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Summary    

Cell membranes often contain domains with important physiological functions. A typical example 
are neuronal synapses, whose capacity to capture receptors for neurotransmitters is central to 
neuronal functions. Receptors diffuse in the membrane until they are stabilized by interactions 
with stable elements, the scaffold. Single particle tracking experiments demonstrated that these 
interactions are rather weak, and that lateral diffusion is strongly impaired in the post-synaptic 
membrane due to molecular crowding. We investigated how the distribution of scaffolding 
molecules and molecular crowding affect the capture of receptors. In particle-based Monte Carlo 
simulations, based on experimental data of molecular diffusion and organization, crowding 
enhanced the receptor-scaffold interaction but reduced the capture of new molecules. The 
distribution of scaffolding sites in several clusters reduced crowding and fostered the exchange of 
molecules accelerating synaptic plasticity. Synapses could switch between two regimes, becoming 
more stable or more plastic depending on the internal distribution of molecules. 
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Introduction 

The plasma membrane of cells (PM) is a heterogeneous fluid surface in which diffusing molecules 
can be organized into domains with particular composition (Nicolson, 2014). The spatial patterning 
of molecules of the PM is essential to cells as specific membrane domains are dedicated to sense 
the environment and to communicate with other cells (Recouvreux and Lenne, 2016; Krapf, 2018). 
An example of these highly specialized domains are neuronal chemical synapses. Importantly, 
synapses are not static domains; they are able to modulate the intensity of synaptic responses by 
changing the number of receptors for neurotransmitters that reside in the synapse. This is one of 
the plasticity mechanisms thought to underlie memory and learning (reviewed in Huganir and 
Nicoll, 2013; Petrini et al., 2014). 

Receptors for neurotransmitters are accumulated at the postsynaptic membrane by interactions 
with the subjacent meshwork of scaffolding proteins, which transiently capture them by stopping 
their diffusion (reviewed in Choquet and Triller, 2013; Maynard and Triller, 2019). We can assume 
that the capture results from the first order reaction  

𝑅 + 𝑆 
𝑘𝑜𝑛

→
← 

𝑘𝑜𝑓𝑓

𝑅𝑆 

where R are the receptors and S the scaffolding molecules, kon the effective forward binding rate 
and koff the effective backward binding rate. kon and koff integrate the contribution of diffusion and 
intrinsic binding rates (Soula et al., 2014 and references therein) and can be estimated from the 
frequency and duration of binding events (Renner et al., 2017 and references therein). The affinity 
of receptors for their scaffolding molecules can be modulated by the phosphorylation state of 
receptors and scaffolds (Opazo et al., 2010; Specht et al., 2011; Hausrat et al., 2015; Flores et al., 
2015; Battaglia et al., 2018). Indeed, changes of receptor-scaffold affinity and/or changes in the 
number of scaffolding sites underlie many synaptic plasticity phenomena (reviewed in Diering and 
Huganir, 2018). 

The diffusion of receptors and its regulation has been described quite extensively by single particle 
tracking (SPT) or fluorescence recovery after photobleaching (FRAP) (reviewed in Choquet and 
Triller, 2013; Park 2018; Maynart and Triller, 2019); though the kinetics of their capture in synapses 
remains obscure. Difficulties to investigate receptor-scaffold interactions experimentally are 
numerous, notably due to the particularities of reactions occurring in 2D. In classical bulk 
biochemistry approaches to identify interactions and to quantify molecular affinities, peptides 
interact in an 3D environment and in conditions that can be quite different from those of 
membrane molecules in cells. Contrary to 3D, reactions between molecules on a membrane are 
affected by the distances between molecules that influence their reaction rates at all length scales 
(reviewed in Mahmutovic et al., 2012). Moreover, reactants are present in relatively small 
numbers (50-150 receptors and ~200-300 scaffold sites; Sheng and Kim, 2011; Specht et al., 2013; 
MacGillavry et al., 2013 and references therein) thus discreteness and stochasticity cannot be 
disregarded (reviewed in Melo and Martins, 2006; Gillespie et al., 2013). Therefore, we can 
consider that the interaction receptor/scaffold happens in conditions far from the postulates of 
the law of mass action: it is a badly mixed system which involves a few numbers of molecules. 
Moreover, several experimental data support that the postsynaptic membrane is crowded with 
immobile proteins (Renner et al., 2009a; 2009b; Li et al., 2016). The importance of macromolecular 
crowding on reaction kinetics is now widely recognized (reviewed in Melo and Martins, 2006; Kalay 
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et al., 2012). Interestingly, it has been shown that fractal reaction kinetics with time-dependent 
rate coefficients arise from diffusion-hindered systems in 2D (Hellman et al., 2011). We may 
wonder how important these factors are in the case of synapses. Given the sizes of molecules and 
their density, how important is the effect of crowding for the capture of receptors? Does the 
pattern of distribution of scaffolding sites have an effect at this scale? What type of structure has 
the highest trapping capacity?  

Particle-based Brownian dynamics offer the opportunity to simulate diffusion and reaction of 
molecules considering the spatial configuration of reactants. Monte Carlo simulations (MC) are 
ideally suited to study systems where the number of molecules is small and there is an important 
spatial heterogeneity (Goldman et al., 2004; Burrage et al., 2007). MC has been previously used to 
simulate AMPA receptors diffusion and recruitment into excitatory synapses (Santamaria et al., 
2010; Tolle and Le Novère, 2010; Czöndör et al., 2012; Li et al., 2016; Gupta, 2018). 

In this work, particle-based MC simulations were used to analyze the capture of receptors 
depending on the distribution of scaffolding sites and the presence of immobile obstacles. As 
expected, the distribution of sites in one or multiple clusters had a strong effect on the capture of 
molecules under crowding conditions, affecting the accessibility of sites. Crowding itself had a 
negative effect impairing the capture of molecules coming from outside the synapse thus reducing 
the capacity of the simulated synapse to recruit new molecules. However, above a certain level, 
crowding had a positive effect strongly enhancing the re-capture of molecules already inside the 
synaptic area, thus increasing kon of these molecules. The distribution of scaffolding sites into 
several clusters decreased the influence of crowding, favoring the exchange of molecules with the 
extra-synaptic area and thus accelerating plasticity-like changes. Therefore, by rearranging the 
scaffold and changing the crowding level, synapses could switch between a state prone to change 
that easily exchanges molecules and a state prone to stability that reduces the exchange.   
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Results 

Simulation of diffusion-capture in a self-crowded patch of membrane 

The size of diffusing molecules and the distribution of binding sites were treated explicitly to 
incorporate the effects of space. The design of the simulation space and the parameters of the 
simulation were based on experimental data obtained on cultured neurons (Renner et al., 2009a; 
2012; 2017; Specht et al., 2013; Patrizio et al., 2017; see Transparent methods).  

Scaffold interaction sites (3 nm-wide squares) were distributed following a hexagonal grid (Fig. 1A) 
in a circle of 190-300 nm in diameter (depending on the distance between binding sites), in 
agreement with the expected hexagonal distribution of Gephyrin, the scaffolding molecule of 
inhibitory synapses (Bedet et al., 2006). The size of the interaction site was meant to represent a 
reactive radius for the diffusing particles, the binding sites themselves were not considered as 
obstacles. For a given set of simulations, a chosen number of sites was selected randomly from the 
possible positions given the distribution used (Fig. 1B). The maximum number of sites (250) was 
always inferior to the number of nodes of the grid, leaving spaces without binding sites. The 
distance between sites was 10 or 15 nm, consistent with experimental data about the density of 
scaffolding sites of Gephyrin (Specht et al., 2013) or PSD-95, the main scaffolding molecule of 
excitatory synapses (MacGillavry et al., 2013).  

The size of typical receptors is 6-13 nm, depending on the type of receptor and the presence of 
accessory proteins (Schauder et al., 2013; Miller and Aricescu 2014; Greger et al., 2017). Crowding 
arise when the distance between obstacles is comparable to the diameter of the diffusing 
molecule. Given the distance between scaffolding sites, the immobilization of receptors was 
expected to create significant self-crowding effects. To distinguish between the effects on the 
capture of receptors raising from crowding and those due just to the occupation of binding sites, 
two different sets of molecules were modelled. Large molecules representing receptors were 
simulated as diffusing circles of 10 nm in diameter (s10). Small molecules that could occupy binding 
sites without creating crowding were simulated as circles of 1nm (s1).  

The starting point of diffusing molecules was randomly chosen in the simulation space. Lateral 
diffusion of molecules was simulated as random walks (see Transparent methods). Molecules 
bounced back when they found an obstacle in their way (immobile or mobile). Molecules were 
immobilized with a given probability Pbind if they passed on top of a binding site. Once immobilized, 
they were set free with a given probability Pfree (1x10-4 unless indicated, Fig. 1B-C, Video S1). 
Experimental observations obtained with FRAP and SPT indicate that effective kon and koff values 
of the receptor-scaffold interaction are in the order of 10-1-10-2 s-1 (Czöndor et al., 2012; Renner et 
al., 2017).  Pbind and Pfree values were chosen to provide similar values of the rate constants on 
simulated trajectories “converted” to match the temporal and spatial resolution of trajectories 
obtained experimentally with SPT (time between trajectory points of 75 ms, localization precision 
of 15 nm) (Fig. S1, see Transparent methods). The calculation of effective kon and koff was done 
using Packing coefficient analysis as before (Renner et al., 2017).  

Simulations were run for a short period of time (37500 trajectory points, equivalent to 37.5 s) to 
assess the speed of population of empty synapses, or for a longer period (225 s) to reach 
equilibrium (steady state, Supplemental Fig. S2A1-2) that was typically attained after 75 - 100 s 
(not shown). Analyses of the steady state were done on the last 75 s of the run (Supplemental Fig. 
S2A2). The number of bound molecules was in the range of the number of synaptic receptors found 
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experimentally (less than 200, Fig. S2A1, reviewed in Choquet and Triller, 2014; Patrizio et al., 
2017) and reflected the fractional occupancy of scaffolding sites observed in synapses (reviewed 
in Specht 2020) . 

 

 

Fig. 1: Capture of molecules in simulated synapses. A: Scheme of the hexagonal grid where binding sites could occur 
(black dots). B: Detail of the simulation space showing the randomly chosen binding sites (250 in total, black dots) 
overlaid with all the trajectories cumulated during 75s of simulation (200 molecules in total, 118 molecules bound at 
t=75s, each trajectory depicted in a different color). The distance between sites was 15nm. Molecules had 10 nm in 
diameter and a probability of binding (Pbind) of 0.9 and a probability of unbinding (Pfree) of 10-4. White spaces 
correspond to the excluded area due to the bound molecules (self-crowding). Bar: 50 nm. C: Detail of one trajectory 
(in blue) and binding sites (squares). The simulated molecule bound to the sites shown in red. Bar: 15 nm. D: Number 
of bound molecules when sites were distanced 10 nm or 15 nm, in steady state, for small (s1) or large (s10, gray area) 
molecules and low (B1) or high (B2) Pbind (values of 20 independent simulations overlaid with the mean ± SD, unpaired 
t-test, ns: not significant; ****: p<0.0001). 

 

A first series of simulations was performed to describe the system at steady state without (small 
molecules) or with self-crowding (large molecules). Fig. 1D shows the number of bound molecules 
for the two configurations of sites, the more compact (sites distanced 10 nm) and the less compact 
one (sites distanced 15) for molecules with low (Fig.1D1) or high (Fig.1D2) Pbind. Supplemental Fig. 
S2B shows examples of the final distribution of molecules. As expected, small molecules (s1) bound 
to sites at the same level in both configurations (t-test, p<0.6); the number of bound molecules 
depending only on Pbind. For large molecules, there was a robust effect of the distance between 
sites (Fig. 1D, ~25 % and ~36 % reduction in the compact distribution for molecules with Pbind=0.1 
or 0.9, respectively; t-test p<0.0001). Large molecules were overall less captured than the small 
ones (reduction of ~34-43% in case of the compact distribution, of ~12% in the other case).  

These results agree with the facts that 1) bound molecules become immobile obstacles for the 
moving ones reducing the area available to diffuse (Fig. 1B) ; and 2) self-crowding arise when the 
distances between sites are in the order of the size of molecules. Small molecules (diameter of 1 



 

 7 

nm) had always the possibility to diffuse between bound molecules and thus their capture was not 
affected.  

The effects of crowding are likely to vanish when the relative importance of the reaction increases 
with respect to diffusion (i.e. in case of strong affinity). We checked the effect of the distribution 
of sites when molecules have a lower Pfree (0.5x10-4, still in the range of what can be observed in 
experimental data). The overall number of bound molecules (Pbind=0.9) was higher than before as 
expected, due to the increased affinity (compare Fig. S3 and Fig. 1D). The lower trapping due to 
self-crowding was still observed, though the effect was less important than before (~30-34% 
reduction for large molecules in more compact with respect to less compact configuration, Fig. 
S3).  

The hexagonal distribution of sites was meant to represent the expected arrangement of the 
scaffolding molecule Gephryin; however other scaffolds may have a random distribution of sites. 
We wonder whether the effects of self-crowding were still observable when sites were distributed 
randomly, with a minimum distance of 10 or 15nm between sites (Fig. S4A). Large molecules were 
still less captured in the more compact configuration although the reduction was less important 
than on the hexagonal lattice (~13-15% reduction, Fig. S4B). On the other hand, the random 
configuration provided distributions that were less dense than the hexagonal grid, with a median 
distance between sites of 11.18 nm in case of the more compact distribution and 17.02 nm for the 
less compact one (not shown).  

We may expect that some sites became inaccessible to large molecules due to percolation effects. 
However, it is important to note that the self-crowding simulated here and the configuration of 
areas above the percolation threshold are continuously fluctuating, as molecules constantly get 
bound and unbound (Video S1). Indeed, all the sites were able to capture molecules at some point 
of the simulation run, although those on the borders were logically more efficient principally in 
the compact case (Supplemental Fig. S5).  

Altogether, these data suggest that changing the pattern of distribution of sites could improve the 
trapping capacity of synapses by increasing the number of effective scaffolding sites. Actually, 
scaffolding molecules in real synapses are not always evenly distributed in the post-synaptic area. 
The presence of nanodomains of excitatory and inhibitory receptors and their scaffolding 
molecules in a fraction of synapses have been shown by several groups (MacGillavry et al., 2013; 
Nair et al., 2013; Specht et al., 2013; Dzyubenko et al., 2016; Orlando et al., 2017; Pennacchietti et 
al., 2017; Kellermayer et al., 2018; Hruska et al., 2018). Typically, these synapses contain 2-10 
nanodomains (most commonly 2-3, depending on the receptor type; Nair et al., 2013; Kellermayer 
et al., 2018) that are ~50-100 nm wide and contain ~20 or more receptors.  

Nanoclusters were simulated by distributing sites in 2, 4 or 7 clusters (Fig. 2A). Each cluster 
contained equivalent numbers of sites, chosen randomly from the nodes of a hexagonal lattice 
(250 sites in total, see Transparent methods). The spacing between clusters (minimum 30 nm) was 
set to hold all the scaffolding sites in within a cercle of 250-550 nm in diameter, compatible with 
the reported sizes of the post-synaptic density (Specht et al., 2013; reviewed in Choquet and Triller, 
2013).  

At steady state, the number of clusters did not affect the final number of bound molecules if sites 
were distanced 15 nm (Fig. 2B). There was a significant although modest effect of multiple clusters 
(~6-10% increase) on the number or large molecules and high Pbind (0.9) bound in the compact 
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distribution (Fig. 2B1). The effect was also observed for low Pbind (0.1) molecules, between 1 and 7 
clusters (~9%, not shown, ANOVA with Tukey’s multiple comparisons test, p<0.05). This means 
that the presence of nanoclusters per se did not imply a systematic improvement on the trapping 
capacity of synapses at steady state. 

 

Fig. 2: Capture of molecules when sites are distributed in multiple clusters. A: Examples of the configuration of sites 
(250 in total) in 1, 2, 4 or 7 clusters. Bar: 60 nm. B: Number of bound molecules in synapses containing 250 sites, in 
steady state. Binding sites were distanced 10 nm (B1) or 15 nm (B2) and distributed in 1, 4 or 7 clusters. Simulated 
molecules had 1 or 10 nm in diameter (s1 and s10, respectively) and bound to the sites with Pbind =0.9 (values of 20 
independent simulations, overlaid with the mean ± SD, one-way ANOVA, ns: not significant; ****: p<0.0001). 

 

Distribution of sites in several clusters counteracts the detrimental effects of crowding  

One important property of synapses is their capacity to change the number of receptors. 
Crowding, created by receptors themselves but also by other molecules immobilized in synapses, 
could be an important factor setting the extent of the change and the time needed for it. This point 
was evaluated by monitoring the recruitment of molecules in absence or presence of extra fixed 
obstacles, which remained bound to a site during all the simulation period. Obstacles were small 
(s1) or large (s10): large ones were used to simulate a situation with high molecular crowding, 
whereas small ones did not generate crowding. 

There were two different starting scenarios: an area with 50 free binding sites alone or an area 
with 50 free sites surrounded by obstacles at t=0 (Fig. 3A). No simulated molecule was bound at 
t=0. Fig. 3A shows the case of 200 obstacles of 1 nm or 10 nm in diameter. For each scenario, we 
compared the effect of obstacles on the binding of small or large molecules with different Pbind.  

In a first series of simulations, sites were distributed in one cluster. Fig. 3B-C illustrate early 
changes (after only 37.5 s) for small (Fig. 3B) or large (Fig. 3C) molecules with Pbind

 =0.9. Sites were 
colonized by small molecules at similar speed independently of obstacles (Fig. 3B). Conversely, the 
trapping of large molecules was strongly affected by the presence of obstacles (Fig. 3C), especially 
for the compact distribution of sites (Fig. 3C1). This was also observed at later times (225s of the 
simulation run, Fig. S6). 
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Fig. 3: Molecular crowding slows down the capture of new molecules. A: Examples of the distribution of 50 sites (red 
squares) in the absence of extra immobile obstacles at time point t=0 (left) or among 200 obstacles (black circles) of 
size=1nm (center) or size=10nm (right). Obstacles occupy the position of other sites in the hexagonal grid and remain 
bound and immobile during all the simulation. B,C: Number of bound molecules in time in synapses (Pbind =0.9) with 
initially 50 free sites, in absence of presence of 100 or 200 obstacles at t=0, for small (B1-2) or large (C1-2) molecules. 
Distance between sites was 10 nm (B1, C1) or 15 nm (B2, C2). Obstacles had the same size than diffusing molecules. 
Colors as in B1. Mean (lines) ± SD (shaded areas) of 10 independent simulations. Only the first 37.5 of the simulation 
are shown (the entire simulations are depicted in Fig. S6). 

 

To further confirm the effect of crowding, we checked the trapping of molecules in presence of 
obstacles of different size than the diffusing molecule (small molecules with large obstacles and 
large molecules with small obstacles). All the results are summarized in Tables 1 and 2. Small 
molecules were less captured in case of crowding created by large obstacles. For large molecules, 
there was also a significant reduction in case of small obstacles, meaning that the presence of a 
high number of immobile obstacles could also influence the capacity of synapses to gather new 
receptors even if they do not create crowding.  

The same scenarios were simulated with sites distributed in several clusters. In absence of extra 
obstacles, the distribution of sites did not affect the capture of small molecules (not shown), and 
only apparently improved the speed of recruitment of large molecules (Fig. 4A1,2). This 
improvement was transient and the number of bound molecules after 37.5 s of simulation run was 
not significantly different between configurations and molecules sizes (Fig. 4C, 0 obstacles 
condition). However multiple clusters of sites were more performant to capture large molecules 
in conditions of important crowding (Fig. 4B-C, 200 obstacles condition). The effect was stronger 
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for the less compact distribution at correlated well with the number of clusters. In the best of cases 
(7 clusters, distance between sites of 15nm), the number of bound sites doubled with respect to 
the one-cluster configuration but it was still lower than in absence of obstacles (~28% lower, Fig. 
4C2). 

 

 

Fig. 4: The capture of molecules in crowded synapses is improved by the distribution of sites in multiple clusters. 
A,B: Number of large molecules bound vs time (Pbind =0.9) in synapses with initially 50 free sites, with no extra obstacles 
(A1-2) or 200 extra obstacles (B1-2) at t=0. Sites were separated 10 nm (A1, B1) or 15 nm (A2, B2) and distributed in 
1, 2, 4 or 7 clusters as indicated. Colors in A1. Mean (line) ± SD (shaded areas), 10 independent simulations. C:  Number 
of bound molecules after 37.5s of simulation run for the simulations described in A and B (median and 25-75% IQR, 
whiskers: 5%-95% range, one-way ANOVA, ns: not significant; *: p<0.05, ****: p<0.001). 

 

Therefore, crowding had a strong negative impact on the recruitment of new molecules to 
synapses, but the distribution of sites in several clusters could overcome this drawback at least 
partially by improving the accessibility of sites.  

 

Crowding boosts recapture of molecules and increases stability  

Crowding may affect interactions in a negative and a positive way (reviewed in Minton 2006, 
Mugler et al., 2012). Molecular crowding at the post-synaptic domain could impair the capture of 
new receptors, but at the same time increase the probability of those already captured to bind 
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again after dissociating from the scaffold. To investigate the effect of crowding on the frequency 
of binding (related to kon), steady state simulations were run in absence or presence of obstacles. 
As previously, 50 free sites were available for the capture of diffusing molecules. The number of 
bound molecules was evaluated together with the fraction of molecules that enter the synaptic 
area, the number of bindings per molecule and the percentage of molecules that go in and out the 
synapse (% of exchange).  

 

Fig. 5: Molecular crowding favors multiple bindings and reduces the exchange of molecules 

Binding and exchange of large molecules (with Pbind =0.9) in and out synapses at steady state. Synaptic areas had with 
50 binding sites and the indicated number of obstacles t=0. Sites were distanced 10 nm (A1, B1, C1, D1) or 15 nm (A2, 
B2, C2, D2) and distributed in 1 (black), 2 (red), 4 (blue) or 7 (magenta) clusters as indicated in A1. (Mean ± s.e.m., 10 
independent simulations, statistical comparisons in case of 200 obstacles: one-way ANOVA, ns: not significant, ****: 
p<0.0001).   A:  Number of bound molecules at the end of the simulation period (225s). B: Percentage of simulated 
molecules (total 200) that enter at least once in the synaptic area. C: Number of bindings (to the same or a different 
site) per molecule during the whole simulation run D: Percentage of exchange (proportion of molecules that enter 
and exit the synaptic area at least once). 
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Fig. 5 and Supplemental Fig. S7 show the results for large molecules with Pbind=0.9 and Pbind=0.1, 
respectively. The number of bound molecules was changed in all cases, being reduced by the 
presence of obstacles (Fig. 5A, S7A). The compact distribution of sites was the most affected; but 
interestingly there was a regain in the number of bound molecules with high crowding (200 
obstacles) when sites were distributed in one or two clusters with respect to several clusters (Fig. 
5A1 and Fig. S7A1). This counterintuitive result could be explained by the robust effect of crowding 
on the number of bindings per molecule (Fig. 5C1 and S7C1) and the decrease of the exchange (Fig. 
5D1, S7D1).  

The number of molecules that enter the synaptic area was also reduced by crowding but the 
distribution of sites in several clusters partially reverted this effect, as expected (Fig. 5B, S7B). 
Importantly, molecules bound more often to scaffolding sites when higher number of obstacles 
were present, with a stronger effect on the 1-cluster configuration (Fig. 5C, S7C). Consequently, 
the exchange of molecules between synaptic and extrasynaptic areas was reduced by obstacles 
and by the 1-cluster configuration (Fig. 5D, S7D). Interestingly, compact synapses with two clusters 
in the more compact configuration were able to keep a high number of bound molecules (Fig. 5A1) 
and at the same time display a higher exchange than synapses with one cluster (Fig. 5D1).  

Obstacles did not affect the number of bound small molecules, however the distribution of sites 
in multiple clusters facilitated the entry of molecules and slightly decreased the number of 
bindings per molecule (Supplemental Fig. S8).  

 

Synaptic plasticity-like changes were accelerated by multiple clusters of binding sites 

Whether one unique cluster of binding sites would support stability, multiple clusters could be a 
good strategy for crowded synapses to favour plasticity. We investigate this possibility running 
simulations of large molecules whose Pbind was increased or decreased, to simulate long-term 
potentiation (LTP) or long-term depression (LTD), respectively. Scaffolding sites (250 in total) were 
distributed in 1 or more clusters with a distance between sites of 10 or 15nm as previously. We 
added extra 100 obstacles that remained fixed to the scaffold during the whole simulation. 

After the increase of Pbind (from 0.1 to 0.9), the number of bound receptors increased progressively 
in all cases (Fig. 6 A, B). The ratio of bound molecules with respect to the initial state augmented 
more rapidly when sites were distributed in several clusters (Fig. 6A). Differences were significant 
at early (37.5s) or late (225s) times of simulation, although they were more important at early 
times (Fig. 6B). In case of LTD-like changes, multiple clusters accelerated the loss of bound 
molecules (Fig. 6C). At the end of the simulation (225s) the amount of bound molecules was the 
same for the more compact distributions (10nm between sites, Fig. 6D1) or it was somewhat 
reduced in the less compact synapses (15nm between sites, Fig. 6D2). Hence, the presence of 
multiple clusters of binding sites favoured the exchange of molecules accelerating the gain or the 
loss of synaptic molecules. 
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Fig. 6: Molecular crowding accelerate synaptic plasticity-like changes. Simulation of LTP-like (A, B) or LTD-like (C, D) 
changes in receptor trapping in synapses with 250 sites and 100 extra obstacles at t=0, distributed in 1, 2, 4 or 7 
clusters as indicated (colors in A1, C1). Sites were distanced 10 (Dist 10) or 15 (Dist 15) nm. Pbind was changed at time 
= 15s (10 independent simulations in each case). A, C: Ratio of bound molecules (with respect to those bound at 
time=15 s) vs time for LTP (A) or LTD (C) simulations. Mean (lines) ± SD (shaded areas). B, D: Ratio of bound 
molecules (with respect to those bound at time=15 s)  at 37.5s (early) or at 225s (late, shaded area) of simulation run 
for the simulations shown in A and C, respectively (median and 25-75% IQR, whiskers: 5%-95% range, one-way 
ANOVA, ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001). 
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Discussion 

 

The synaptic membrane is a crowded environment, yet the efficiency of receptor capture at the 
postsynaptic membrane is one key element in determining synaptic strength and synaptic 
plasticity. The demonstration of the mobility of receptors in and out synapses prompted the use 
of models to understand how synapses can be stable and plastic at the same time. ODE models or 
abstract representations demonstrated that synaptic strength can be maintained despite the 
dynamics of the receptors (Holcman and Triller, 2006; Earnshaw and Bressloff, 2006; 2008; 
Bressloff and Earnshaw, 2009). Czöndör et al. (2012) used numerical trajectories to demonstrate 
the impact of the location of endo and exocytotic sites on the trapping of receptors. As geometry 
and spatial parameters are important when dealing with the diffusion in the postsynaptic 
membrane (Renner et al., 2009b) other studies made use of particle-based stochastic  simulations 
to address the role of lateral diffusion and crowding (Tolle and Le Novère, 2010; Santamaria et al., 
2010). We opted for this kind of approach, reproducing as much as it is known the organization of 
scaffolding molecules, to analyze the importance of molecular crowding on the interaction 
between receptors and scaffold. 

Experimental data and models provided hints about the complex role of crowding in synapses. The 
comparison of the diffusion of lipids and receptors suggest that crowding makes the synaptic 
membrane to act as a size-exclusion column, excluding molecules from crowded areas and thus 
increasing their overall diffusivity (Renner et al., 2009b). As crowding is generated in part by 
receptors themselves, Gupta (2018) showed that diffusion was differentially affected by receptor 
trapping: overall diffusion was reduced at low and moderate receptor densities but enhanced for 
high receptor density. On the other hand, crowding can enhance the retention of receptors in 
synapses depending on its level (Santamaria et al., 2010).  

Here we show that crowding may have a bimodal effect on receptor/scaffold interactions. The 
relative importance of positive or negative effects depended upon the level of crowding, which 
was created in part by the capture of receptors themselves. Consequently, the net effect of 
crowding was determined by the compaction and distribution of scaffolding sites. It is interesting 
to note that the compaction of sites could be modulated for example by the polymerization state 
of actin cytoskeleton (Renner et al., 2009a and references therein) and therefore it could be 
regulated by neuronal activity.  

Another interesting feature of synapses is that scaffolding sites are always more abundant than 
receptors (reviewed in Choquet and Triller, 2013; Specht, 2020). The whole structure of the post-
synaptic density is proposed to be the result of a network of weak interactions that is able to 
maintain a steady state thanks to a high number of free binding sites (reviewed in Specht, 2020). 
Indeed, some of the scaffolding sites for receptors seem not to be easily available. Many receptors 
have the same residency time in synapses than molecules that are not stabilized by the scaffold 
(Renner et al., 2012) which suggest that receptors moved into the synaptic area but they could not 
establish a scaffolding interaction before diffusing away. This observation highlights the 
importance of mechanisms that help retaining receptors in the synaptic area by, for example, 
enhancing reactions. Importantly, theory indicates that molecular crowding may have two 
opposite effects on the kinetics of interactions: more crowding implies less diffusivity and reaction 
opportunities, and at the same time, more probability of re-collision and re-binding (reviewed in 
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Minton, 2006; Mugler et al., 2012). The results of our simulations suggest that this is the case of 
synapses. The frequency of bindings varied upon the local level of crowding and were increased 
by compact and crowded configurations. Benichou et al. (2010) described analytically this kind of 
spatial effect on first passage times in case of compact (crowded medium) or not compact 
exploration. They demonstrated that when a diffusing molecule explores sparsely its environment, 
the search time of the target is independent of the starting point. However, when the exploration 
is dense, for example due to crowding, the position of the starting point is not trivial. The results 
shown here are compatible with this concept of geometry-controlled kinetics and supports its 
applicability to synapses. 

Importantly, our model incorporates recent experimental data about the internal distribution of 
binding sites in the synapse. Super-resolution microscopy has revealed the nanoscale organization 
of neurotransmitter receptors, scaffolds, and signaling molecules (Broadhead et al., 
2016; MacGillavry et al., 2013; Nair et al., 2013; Hruska et al., 2018). Interestingly, multiple 
nanoclusters are not systematically observed, implying that it is a feature of a sub-population of 
synapses (Lee et al., 2017). As the postsynaptic scaffold can display internal rearrangements in 
living neurons (Kerr and Blanpied, 2012), synaptic nanoclusters seem to be dynamic and to depend 
upon neuronal activity (MacGillavry et al., 2013; Nair et al., 2013; Penacchietti et al., 
2017). Therefore, we may expect that synapses can switch within two states, containing or not 
nanoclusters of receptors and scaffold. Our results revealed that the distribution of scaffolding 
sites in more than one cluster could be permissive for synaptic plasticity. The exchange of 
molecules in crowded synapses was already enhanced in the case of two clusters and increased 
further with the number of clusters. Thus, the number of nanodomains of receptors could be a 
proxy of the readiness of synapses to undergo plasticity. This hypothesis is supported by two 
recent experimental reports. The work of Panacchietti et al. (2017) showed that inhibitory 
synapses that responded to the induction of LTP by incorporating more scaffold molecules were 
those carrying several spots of Gephyrin. Hruska et al. (2018) found multiple nanodomains in 
excitatory synapses whose number and dynamics positively correlated with the induction of LTP. 

Crowding and distribution of binding sites probably play a non-negligible role in other dynamic 
membrane domains, such as the immunological synapse (Treanor and Batista, 2010), focal 
adhesions (Rossier et al., 2012) and the initial segment of the axon (Leterrier, 2018). In addition to 
this, many membrane molecules were shown to create transient nanoclusters (i.e. channels, ion 
transporters and adhesion proteins; Shrivastava et al., 2013; Chamma et al., 2013; 2016; Heck et 
al., 2019; reviewed in Garcia-Parajo et al., 2014). It would be interesting to know whether crowding 
affects the stability of these clusters as well, offering an energetically low-cost and convenient way 
to control the function of these other signalling platforms.  
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Limitations of the study 

The main strength of simulations, namely to simplify a complex system to help its understanding, 
it is also its main weakness. Here, synapses were simulated considering only diffusing molecules 
of uniform size and immobile scaffolds. Molecules were considered as perfect spheres; other steric 
effects may exist if the irregular shape of molecules is considered. The number of simulated 
molecules was fixed, so endo and exocytosis phenomena were not taken into account. Many 
factors could be introduced to simulate a system closer to real synapses, and this will be the subject 
of future studies.  
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Tables 

Table 1: Number of bound molecules at early or late simulation times for small (s1) or large (s10) 
molecules when scaffolding sites were separated 10 nm (Pbind = 0.9), in absence or presence of the 
indicated extra obstacles at t=0. Obstacles had the same size of the molecule or not. Mean +/- SD, 
t-test against 0 obstacles condition, ns: not significant, *: p<0.05; ***: p<0.001; ****: p<0.0001. 

Distance 10 nm  Early (37.5s) Late (225s) 

s1 

 

0 obstacles  32.90 ± 1.08 39.40 ± 0.45 

100 obstacles s1 34.00 ± 1.33 (ns) 39.90 ± 0.85 (ns) 

200 obstacles s1 34.50 ± 1.45 (ns) 39.17 ± 0.48 (ns)  

100 obstacles s10 23.00 ± 1.68 (***) 30.60 ± 1.04 (****) 

200 obstacles s10 16.20 ± 0.81 (****) 24.80 ± 0.97 (****) 

s10 

0 obstacles 28.1 ± 1.34 31.3± 0.95 

100 obstacles s1 22.9 ± 1.48 (*) 31.2 ± 0.69 (ns) 

200 obstacles s1 15.7 ±1.00 (****) 24.2 ± 0.94 (****) 

100 obstacles s10 8.8 ± 0.98 (****) 11.5 ± 0.65 (****) 

200 obstacles s10 2.9 ± 0.43 (****) 2.2 ± 0.36 (****) 

 

Table 2: Number of bound molecules at early or late simulation times for small (s1) or large (s10) 
molecules when scaffolding sites were separated 15 nm (Pbind = 0.9), in absence or presence of the 
indicated extra obstacles at t=0. Obstacles had the same size of the molecule or not. Mean +/- SD, 
t-test against 0 obstacles condition, ns: not significant, **: p<0.01; ****: p<0.0001. 

Distance 15 nm Early changes (37.5s) Late changes (225s) 

s1 

 

0 obstacles  36.80 ± 3.12 36.70 ± 3.06 

100 obstacles s1 35.30 ± 3.94 (ns) 36.50 ± 3.74 (ns) 

200 obstacles s1 34.40 ± 2.59 (ns) 38.90 ± 2.80 (ns) 

100 obstacles s10 30.90 ± 4.50 (**) 36.10 ± 2.68 (ns) 

200 obstacles s10 29.00 ± 3.02 (****) 33.80 ± 3.49 (ns) 

s10 0 obstacles 32.70 ± 3.62 37.20 ± 3.19 

100 obstacles s1 30.30 ± 3.30 (ns) 34.70 ± 3.62 (ns) 

200 obstacles s1 27.50 ± 2.50 (**) 31.50 ± 3.60 (**) 

100 obstacles s10 23.70 ± 4.37 (****) 26.10 ± 10.77 (**) 

200 obstacles s10 12.60 ± 3.20 (****) 20.27 ± 3.13 (****) 
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Video legends 

Supplemental Video S1:  

Sequence (in accelerated motion) corresponding to 37 s of a simulation run at steady state. Only 
one every 75 time points are shown. Blue circles are diffusing molecules (size: 10 nm) that can bind 
to scaffolding sites (in black). Related to Figure 1. 
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Figure S2: Simulation of capture of molecules in simulated synapses. Related to Figure 1. A:

Number of bound molecules in time once the steady state was reached in synapses containing

250 sites. The distance between sites was 15 nm. A1: mean (central line) and SD (shaded

areas) during a 15s-long period, for small (s1, size: 1nm in diameter) or large (s10, size: 10 nm)

molecules with the indicated probability of binding Pbind. A2: window of 75s showing the number

of bound molecules for 10 simulations (each simulation depicted in a different colors) for large

molecules with Pbind=0.9. For the sake of clarity, only one every 75 time points are shown (one

time point corresponds to 1ms). B: Examples of synaptic areas with bound molecules

(snapshots), representative of the steady state in synapses containing 250 sites, distanced 10 nm

(B1) or 15 nm (B2). Bound molecules are shown in red (small ones) or in blue (large ones).

Empty sites are represented by grey dots.



Figure S3: Capture of molecules in simulated synapses with reduced Pfree (0.5x10-4). Related

to Figure 1. Number of bound molecules in synapses with 250 sites distanced 10 nm (A1) or

15 nm (A2), in steady state, for small (s1) or large (s10, gray area) molecules and low (B1) or

high (B2) Pbind (median, 25-75 IQR and 5%-95% range, 10 independent simulations, unpaired

t-test, ****: p<0.0001).
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Figure S4: Capture of molecules in simulated synapses with random distribution of

scaffolding sites. Related to Figure 1. A: Schemes of 250 randomly distributed binding

sites, in a synapse of 210 nm in diameter and 10 nm as a minimum distance between

sites (A1) or a synapse of 320 nm in diameter and 15 nm as the minimum distance

between sites (A2). B: Number of bound molecules in synapses as in A, in steady state,

for small (s1) or large (s10, gray area) molecules and low (B1) or high (B2) Pbind (median,

25-75 IQR and 5%-95% range, 10 independent simulations, unpaired t-test, ***: p<0.001,

****: p<0.0001).
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Figure S5: Availability of sites. Related to Figure 1. Examples of synaptic areas containing 250

sites, distanced 10 nm (A) or 15 nm (B). Sites are shown in color (size of sites not in scale)

depending on the relative number of molecules that were bound to them, for small (Size 1nm;

A1 and B1) or large (Size 10 nm; A2 and B2) molecules. Results correspond to molecules with

Pbind=0.9. In red: sites that were often occupied (more than 66% of bindings); in green: sites that

collected 33 to 66% of bindings; in blue: sites that were occasionally occupied (less than 33% of

bindings). All the sites were visited at least once during the simulation run (225s). Note that the

sites in the center of synapses are less efficient to capture large molecules (A2 and B2).
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Figure  S6: Molecular crowding slows down the capture of new molecules. Related to 

Figure 3.  Number of small (A1, A2) or large (B1,B2) molecules bound (Pbind =0.9 ) vs 

time during the whole simulation run (225s) in synapses with initially 50 free sites and 

with 0, 100 or 200 extra obstacles at t=0 as indicated (colors in A1). Sites were

separated 10 nm (A1, B1) or 15 nm (A2, B2). Mean (line) and SD (shaded areas) (10 

independent simulations).
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Figure S7: Molecular crowding favors multiple bindings and reduces the exchange of

molecules. Related to Figure 5. Binding and exchange of molecules (size=10 nm and Pbind

=0.1) in and out synapses at steady state. Synaptic areas had 50 binding sites and the

indicated number of obstacles at t=0. Sites were distanced 10 nm (A1,B1,C1,D1) or 15 nm

(A2,B2,C2,D2) and distributed in 1,2,4 or 7 clusters (color code in A1). Values are the mean ±

s.e.m. of 10 independent simulations (statistical comparisons in case of 200 obstacles: one-

way ANOVA, ns: not significant, ****:p<0.0001). A: Number of bound molecules at the end of

the simulation period (225s). B: Percentage of simulated molecules that enter at least once in

the synaptic area. C: Number of bindings (to the same or a different site) per molecule during

the whole simulation run. D: Percentage of exchange (proportion of molecules that enter and

exit the synaptic area at least once).
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Figure S8: In absence of crowding, the distribution of sites in multiple clusters promotes the

exchange of molecules. Related to Figure 5. Binding and exchange of molecules in absence of

crowding (size=1 nm and Pbind =0.9) in and out synapses at steady state. Synaptic areas had 50

binding sites and the indicated number of obstacles at t=0. Sites were distanced 10 nm

(A1,B1,C1,D1) or 15 nm (A2,B2,C2,D2) and distributed in 1,2,4 or 7 clusters (color code in A1).

Values are the mean ± s.e.m. of 10 independent simulations (statistical comparisons in case of

200 obstacles: one-way ANOVA, ns: not significant, *: p<0.05, **: p<0,01). A: Number of bound

molecules at the end of the simulation period (225s). B: Percentage of simulated molecules that

enter at least once in the synaptic area. C: Number of bindings (to the same or a different site)

per molecule during the whole simulation run. D: Percentage of exchange (proportion of

molecules that enter and exit the synaptic area at least once).
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