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We present the TBA equations for the exact spectrum of multi-magnon local operators in the
D-dimensional bi-scalar fishnet CFT. The mixing matrix of such operators is given in terms of fishnet
planar graphs of multiwheel and multispiral type. These graphs probe the two key building blocks of the
TBA approach, the magnon dispersion relation and scattering matrix, which we obtain by diagonalizing
suitable graph-building operators. We also obtain the dual version of the TBA equations, which relates, in
the continuum limit, D-dimensional graphs to two-dimensional sigma models in AdSDþ1.
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Introduction.—The fishnet conformal field theory
(FCFT) [1] (for a review see Ref. [2]) arises as a double
scaling limit of weakly coupled and strongly γ-twisted
N ¼ 4 SYM theory. It stands out as a striking example of a
nonsupersymmetric and yet integrable planar CFT in four
dimensions, with an exactly marginal coupling [3,4] and a
nontrivial moduli space of vacua [5]. Because of these
features, it has attracted a growing interest over the last few
years [2,6–22]. Moreover, unlike its supersymmetric
parent, the theory can be defined in any dimension D
[23,24], called here FCFTD, with the Lagrangian

L ¼ NcTr½X†ð−∂μ∂μÞδ̃X þ Z†ð−∂μ∂μÞδZ
þ ð4πÞD2ξ2X†Z†XZ�; ð1Þ

where X and Z are two Nc × Nc matrix complex scalar
fields with respective bare dimensions δ and δ̃ ¼ D=2 − δ
for 0 < δ < D

2
.

In the planar (largeNc) limit its perturbation expansion is
dominated by conformal “fishnet” Feynman graphs: at high
order the bulk structure of such graphs has the shape of
regular square lattice with X and Z propagators pointing in
two orthogonal directions [25]. First evidence for integra-
bility came from Zamolodchikov, who treated the fishnet
graphs with an appropriate choice of D-dimensional
propagators as an integrable statistical mechanical system
[24]. The integrability of the fishnet graphs is also closely

related to the integrability of conformal, noncompact
SOð1; Dþ 1Þ spin chain with spins in principal series
representations [26].
Quantum integrability of a QFT (defined, in a broad

sense, as the existence of infinitely many conserved
charges) usually allows for a deep insight into its non-
perturbative structure. It also provides us with the tools for
some explicit (though not necessarily easy) calculations of
basic physical quantities, such as the correlators of local
operators. A remarkable progress in this direction has been
achieved in the last 15 years in the most emblematic planar
integrable CFT—N ¼ 4 SYM [27–33]. In particular, the
computation of the spectrum of anomalous dimensions of
local operators (encoded in the two-point functions)
appeared to be possible via the thermodynamic Bethe
ansatz (TBA) [34–36], which finally evolved into the most
efficient method of quantum spectral curve (QSC) [37,38].
In this Letter, we propose TBA equations for FCFTD, at

anyD, for the dimensions of multi-magnon operators of the
type

OJ;MðxÞ ¼ TrðXMZJÞ þ � � � : ð2Þ

The mixing matrix of such operators is entirely
defined by multiwheel or multispiral planar Feynman
graphs [1,6], such as those on Fig. 1. These integrals
have attracted considerable interest in the literature as
examples of explicitly calculable multiloop Feynman
graphs [10,15,39–41].
In the case of FCFT4, these TBA equations can be

obtained by taking the double-scaling limit of the full TBA
system of twisted N ¼ 4 SYM [6,15,42]. We no longer
have this luxury once we deal with FCFTD with D ≠ 4,
which does not have its SYM “parent” [43]. However, we
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can followadifferent route and, as shown in theLetter, get the
TBA equations more directly, by diagonalizing suitable
graph-building operators. A generalization to excited states
will allow us to derive asymptotic Bethe ansatz (ABA)
equations for the dimensions of multimagnon operators,
valid in the limit J → ∞, and check them against explicit
field theory computations. Lastly, following Ref. [44],
we will explore our TBA at finite coupling, using a duality
transformation, and find a correspondence between
fishnet graphs and 2D nonlinear sigma models in AdSDþ1

in the continuum limit, for any dimensionD and anisotropy δ.
Graph-building operators and scattering data.—The

TBA construction relies on the knowledge of the asympto-
tic data, dispersion relation and factorized S matrix, that
characterize the integrable structure of the fishnet graphs. In
planarN ¼ 4 SYM these were determined using supersym-
metry and crossing symmetry [29,45–47]. We cannot follow
these steps for FCFTD for lack of symmetries butwe can read
off the scattering data from the graphs directly. In fact, the
information can all be obtained from thewheel graphs shown
in Fig. 1 (left) and corresponding to the local operator (2)
withM ¼ 0, referred to as the vacuum state. General results
for the excited states with M ≠ 0 will be given in a
subsequent section.
The S matrix that is required here is the one controlling

the scattering of magnons in the “open string channel” aka
mirror kinematics. The idea is to treat the X propagators
along the angular direction in Fig. 1 as magnon excitations
moving radially along the Z propagators. Geometrically,
this mirror one-dimensional system emerges from the
decomposition RD ≅ Rþ × SD−1, with r ¼ eσ ∈ Rþ being
the distance to the origin, σ the mirror position, and with the
sphere SD−1 giving rise to an internal OðDÞ symmetry.

Mirror magnons evolve in this picture through the action
of the graph-building operator

½Γ̂NΦ�ðxÞ ¼
Z

ΦðyÞ
YN
i¼1

π−D=2dDyi
ðxi−1 − xiÞ2δ̃ðxi − yiÞ2δ

; ð3Þ

with x0 ¼ 0 and ΦðxÞ ¼ Φðx1;…; xNÞ. It acts on
N-magnon wave function Φ in H⊗N

D−δ, where HD−δ is the
representation space of the scalar representation of dimen-
sion D − δ of the conformal group in D dimensions. This
representation is unitary [48] and is part of the comple-
mentary series of the conformal group (see Ref. [49] for
more details on these representations). Clearly, any wheel
graph can be obtained by iteration of a graph-building
operator; see Fig. 1. The significance of these operators
in the fishnet theory was unveiled in Ref. [41] in the
particular case D ¼ 2. Below we show how their
diagonalization provides the S matrix for the magnons
for general D.
Magnon dispersion relation.—Let us begin with the one-

magnon problem, that is the diagonalization of the graph-
building operator Γ̂N¼1. This operator commutes with
dilatation and rotations. As such, its eigenvectors have
the form x−2β̃Cðx=jxjÞ, where CðyÞ ¼ Cμ1…μlyμ1…yμl and
C is a symmetric traceless tensor of rank l ∈ N. A complete
basis of states is obtained by taking β̃ ¼ ðD − δÞ=2 − iu,
with u ∈ R, and choosing a complete basis of symmetric
traceless tensors. One gets

Z Cð w
jwjÞ

w2β̃ðw − xÞ2δ
dDw

π
D
2

¼ λlðuÞ
Cð x

jxjÞ
x2ðβ̃−δ̃Þ

; ð4Þ

where the eigenvalue is given by

λlðuÞ ¼
Γðδ̃ÞΓðδ

2
þ l

2
þ iuÞΓðδ

2
þ l

2
− iuÞ

ΓðδÞΓðD−δ
2

þ l
2
þ iuÞΓðD−δ

2
þ l

2
− iuÞ : ð5Þ

This eigenvalue is the weight of propagation of a magnon
with rapidity u and spin l, it naturally defines the magnon
energy εl through εl ¼ − log λl while the momentum
conjugate to σ is plðuÞ ¼ 2u as can be read off directly
from the expression of the eigenvector.
Magnon S matrix.—For the magnon S matrix, we

proceed with the diagonalization of the graph-building
operator of a two-frame wheel Γ̂N¼2, which acts on
functions of two variables. Global symmetries are no
longer enough to solve the problem, but with only two
magnons one can write the solution rather explicitly. We
found that eigenvectors are given by

hx1; x2ju1; l1; u2; l2;Ci ¼
Z

dDxa
π

D
2

1

x
2ðβ̃1−l1

2
Þ

2a x
2ðα̃1þl1

2
Þ

1a

Cð∂0; ∂00 Þ
Z

dDxb
π

D
2

x
−2ðα1þDþl1

2
−1Þ

ab

x
2ðβ̃2−l2

2
Þ

00b

x
2ðβ̃1þl1

2
−1Þ

0b

x
2ðβ̃1−l1

2
Þ

01

ð6Þ

FIG. 1. Specimens of planar fishnet graphs contributing to the
anomalous dimensions of multimagnon operators (central points)
with black and red lines representing propagators of Z and X
fields, respectively. Left panel: Multiwheel graph renormalizing
the ground-state operator withM ¼ 0. The graph can be obtained
by iterating the graph-building operator Γ̂N¼3 shown here in bold
face. Right panel: Multispiral graph contributing to the mixing of
excited-state operators with M ¼ 3 magnons inserted at the
origin.
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evaluated at x0 ¼ x00 ¼ 0 [50]; see Fig. 2 for a graphical
representation of this function. Here xij ¼ xi − xj,
αj ¼ D=2 − α̃j ¼ δ=2 − iuj, βj ¼ D=2 − β̃j ¼ δ=2þ iuj,
and Cðy1; y2Þ ¼ Cμ1…μl1ν1…νl2y1μ1…y1μl1y2ν1…y2νl2 , where
C is a tensor that is symmetric and traceless, separately, in
the first l1 indices and in the last l2 ones. The eigenvalue
associated with Eq. (6) can be computed directly using
notably the star-triangle identity. It reads λl1ðu1Þλl2ðu2Þ,
which means that the total energy is the sum of the
individual energies.
The full S matrix can be read off from the asymptotics of

these eigenvectors in the limit x212 → ∞. In this limit, the
mirror magnons are far apart from each other and their
wave function reduces to the sum of incoming and outgoing
plane waves

ðx21Þiu1ðx22Þiu2C
�
x1
jx1j

;
x2
jx2j

�

þ ðx22Þiu1ðx21Þiu2 ½Sl1;l2ðu1; u2ÞC�
�
x2
jx2j

;
x1
jx1j

�
; ð7Þ

up to an overall prefactor that depends on x1 and x2, and
with, in square brackets, the tensor obtained by acting on C
with the S matrix. We conjecture that the S matrix obtained
this way is given by

Sl;l0 ðu; vÞ ¼
flðuÞ
fl0 ðvÞ

Sl;l0 ðu − vÞRl;l0 ðu − vÞ; ð8Þ

where the dynamical factors are

Sl;l0 ðuÞ ¼
Γð1þ lþl0

2
− iuÞ

Γð1þ lþl0
2
þ iuÞ

ΓðD
2
þ lþl0

2
þ iuÞ

ΓðD
2
þ lþl0

2
− iuÞ

×
Γðjl−l0j

2
þ iuÞ

Γðjl−l0j
2

− iuÞ
Γð1þ jl−l0j

2
þ iuÞ

Γð1þ jl−l0j
2

− iuÞ
ð9Þ

and

flðuÞ ¼
Γðδ

2
þ l

2
− iuÞΓðD−δ

2
þ l

2
− iuÞ

Γðδ
2
þ l

2
þ iuÞΓðD−δ

2
þ l

2
þ iuÞ ; ð10Þ

and withRl;l0 theOðDÞ-symmetric Rmatrix on the irreps of
spins l and l0, with Rl;0 ¼ 1. These R matrices can be
determined through their eigenvalues [51–53] or by fusing
Zamolodchikov’s R matrix [54]

R1;1ðuÞ ¼
u1

uþ i
þ iP
uþ i

−
iuK

ðuþ iÞðuþ i D−2
2
Þ ; ð11Þ

with 1;P, and K being identity, permutation, and contrac-
tion of two D-dimensional vectors.
We could partly verify our conjectures, Eqs. (7)–(10), by

considering some particular cases for which we were able
to compute the asymptotic behavior of the eigenvectors
(using the method of expansion by regions [55]). This
includes eigenvectors associated to completely symmetric
traceless tensors C of any rank l1 þ l2. They are eigenstates
of Rl1;l2 with eigenvalue 1 and gave us access to the
functions fl and Sl1;l2 . We have also explicitly reproduced
R1;1. This match gives confidence that the general
conjecture is correct, as the latter R matrix is the seed
for the higher-spin ones. (Indeed, assuming integrability,
Yang-Baxter relations entirely determine Rl;l0 given R1;1.)
Nonetheless, it would be nice to check the matrix structure
for higher spins from the general wave function (6).
ForD ¼ 2, eigenvectors were found in Refs. [41,56] and

we checked that their asymptotic behavior allows one to
recover exactly the full S matrix (8)–(10).
As a final check, for D ¼ 4 isotropic fishnets (δ̃ ¼ δ),

we verify agreement with the conjectured S matrix of the
N ¼ 4 SYM theory [29] at weak coupling in the mirror
kinematics. In fact, our analysis is the first field theory
derivation of this mirror S matrix.
TBA for ground state.—We turn to the scaling dimension

Δ of operatorOJ;0. It governs the divergent part of the wave
function renormalization, Z ¼ P

N≥0 ξ
2JN trðΓ̂NÞJ, generat-

ing the wheel graphs, see Fig. 1, with the divergences
arising from the trace over the magnons eigenstates. In the
1D picture, it corresponds to the free energy of a system of
magnons at temperature 1=J and chemical potential log ξ2.
The factorization of the S matrix permits its determination
at any J and ξ using the TBA equations. Following well-
known saddle-point procedure [57–60], it takes the form

Δ ¼ Jδ̃ −
X
l≥0

Z
p0
lðuÞ log ½1þ Y1;lðuÞ�

du
2π

; ð12Þ

where p0
lðuÞ ¼ 2 and where the Y functions Y1;l describe

the distribution of energy per magnon, with l ∈ N labeling
the spherical harmonics.
The latter Y functions are part of a larger family of

functions fYa;l>0g needed to account for the matrix degrees
of freedom. For the sake of simplicity, we shall restrict

FIG. 2. Integral kernel of the graph-building operator Γ̂N¼2 (left
panel) and eigenvector (6) (right panel). The action of the former
on the latter is explained in Eq. (3). Gray shaded points represent
integration points while a line with index α connecting points x
and y represents the propagator ðx − yÞ−2α.
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ourselves to the simply laced case, corresponding to even
dimensionsD > 2. Hence, a ∈ ½1; r� labels the nodes of the
OðDþ 2Þ ≅ Dr Dynkin diagram, with r ¼ D=2þ 1 and
incidence matrix Iab.
The Y functions themselves are determined by an

infinite system of nonlinear TBA equations. Denoting
La;l ¼ logð1þ Ya;lÞ, these equations take the form

logY1;l ¼ C − Jεl þ
X
l0≥0

Kl;l0⋆L1;l0 þ
X
l0≥1

Kl;l0⋆L2;l0 ; ð13Þ

for the massive nodes (a ¼ 1, l ≥ 0), where εl ¼ − log λl,

C ¼ J log ξ2 −
X∞
l¼0

Z
½i∂u log flðuÞ�L1;l

du
2π

; ð14Þ

and where the ⋆ operation denotes the convolution on the
real axis (with measure du=2π). For the remaining,
auxiliary, nodes for spin excitations (a > 1, l ≥ 1) the
equations are

logYa;l ¼ −
X
l0≥1

Ǩl;l0⋆La;l0 þ
X

b;Iab≠0

X
l0≥1

Kl;l0⋆Lb;l0 ; ð15Þ

where we introduced Ǩl;l0 ¼ Kl;l0þ1 þ Kl;l0−1, with
symmetric kernels K, K defined by

Kl;l0 ðuÞ ¼ −i∂u logSl;l0 ðuÞ; ð16Þ

and

Kl;l0 ðuÞ ¼
Xðlþl0−1Þ=2

j¼ðjl−l0jþ1Þ=2

2j
u2 þ j2

: ð17Þ

Finally, let us stress that the kernels obey the universal
asymptoticsKl;l0 ðuÞ ¼ 2 logu2 þOð1=u2Þ at large rapidity.
Consequently, the scaling dimension (12) controls the
asymptotics of the main Y functions,

logY1;l ∼ −Δ log u2: ð18Þ

The auxiliary Y functions are, on the other hand, asymp-
totically constant at u → ∞.
Dual TBA and Y system.—The TBA equations above

give us a good handle on the scaling dimension at weak
coupling, which is when the massive Y functions are small
and the equations are solvable iteratively. They are also
very useful for the study of fishnet graphs at large order,
that is when the coupling constant ξ2 approaches its critical
value [24,44]. Close to this point, the lightest (l ¼ 0) mirror
magnons condense, driving the system towards a new
phase with gapless excitations. This is analogous to the
transition from ferro- to antiferromagnetic order for com-
pact spin chains in a magnetic field. It relates to the

continuum limit of the fishnet graphs and to their corre-
spondence with 2D σ models with AdS target space. This
correspondence, which was first discussed in Ref. [44] for
D ¼ 4, also holds in higher dimensions. Namely, there is a
dual set of TBA equations looking like that of the familiar
OðDþ 2Þ σ model in a finite volume J except that instead
of the standard relativistic dispersion relation we should use
the one dual to Eq. (5).
The duality is established by means of the familiar

particle-hole transformation. It involves the operator
1 − KOðDþ2Þ which solves the equation

ð1 −K0;0Þ⋆ð1 − KOðDþ2ÞÞ ¼ 1; ð19Þ

with 1 the identity operator and with K0;0 as in Eq. (16).
Straightforward algebra gives

KOðDþ2ÞðuÞ ¼ −i∂u log SOðDþ2Þð2πu=DÞ; ð20Þ

with the well-known OðDþ 2Þ S matrix [54]:

SOðDþ2ÞðθÞ ¼ −
Γð1þ iθ

2πÞΓð12 − iθ
2πÞΓð1D − iθ

2πÞΓð12 þ 1
D þ iθ

2πÞ
Γð1 − iθ

2πÞΓð12 þ iθ
2πÞΓð1D þ iθ

2πÞΓð12 þ 1
D − iθ

2πÞ
;

ð21Þ

hinting at the dual σ-model interpretation.
Applying the operator 1 − KOðDþ2Þ to Eq. (13) for l ¼ 0

we get the dual equation for the scalar node:

logY1;0 ¼ JE − KOðDþ2Þ⋆L0
1;0 −

X
l≥1

K1;l⋆L1;l; ð22Þ

with L0
1;0 ¼ log ð1þ Y−1

1;0Þ, and the new driving term

EðuÞ ¼ log

�
coshð2πuD Þ þ cosðπδDÞ
coshð2πuD Þ − cosðπδDÞ

�
ð23Þ

is identified as the dual energy. As for the higher har-
monics, Eqs. (13) for l > 0, they can be rewritten as

logY1;l ¼ −Kl;1⋆L0
1;0 −

X
l0≥1

Ǩl;l0⋆L1;l0 þ
X
l0≥1

Kl;l0⋆L2;l0 :

ð24Þ

The absence of driving terms in these equations indicates
that the full symmetry is linearly realized in the dual
picture. In fact, if not for the energy, Eqs. (22) and (24), as
well as the ones in Eq. (15) which stay untouched, are
identical to those for the OðDþ 2Þ σ model.
The noncompactness of the model is seen in the fact that

the spectrum is gapless, limu→∞ EðuÞ ¼ 0. This is made
clearer after introducing a dual momentum P obtained via a
Wick rotation and a reflection δ → δ̃ [61]
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PðuÞ ¼ −iEðuþ iD=4Þjδ→δ̃: ð25Þ

It yields the dispersion relation

sinh2
E
2
¼ tan2

�
πδ̃

D

�
sin2

P
2
; ð26Þ

as for a massless particle on a square lattice. It becomes
relativistic at low energy, E ∼ cP, that is when the continu-
ous σ-model description applies, with the anisotropy being
absorbed in the speed of light c.
One notices that the fishnet coupling constant ξ2 dis-

appears in the dual TBA equations. It is in line with the fact
that the AdS σ model admits no exactly marginal coupling.
Instead, one finds by manipulating the original TBA
Eqs. (13) that the coupling constant relates to the energy
of the state E2DðΔ; JÞ in the dual picture,

E2DðΔ; JÞ≡ −
Z

L0
1;0∂uPðuÞ

du
2π

¼ J log
ξ2

ξ2c
; ð27Þ

with

log ξ2c ¼
Z

∞

0

�
D
2
e−t þ e−δt − eδt þ e−δ̃t − eδ̃t

ð1 − e−tÞð1þ e
Dt
2 Þ

�
dt
t
; ð28Þ

the critical coupling. The latter controls the vacuum energy
of the σ model and thus the low-energy description
corresponds to ξ ∼ ξc, as alluded to before. Our expression
for log ξ2c can be compared with Zamolodchikov’s formula
[24] for the free–energy density of a large fishnet graph.
The agreement is perfect, for any δ and D, taking into
account the normalization of the coupling constant.
Last, let us note that the TBA Eqs. (22), (24), and (15)

can be brought, by inverting the kernels, to the Y-system
form:

Y ½þ�
a;l Y

½−�
a;l

Ya;lþ1Ya;l−1
¼

Q
r
b¼1ð1þ Yb;lÞIab

ð1þ Ya;lþ1Þð1þ Ya;l−1Þ
; ð29Þ

for all nodes with 1 ≤ a ≤ r; l ≥ 1 (with the convention
that Ya;0 ¼ ∞ for a > 1) while Y1;0 satisfies

1

Y ½r−1�
1;0 Y ½1−r�

1;0

¼
Yr−2
k¼1

ð1þ 1=Y ½k�
r−k−1;1Þð1þ 1=Y ½−k�

r−k−1;1Þ

× ð1þ 1=Yr−1;1Þð1þ 1=Yr;1Þ; ð30Þ

with the shorthand notation f½�k�ðuÞ ¼ fðu� ik=2Þ. This
agrees with the Y-system equations of the Oð2rÞ sigma
model [62].
Excited states and asymptotic Bethe ansatz.—The TBA

equations can be generalized to the states with an arbitrary
number of magnons by the usual trick of the contour

deformation [63–65]. The multimagnon operators OJ;M,
associated to spiral graphs shown in the right panel of
Fig. 1, are made out of scalar magnons (l ¼ 0) and obtained
by exciting the corresponding Y function. The Y-system
relations stay the same as for the ground state, as well as
most of the TBA formulas given earlier, if not for the
energy (12) and Eqs. (13) which receive additional driving
terms. The anomalous dimensions γM ¼ Δ − ðJδ̃þMδÞ of
the multimagnon states read then

γM ¼
XM
m¼1

ð2ium − δÞ −
X
l≥0

Z
p0
lðuÞL1;lðuÞ

du
2π

; ð31Þ

with the Y functions solving (13) with
P

m logSl;0ðu; umÞ
added in the right-hand side, and with the sums coming in
both cases from the logarithmic poles at Y1;0ðumÞ ¼ −1.
The latter conditions are the exact Bethe ansatz equations,
which reduce at large J and for sufficiently weak coupling
to the ABA equations

1 ¼ ξ2Je−ε0ðujÞJ
YM
k¼1
k≠j

S0;0ðuj; ukÞ: ð32Þ

They are supplemented with the trace cyclicity condition

YM
j¼1

ξ2e−ε0ðujÞ ¼ 1: ð33Þ

This generalizes the 4D ABA equations of Ref. [6] to any
dimension D and any anisotropy.
As an example, in the simplest M ¼ 1 case, the ABA

equation predicts that the anomalous dimension is given by
ð2iu − δÞ, where u is the solution to ξ2e−ε0ðuÞ ¼ 1.
Expanding u perturbatively in ξ2 around the classical value
−iδ=2, we find the one-magnon anomalous dimension

γM¼1 ¼
−2ξ2

ΓðD
2
Þ þ 2ξ4

ψðδÞ þ ψðδ̃Þ − ψðD
2
Þ − ψð1Þ

ΓðD
2
Þ2 þOðξ6Þ;

ð34Þ

which agrees with the direct field theory computation.
As further checks, we considered two-magnon states for

J ¼ 5. The corresponding mixing matrix takes the same
form as for D ¼ 4 [6]. We have checked that the ABA
prediction agrees with the direct diagrammatic computation
through 3 loops.
Discussion and prospects.—We presented TBA

equations for the exact spectrum of arbitrary multimagnon
operators in the fishnet CFT in any spacetime dimensionD.
These operators form an important class of local operators
of the theory and contain all of the information about the
mirror dynamics. There are other types of operators worth
being studied, including spinning operators (i.e., with
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derivatives) and the conjugate scalars Z̄; X̄. While it should
be possible to include the former within the excited state
TBA formalism, the latter are more elusive, and relate to the
logarithmic property of the fishnet CFTs [15,18,66].
The most efficient form of the TBA equations is

expected to be given by Baxter equations. It would be
good to derive them for generic D and for a general local
operator. This program is already quite advanced in D ¼ 4
case [14,15,67], but not for other D’s. Our TBA equations
should help filling this gap by providing important infor-
mation about the analyticity conditions and so-called
quantization conditions specifying the solutions. The
Baxter equations formulation would also be instrumental
for a thorough study of the correspondence between fishnet
graphs and noncompact sigma models or to reveal relation-
ships with string-bit models in AdS [12–14]. Another
interesting direction concerns the generalization of our
TBAs to FCFTD supported on triangular and hexagonal
fishnets, or dynamical fishnet like the one found in the
context of the three-coupling strongly twisted version of
N ¼ 4 SYM theory [1,17].
A natural next step in the study of FCFTD would be

the computations of structure constants and multipoint
correlation functions. In the mirror picture, it entails
establishing the eigenfunctions of the graph-building
operators in terms of Sklyanin separated variables, known
so far only in two dimensions [41,68]; see also Ref. [69] for
new developments. The formalism is closely related to the
hexagon approach [10,32,33,70] and would permit us to
put it on a firmer ground for generic D. We believe that our
two-body eigenfunction (6) is an important building block
for constructing Sklyanin separated variables for noncom-
pact quantum spin chains with arbitrary number of spins in
principal series representations of SOð1; Dþ 1Þ symmetry
[71], since these spin chains have the same integrability
structure as FCFTD.

We thank Fedor Levkovich-Maslyuk for collaboration at
an early stage of this project. We are thankful to János
Balog, Johannes Henn, Shota Komatsu, Yang Zhang, and
especially Dmitry Chicherin, Sergey Derkachov, and
Enrico Olivucci for valuable comments and suggestions.
We also thank Nikolay Gromov, Ivan Kostov, and
Konstantin Zarembo for comments on the manuscript.
The work of B. B. and D. l. Z. was supported by the
French National Agency for Research Grant No. ANR-
17-CE31-0001-02. The work of D. l. Z. was supported in
part by the center of excellence supported by the Israel
Science Foundation (Grant No. 2289/18). D. l. Z. is grateful
to the Max Planck Institut für Physik and CERN for the
warm hospitality during the final stage of this project.

Note added.—Recently, we learned [72] that Derkachev
and Olivucci had obtained the two-body wave function (6)
and itsM-body generalization in a somewhat different form
in the case of D ¼ 4.
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