+ jd n	for all j up to (2D -d -2δ n )/d by successive multi-
	plications by M d n . While M d n has max(D, kd) non-trivial columns, these non-trivial columns still represent G-homogeneous polynomials, thus M d n has O(kdD/|G|) nonzero coefficients. Hence, all these vectors can be computed in O(kD 2 /|G|) operations.

Table 2 :

 2 TypeDegree Sparse-FGLM lattice Sparse-FGLM lattice speedup Maple Seq. gen. Guess. Seq. gen. Guess. Seq. gen. Guess. FGLM application with the action of Z/nZ (in µs).

	Cyclic-6	156	1 470	10	200	2.3	7.35 4.35 120 000
	Cyclic-7	924 64 000	56	5 200	8.3	12.3 6.75	13 s
	Random-3	294	3 100	18	1 100	6.8	2.82 2.65 510 000
	Random-3 bis 3090 470 000	170 83 000	63	5.66 2.70	-
	Random-4	896 69 000	53	8 600	14	8.02 3.79 2 000 s
	Random-5	2000 386 000	110 35 000	24	11.0 4.58	49 s
	Random-6	1656 330 000	91 26 000	17	12.7 5.35 1 200 s
	Random-10 4160	13 s	250 37 000	26	351 9.62	-

Acknowledgments

We thank the anonymous referees for their careful reading and their helpful comments to improve this paper. The authors are supported by the joint ANR-FWF ANR-19-CE48-0015 ECARP project, the ANR grants ANR-18-CE33-0011 Sesame and ANR-19-CE40-0018 De Rerum Natura projects, the PGMO grant CAMiSAdo, grant FA8665-20-1-7029 of the EOARD-AFOSR and and the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement N. 813211 (POEMA).

Proof. From [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF] and the genericity assumption on I, the polynomials in H are evenly split between all the G-degrees. Furthermore, so are the monomials in the Staircase(H). Now, to recover H, one needs to call the Scalar-FGLM and Lattice Scalar-FGLM algorithms on a staircase T that contains S and lm ≺ (H). Then, the Scalar-FGLM algorithm computes the right-kernel of H T,T in at most O(#T ω ) operations. Now, the Lattice Scalar-FGLM will build |G| submatrices of H T,T of size roughly #T/|G| and compute the right-kernel of each. Thus it can be done in O(#T ω /|G| ω-1 ).

We shall say that a zero-dimensional ideal I ⊂ K[x] has Property S, if its reduced Gröbner basis for lex(x n ≺ • • • ≺ x 1 ) is in shape position. That is, there exist g 1 , . . . , g n ∈ K[x n ] of degree at most D -1 such that this reduced Gröbner basis is x D n + g n (x n ), x n-1 + g n-1 (x n ), . . . ,

Property M, if its reduced Gröbner basis for drl(x n ≺ • • • ≺ x 1 ) satisfies the following condition. For every monomial m in the staircase associated to this Gröbner basis, either mx n is in the staircase or it is the leading monomial of some polynomial in this Gröbner basis.

Let us recall that if I is spanned by generic polynomials f 1 , . . . , f n ∈ K[x] of degree d 1 , . . . , d n and K is sufficiently large or infinite, then both Properties S and M are satisfied. See for instance [START_REF] Faugère | Sparse FGLM algorithms[END_REF]Proposition 5.3], where x 1 is chosen as the smallest variable, for the latter. For the former, this is a direct consequence of I being radical with solutions not sharing the same last coordinate. Thus, the Shape lemma applies without requiring any change of variables, see [START_REF] Gianni | Algebraic solution of systems of polynomial equations using Groebner bases[END_REF]Lemma 1.4]. Under these assumptions, several algorithms can be used to compute the reduced lex Gröbner basis of an ideal of degree D from the reduced drl one. The seminal one, FGLM [START_REF] Faugère | Efficient Computation of Zerodimensional Gröbner Bases by Change of Ordering[END_REF] with a complexity O(nD 3 ), the Sparse-FGLM one [START_REF] Faugère | Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF] with a complexity Õ(kD 2 + nD), where k is the number of polynomials in the reduced drl Gröbner basis whose leading monomial is divisible by x n , a faster variant [START_REF] Faugère | Sub-cubic change of ordering for Gröbner basis: A probabilistic approach[END_REF] of the FGLM algorithm using Keller-Gehrig algorithm [START_REF] Keller-Gehrig | Fast algorithms for the characteristics polynomial[END_REF] or SyzygyModuleBasis [START_REF] Neiger | Computing syzygies in finite dimension using fast linear algebra[END_REF]Algorithm 3] both with a complexity Õ(nD ω ).

Whenever an ideal is stabilized by the action of such a finite abelian matrix group, the goal is to take advantage of this to speed the change of orderings algorithm up. In [START_REF] Faugère | Gröbner bases of ideals invariant under a commutative group: the nonmodular case[END_REF]Theorem 10], the authors show the complexity of the FGLM algorithm drops to O(D 3 /|G| 2 ), mainly because they deal with |G| matrices of sizes roughly D/|G| instead of one larger matrix of size D. These matrices correspond to those of monomials of each G-degree. It would be interesting to study if, using the same trick, one could make the complexities of the faster variant of the FGLM algorithm or of the SyzygyModuleBasis algorithm drop to Õ(nD ω /|G| 2 ) or even Õ(nD ω /|G| ω-1 ).

Let us notice that in this situation, the Sparse-FGLM algorithm only relies on 1-dimensional algorithms like the Berlekamp-Massey one as the best strategy. We now focus on the complexity improvements one can reach in this setting when the ideal spanned by G and H is stable under the action of a G as in Definition 3.8.

We now focus on the Sparse-FGLM algorithm and we assume that a reduced G-homogeneous Gröbner basis for drl(x n ≺ • • • ≺ x 1 ), spanning an ideal satisfying Property M, is given and the goal is to recover the reduced Gröbner basis for lex(x n ≺ • • • ≺ x 1 ) satisfying Property S. By G-homogeneity, the support of each polynomial in the target Gröbner basis, namely {x D n + g n (x n ), x n-1 + g n-1 (x n ), . . . , x 1 + g 1 (x n )}, is already known. It is given by the G-degree of its leading monomial, namely x D n , x n-1 , . . . , x 1 . Since G is finite, there exists d > 0 minimal such that x d n has G-degree (0, . . . , 0) and there exists δ n , . . . , δ 1 ≥ 0, all minimal, such that x δ n n has same Algorithm 3: Lattice Adaptive Scalar-FGLM

x n m} Sort L by increasing order wrt. ≺ and remove duplicates and multiples of lm ≺ (G). Else

Theorem 4.2. Let Λ be a sublattice of Z n with fundamental domain A. Let ≺ be a monomial ordering on T . Let us assume that the Lattice Adaptive Scalar-FGLM algorithm called on table v, ≺, Λ and A ⊆ N n returns a non-empty set of polynomials G.

Let us denote by S the associated staircase to G and S a = S ∩ T (a + Λ) ≥0 for each a ∈ A.

Then, for any polynomial g ∈ G with lm ≺ (g) ∈ T (a + Λ) ≥0 and any s ∈ S a with s ≺ lm ≺ (g), we have gs v = 0.

Furthermore, let G be a Gröbner basis for ≺ spanning a 0-dimensional ideal such that for all g ∈ G, there exists a ∈ A such that supp g ⊂ T (a + Λ) ≥0 . Let S be the associated staircase and v be a generic C-finite table whose ideal of relations is spanned by G. Then, there exists a non empty Zariski open set of values for the table terms [s] v of v, with s ∈ S, such that the Lattice Adaptive Scalar-FGLM algorithm called on v, ≺ and A correctly guesses G.

Proof. In the while loop, either monomial m is added to the staircase S a or it is the leading monomial of a polynomial g that is added to G.

In the latter case, only monomials less than m can have been added to S a . Thus, the current set S a is actually the final set S a with only elements less than m, i.e. S a ∩ {t ≺ m}. Now, H S a ∩{t≺m},S a ∩{t≺m} γ + H S a ∩{t≺m},{m} = 0 is equivalent to gs v = 0 for any s a row index, that is s ∈ S a with s ≺ m.

Let us prove the second assertion. For any a ∈ A, let S a = S ∩ T (a + Λ) ≥0 . A necessary and sufficient condition for the Lattice Adaptive Scalar-FGLM algorithm to correctly guess G is that for each a, S a ⊆ S a , which means that S a = {1} ∪ S a . This can only happen if, for each a and each monomial m ∈ S a , the rank condition in the if statement is fulfilled. Following the proof of Theorem 3.4, we can build a sequence w from v whose ideal of relations is also spanned by G but whose such that the rank conditions in the if statement is satisfied for all monomial m ∈ S. and its associated lattice Λ = (0, 3)Z+(1, 0)Z, so that A = {(0, 0), (0, 1), (0, 2)}. We also consider the lex(y ≺ x) ordering.

1. We build three matrices

1 which have full rank.

2. We increase the second matrix to

which has full rank.

3.

We increase the third matrix to

which has full rank.

4.

We increase the first matrix to

which does not have full rank so that we have found that y 3 -1 is in the ideal of relations.

5.

We increase the first matrix to

which does not have full rank so that we have found that x -2 is in the ideal of relations. 6. We return y 3 -1, x -2 .

Mixed approach for guessing P-relations

In [START_REF] Berthomieu | Guessing Linear Recurrence Relations of Sequence Tuples and P-recursive Sequences with Linear Algebra[END_REF], the authors proposed a mixed approach for guessing P-relations based on a Gröbner basis computations for reducing the number of table queries. The idea is that if two polynomials g 1 , g 2 ∈ K[t] x are P-relations satisfied by the table, then any polynomial in g 1 , g 2 is also a P-relation. Therefore, as soon as two P-relations g 1 and g 2 are guessed, the goal is to compute a Gröbner basis {g 1 , g 2 , . . . , g r } of g 1 , g 2 . This will yield polynomials, namely g 3 , . . . , g r , whose leading monomials are not in lm ≺ (g 1 ), lm ≺ (g 2 ) . The advantage of this method is twofold. First, since lm ≺ (g 3 ), . . . , lm ≺ (g r ) ≻ lm ≺ (g 1 ), lm ≺ (g 2 ), they require more queries to the table to be correctly guessed. Yet, such a Gröbner basis computation does not require any more queries. Then, these P-relations may help us determine that the ideal of P-relations is 0-dimensional in K(t) x . This is a necessary condition for the table to be P-finite.

The aim of this section is to extend this approach for guessing P-relations of a table when only considering terms in a cone or when the ideal of relations is stable by the action of a subgroup of GL(n). Lemma 4.5. Let T(C) be a cone of monomials in x 1 , . . . , x n , as before. Let us assume that

In particular, we can compute a sparse Gröbner basis of f 1 , f 2 with monomials all in T(N n ) × T(C) using Buchberger's algorithm or Faugère's F 4 algorithm, restricted to only multiplying the polynomials by monomials in T(N n ) × T(C).

Proof. We need to prove that if supp f and supp a are in T(N n ) × T(C), then so is supp f a. By linearity, this comes down to proving that if two monomials t ℓ x j and t k x i are in T(N n ) × T(C), then so is the support of their product. Since This lemma shows that the definition of sparse Gröbner bases and the algorithmic techniques to compute them in [START_REF] Faugère | Sparse Gröbner bases: The unmixed case[END_REF] can be extended to skew-polynomial rings K[t] x with commutation rules t p x p = x p (t p + 1).

Using the definitions and notation of Section 3.3.1, we have the following lemma.

Lemma 4.6. Let G be a finite group of diagonal matrices acting on t 1 , . . . , t n , x 1 , . . . , x n , then G leaves t 1 , . . . , t n , each, invariant.

x are both G-homogeneous polynomials, then their S-polynomial is also G-homogeneous. Thus, so are all the elements of a reduced Gröbner basis of f 1 , f 2 .

Proof. There exists a root of unity ζ such that for each matrix in G, there exist integers τ 1 , . . . , τ n , ε 1 , . . . , ε n such that for all 1 ≤ p ≤ n, x p is sent onto ζ ε p x p and t p onto ζ τ p t p . Therefore, t p x px p t p = x p is sent on both ζ τ p t p ζ ε p x pζ ε p x p ζ τ p t p = ζ τ p +ε p t p x px p t p = ζ τ p +ε p x p and ζ ε p x p . Thus, ζ τ p = 1 and G lets t p invariant. By Definition 3.8, this means that the G-degree of t p is 0 so that the t k x i and x i have same G-degree.

The S-polynomial of f 1 and f 2 is

, where lc ≺ ( f ) stands for leading coefficient of f , i.e. the coefficient of lm ≺ ( f ). Since both terms of the sum have the same leading monomial, it remains to show that multiplying a polynomial by a monomial preserves the G-homogeneity. Since t ℓ x j t k x i = t ℓ (tj) k x j+i , it is a G-homogeneous polynomial of same G-degree as x j+i . Now, the G-degree of x j+i is the sum of the G-degrees of x j and x i and thus of t ℓ x j and t k x i . From Lemmas 4.5 and 4.6, we can compute a Gröbner basis or a sparse Gröbner basis of the ideal spanned by skew-polynomials associated to P-relations in K[t] x , with commutation rules t p x p = x p (t p + 1), to guess new P-relations in the cone and lattice settings.

Corollary 4.7. Let G be a finite diagonal matrix group acting on variables t and x.

x be an ideal spanned by G-homogeneous polynomials. Then, one can compute a Gröbner basis of I by using a quasi-commutative variant of the F 4 algorithm [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF] building |G| Macaulay matrices for each G-degree.

Experiments

In this section, we report on our implementations of the different algorithms of this paper. We start with the Scalar-FGLM algorithm on a cone, as in Subsection 3.1, in particular for guessing P-relations of tables in Maple 2019. This is an extension of Algorithm 1, see [START_REF] Berthomieu | Guessing Linear Recurrence Relations of Sequence Tuples and P-recursive Sequences with Linear Algebra[END_REF]. We investigate Gessel planar walk g in the nonnegative quadrant N 2 with steps in {(1, 0), (1, 1), (-1, 0), (-1, -1)} and the 3D-space Walk-43 w of [START_REF] Bostan | On 3-dimensional lattice walks confined to the positive octant[END_REF] in the nonnegative octant N 3 with steps in {(-1, -1, -1), (-1, -1, 1), (-1, 1, 0), (1, 0, 0)}. In particular, we restrict ourselves to a subsequence of each where one index is 0. These walks come naturally with a cone structure: for instance whenever n 2n ′ + 2 j, then g n,0, j = 0. Likewise, whenever n 8n ′ + 2 j + 4k, then w n,0, j,k = 0. Thus, it makes sense to look for the relations given by the table terms g 2n ′ +2 j,0, j and w 8n ′ +2 j+4k,0, j,k .

In Table 1, we report on the number of computed relations and the number of relations that do not fail after further testing.

1. The column Full Orthant means that we consider all the table terms g n,0, j and w n,0, j,k . 2. The column Half Orthant means that we consider all the table terms g 2n ′ ,0, j and w 2n ′ ,0, j,k . 3. The column Cone means that we consider all the table terms g 2n ′ +2 j,0, j and terms w 8n ′ +2 j+4k , corresponding to the potential nonzero terms.

We tested two kinds of matrices: matrices that are almost square, with just a little bit more rows than columns, and matrices that have many more rows than columns.

We can notice, as expected in both cases, that by considering only terms on the nonzero cone we guess many fewer false positive P-relations. This happens despite our matrices having fewer rows in the cone setting than in the full orthant setting, i.e. a priori the relations have fewer constraints. This means that amongst these constraints more are linearly independent and that in general the number of linearly dependent rows is responsible for the matrix rank decrease. As a byproduct, this reduces the number of operations. In Table 2, we consider the FGLM application, presented in Subsection 3.3, running on an Intel Xeon E-2286M with 32 GB of RAM. We compute first a drl Gröbner basis of an ideal invariant by the action of a finite diagonal group Z/nZ and then the eliminating polynomial of the last variable. The number n in the names of the systems denotes the number of variables and the computations were done modulo 2 30 < p < 2 31 such that a primitive nth root of unity exists in