P. Bora and A. S. Majumdar, Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation, Stem Cell Res. Ther, vol.8, p.145, 2017.

C. N. Lumeng, S. M. Deyoung, and A. R. Saltiel, Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins, Am. J. Physiol. Endocrinol. Metab, vol.292, 2007.

A. Castoldi, C. Naffah-de-souza, N. O. Camara, and P. M. Moraes-vieira, The Macrophage Switch in Obesity Development, Front. Immunol, vol.6, 2015.

B. R. Coats, K. Q. Schoenfelt, V. C. Barbosa-lorenzi, E. Peris, C. Cui et al., Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity, vol.20, pp.3149-3161, 2017.

G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance, Science, vol.259, pp.87-91, 1993.

G. S. Hotamisligil, P. Arner, J. F. Caro, R. L. Atkinson, and B. Spiegelman, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance, J. Clin. Investig, vol.95, pp.2409-2415, 1995.

K. T. Uysal, S. M. Wiesbrock, and G. Hotamisligil, Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity, Endocrinology, vol.139, pp.4832-4838, 1998.

M. Shimobayashi, V. Albert, B. Woelnerhanssen, I. C. Frei, D. Weissenberger et al., Insulin resistance causes inflammation in adipose tissue, J. Clin. Investig, vol.128, pp.1538-1550, 2018.

Y. S. Lee, P. Li, J. Y. Huh, I. J. Hwang, M. Lu et al., Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance, Diabetes, vol.60, pp.2474-2483, 2011.

X. Gao, C. Salomon, and D. J. Freeman, Extracellular Vesicles from Adipose Tissue-A Potential Role in Obesity and Type 2 Diabetes? Front, 0202.

, Int. J. Mol. Sci, vol.2020, p.5731

L. Khamzina, P. A. Gruppuso, and J. R. Wands, Insulin signaling through insulin receptor substrate 1 and 2 in normal liver development, Gastroenterology, vol.125, pp.572-585, 2003.

P. Dandona, R. Weinstock, K. Thusu, E. Abdel-rahman, A. Aljada et al., Tumor necrosis factor-alpha in sera of obese patients: Fall with weight loss, J. Clin. Endocrinol. Metab, vol.83, pp.2907-2910, 1998.

P. A. Kern, S. Ranganathan, C. Li, L. Wood, and G. Ranganathan, Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance, Am. J. Physiol. Endocrinol. Metab, vol.280, 2001.

E. Dalmas, A. Toubal, F. Alzaid, K. Blazek, H. L. Eames et al., Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity, Nat. Med, vol.21, pp.610-618, 2015.

M. Yuan, N. Konstantopoulos, J. Lee, L. Hansen, Z. W. Li et al., Reversal of obesityand diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta, Science, vol.293, pp.1673-1677, 2001.

A. B. Mayerson, R. S. Hundal, S. Dufour, V. Lebon, D. Befroy et al., The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes, Diabetes, vol.51, pp.797-802, 2002.

K. Drareni, J. F. Gautier, N. Venteclef, and F. Alzaid, Transcriptional control of macrophage polarisation in type 2 diabetes, Semin. Immunopathol, vol.41, pp.515-529, 2019.

Y. Nakatani, H. Kaneto, D. Kawamori, M. Hatazaki, T. Miyatsuka et al., Modulation of the JNK pathway in liver affects insulin resistance status, J. Biol. Chem, vol.279, pp.45803-45809, 2004.

M. Bluher, N. Bashan, I. Shai, I. Harman-boehm, T. Tarnovscki et al., Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body Insulin sensitivity, J. Clin. Endocrinol. Metab, vol.94, pp.2507-2515, 2009.

R. G. Baker, M. S. Hayden, and S. Ghosh, NF-kappaB, inflammation, and metabolic disease, Cell Metab, vol.13, pp.11-22, 2011.

B. K. Surmi and A. H. Hasty, Macrophage infiltration into adipose tissue: Initiation, propagation and remodeling, Future Lipidol, vol.3, pp.545-556, 2008.

J. Haase, U. Weyer, K. Immig, N. Kloting, M. Bluher et al., Local proliferation of macrophages in adipose tissue during obesity-induced inflammation, Diabetologia, vol.57, pp.562-571, 2014.

G. Solinas, W. Naugler, F. Galimi, M. S. Lee, and M. Karin, Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates, Proc. Natl. Acad. Sci, vol.103, pp.16454-16459, 2006.

U. Ozcan, Q. Cao, E. Yilmaz, A. H. Lee, N. N. Iwakoshi et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes, Science, vol.306, pp.457-461, 2004.

V. Aguirre, T. Uchida, L. Yenush, R. Davis, and M. F. White, The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307), J. Biol. Chem, vol.275, pp.9047-9054, 2000.

J. F. Tanti, T. Gremeaux, E. Van-obberghen, and Y. Le-marchand-brustel, Insulin receptor substrate 1 is phosphorylated by the serine kinase activity of phosphatidylinositol 3-kinase, Biochem. J, vol.304, pp.17-21, 1994.

P. Gual, Y. Le-marchand-brustel, and J. F. Tanti, Positive and negative regulation of insulin signaling through IRS-1 phosphorylation, Biochimie, vol.87, pp.99-109, 2005.

C. H. Regnier, H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao et al., Identification and characterization of an IkappaB kinase, Cell, vol.90, pp.373-383, 1997.

M. W. Covert, T. H. Leung, J. E. Gaston, and D. Baltimore, Achieving stability of lipopolysaccharide-induced NF-kappaB activation, Science, vol.309, pp.1854-1857, 2005.

, Int. J. Mol. Sci, vol.2020, p.5731

P. Jiao, J. Ma, B. Feng, H. Zhang, J. A. Diehl et al., FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKbeta pathways, Obesity (Silver Spring, vol.19, pp.483-491, 2011.

L. Orliaguet, E. Dalmas, K. Drareni, N. Venteclef, and F. Alzaid, Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front, vol.2020
URL : https://hal.archives-ouvertes.fr/hal-02537182

B. Vandanmagsar, Y. H. Youm, A. Ravussin, J. E. Galgani, K. Stadler et al., The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance, Nat. Med, vol.17, pp.179-188, 2011.

K. Schroder, R. Zhou, and J. Tschopp, The NLRP3 inflammasome: A sensor for metabolic danger? Science, vol.327, pp.296-300, 2010.

M. Y. Donath, D. M. Schumann, M. Faulenbach, H. Ellingsgaard, A. Perren et al., Islet inflammation in type 2 diabetes: From metabolic stress to therapy, Diabetes Care, vol.31, pp.161-164, 2008.

C. Lagathu, L. Yvan-charvet, J. P. Bastard, M. Maachi, A. Quignard-boulange et al., Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes, Diabetologia, vol.49, pp.2162-2173, 2006.

D. Gao, M. Madi, C. Ding, M. Fok, T. Steele et al., Interleukin-1beta mediates macrophage-induced impairment of insulin signaling in human primary adipocytes, Am. J. Physiol. Endocrinol. Metab, vol.307, pp.289-304, 2014.

D. B. Ballak, R. Stienstra, C. J. Tack, C. A. Dinarello, and J. Van-diepen, IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance, Cytokine, vol.75, pp.280-290, 2015.

I. S. Wood, B. Wang, J. R. Jenkins, and P. Trayhurn, The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFalpha in human adipocytes, Biochem. Biophys. Res. Commun, vol.337, pp.422-429, 2005.

G. R. Zilverschoon, C. J. Tack, L. A. Joosten, B. J. Kullberg, J. W. Van-der-meer et al., Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus, Int. J. Obes, vol.32, pp.1407-1414, 2008.

R. Z. Harms, A. J. Creer, K. M. Lorenzo-arteaga, K. R. Ostlund, and N. E. Sarvetnick, Interleukin (IL)-18 Binding Protein Deficiency Disrupts Natural Killer Cell Maturation and Diminishes Circulating IL-18. Front

B. Feve and J. P. Bastard, The role of interleukins in insulin resistance and type 2 diabetes mellitus, Nat. Rev. Endocrinol, vol.5, pp.305-311, 2009.

D. W. Dodington, H. R. Desai, M. Woo, and . Jak/, STAT-Emerging Players in Metabolism, Trends Endocrinol. Metab, vol.29, pp.55-65, 2018.

C. Lagathu, J. P. Bastard, M. Auclair, M. Maachi, J. Capeau et al., Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: Prevention by rosiglitazone, Biochem. Biophys. Res. Commun, vol.311, pp.372-379, 2003.

R. J. Perry, R. L. Cardone, M. C. Petersen, D. Zhang, P. Fouqueray et al., Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents, Am. J. Physiol. Endocrinol. Metab, vol.311, pp.461-470, 2016.

R. J. Perry, J. G. Camporez, R. Kursawe, P. M. Titchenell, D. Zhang et al., Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes, Cell, vol.160, pp.745-758, 2015.

G. Sabio, M. Das, A. Mora, Z. Zhang, J. Y. Jun et al., A stress signaling pathway in adipose tissue regulates hepatic insulin resistance, Science, vol.322, pp.1539-1543, 2008.

B. Beutler, D. Greenwald, J. D. Hulmes, M. Chang, Y. C. Pan et al., Identity of tumour necrosis factor and the macrophage-secreted factor cachectin, Nature, vol.316, pp.552-554, 1985.

F. M. Torti, B. Dieckmann, B. Beutler, A. Cerami, and G. M. Ringold, A macrophage factor inhibits adipocyte gene expression: An in vitro model of cachexia, Science, vol.229, pp.867-869, 1985.

T. Gatanaga, C. D. Hwang, W. Kohr, F. Cappuccini, J. A. Lucci et al., Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients, Proc. Natl. Acad. Sci, vol.87, pp.8781-8784, 1990.

P. Peraldi, G. S. Hotamisligil, W. A. Buurman, M. F. White, and B. M. Spiegelman, Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase, J. Biol. Chem, vol.271, pp.13018-13022, 1996.

G. S. Hotamisligil, P. Arner, R. L. Atkinson, and B. M. Spiegelman, Differential regulation of the p80 tumor necrosis factor receptor in human obesity and insulin resistance, Diabetes, vol.46, pp.451-455, 1997.

M. Pandey, G. Tuncman, G. S. Hotamisligil, and F. Samad, Divergent roles for p55 and p75 TNF-alpha receptors in the induction of plasminogen activator inhibitor-1, Am. J. Pathol, vol.162, pp.933-941, 2003.

W. P. Cawthorn, J. K. Sethi, and . Tnf-alpha, FEBS Lett, vol.582, pp.117-131, 2008.

E. Nisoli, L. Briscini, A. Giordano, C. Tonello, S. M. Wiesbrock et al., Tumor necrosis factor alpha mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity, Proc. Natl. Acad. Sci, vol.97, pp.8033-8038, 2000.

K. Y. Kim, J. K. Kim, J. H. Jeon, S. R. Yoon, I. Choi et al., N-terminal kinase is involved in the suppression of adiponectin expression by TNF-alpha in 3T3-L1 adipocytes, Biochem. Biophys. Res. Commun, vol.327, pp.460-467, 2005.

G. N. Chae and S. J. Kwak, NF-kappaB is involved in the TNF-alpha induced inhibition of the differentiation of 3T3-L1 cells by reducing PPARgamma expression, Exp. Mol. Med, vol.35, pp.431-437, 2003.

J. M. Stephens, J. Lee, and P. F. Pilch, Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction, J. Biol. Chem, vol.272, pp.971-976, 1997.

H. Ruan, P. D. Miles, C. M. Ladd, K. Ross, T. R. Golub et al., Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: Implications for insulin resistance, Diabetes, vol.51, pp.3176-3188, 2002.

H. Ruan, N. Hacohen, T. R. Golub, L. Van-parijs, and H. F. Lodish, Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-kappaB activation by TNF-alpha is obligatory, Diabetes, vol.51, pp.1319-1336, 2002.

C. Schindler, J. E. Darnell, and . Jr, Transcriptional responses to polypeptide ligands: The JAK-STAT pathway, Annu. Rev. Biochem, vol.64, pp.621-651, 1995.

A. J. Richard and J. Stephens, Emerging roles of JAK-STAT signaling pathways in adipocytes, Trends Endocrinol. Metab, vol.22, pp.325-332, 2011.

A. J. Richard and J. M. Stephens, The role of JAK-STAT signaling in adipose tissue function, Biochim. Biophys. Acta, vol.1842, pp.431-439, 2014.

E. N. Gurzov, W. J. Stanley, E. G. Pappas, H. E. Thomas, and D. J. Gough, The JAK/STAT pathway in obesity and diabetes, FEBS J, vol.283, pp.3002-3015, 2016.

L. R. Filgueiras, S. L. Brandt, T. R. Ramalho, S. Jancar, and C. H. Serezani, Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice, J. Diabetes Complicat, vol.31, pp.334-339, 2017.

S. B. Vasamsetti, S. Karnewar, A. K. Kanugula, A. R. Thatipalli, J. M. Kumar et al., Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis, Diabetes, vol.64, pp.2028-2041, 2015.

H. R. Desai, T. Sivasubramaniyam, X. S. Revelo, S. A. Schroer, C. T. Luk et al., Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation

T. Sajic, A. Hainard, A. Scherl, A. Wohlwend, F. Negro et al., Szanto, I. STAT6 promotes bi-directional modulation of PKM2 in liver and adipose inflammatory cells in rosiglitazone-treated mice, Sci. Rep, 2013.

F. R. Balkwill, Interferons: From molecular biology to man. Part 1. Genetics and molecular biology of the interferon system, Microbiol. Sci, vol.3, pp.212-215, 1986.

S. Kumaran-satyanarayanan, D. El-kebir, S. Soboh, S. Butenko, M. Sekheri et al., IFN-beta is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation, Nat. Commun, vol.10, p.3471, 2019.

, Int. J. Mol. Sci, vol.2020, p.5731

G. N. Zhao, D. S. Jiang, and H. Li, Interferon regulatory factors: At the crossroads of immunity, metabolism, and disease, Biochim. Biophys. Acta, vol.1852, pp.365-378, 2015.

W. Chen, W. E. Royer, and . Jr, Structural insights into interferon regulatory factor activation, Cell Signal, vol.22, pp.883-887, 2010.

J. S. Orr, M. J. Puglisi, K. L. Ellacott, C. N. Lumeng, D. H. Wasserman et al., Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages, Diabetes, vol.61, pp.2718-2727, 2012.

J. Eguchi, X. Kong, M. Tenta, X. Wang, S. Kang et al., Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization, Diabetes, vol.62, pp.3394-3403, 2013.

J. Eguchi, X. Wang, S. Yu, E. E. Kershaw, P. C. Chiu et al., Transcriptional control of adipose lipid handling by IRF4, Cell Metab, vol.13, pp.249-259, 2011.

A. J. Freemerman, A. R. Johnson, G. N. Sacks, J. J. Milner, E. L. Kirk et al., Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype, J. Biol. Chem, vol.289, pp.7884-7896, 2014.

T. Nishizawa, J. E. Kanter, F. Kramer, S. Barnhart, X. Shen et al., Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis, Cell Rep, vol.7, pp.356-365, 2014.

J. S. Moon, S. Hisata, M. A. Park, G. M. Denicola, S. W. Ryter et al., K. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation, Cell Rep, vol.12, pp.102-115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01881040

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, vol.496, pp.238-242, 2013.

S. J. Koo and N. J. Garg, Metabolic programming of macrophage functions and pathogens control, Redox Biol, vol.24, 2019.

E. M. Palsson-mcdermott, A. M. Curtis, G. Goel, M. A. Lauterbach, F. J. Sheedy et al., Pyruvate Kinase M2 Regulates Hif-1alpha Activity and IL-1beta Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages, Cell Metab, vol.21, 2015.

P. Millet, V. Vachharajani, L. Mcphail, B. Yoza, C. E. Mccall et al., Binding to TNF-alpha mRNA Contributes to Posttranscriptional Repression in Monocytes: A Novel Mechanism of Communication between Inflammation and Metabolism, J. Immunol, vol.196, pp.2541-2551, 2016.

A. K. Jha, S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, vol.42, pp.419-430, 2015.

A. N. Seneviratne, A. Edsfeldt, J. E. Cole, C. Kassiteridi, M. Swart et al., Interferon Regulatory Factor 5 Controls Necrotic Core Formation in Atherosclerotic Lesions by Impairing Efferocytosis, vol.136, pp.1140-1154, 2017.

M. Hedl, J. Yan, and C. Abraham, IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation, Cell Rep, vol.16, pp.2442-2455, 2016.

S. C. Huang, A. M. Smith, B. Everts, M. Colonna, E. L. Pearce et al., Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation, Immunity, vol.45, pp.817-830, 2016.

Z. Tan, N. Xie, H. C. Cui, D. R. Moellering, E. Abraham et al., Pyruvate Dehydrogenase Kinase 1 Participates in Macrophage Polarization via Regulating Glucose Metabolism, J. Immunol, vol.194, pp.6082-6089, 2015.

A. H. De-mello, A. B. Costa, J. D. Engel, and G. T. Rezin, Mitochondrial dysfunction in obesity, Life Sci, vol.192, pp.26-32, 2018.

, Int. J. Mol. Sci, vol.2020, p.5731

X. Yin, I. R. Lanza, J. M. Swain, M. G. Sarr, K. S. Nair et al., Adipocyte Mitochondrial Function Is Reduced in Human Obesity Independent of Fat Cell Size, J. Clin. Endocrinol. Metab, vol.99, pp.209-216, 2014.

G. Escames, L. C. Lopez, J. A. Garcia, L. Garcia-corzo, and F. Ortiz, Acuna-Castroviejo, D. Mitochondrial DNA and inflammatory diseases, Hum. Genet, vol.131, pp.161-173, 2012.

M. J. Lopez-armada, R. R. Riveiro-naveira, C. Vaamonde-garcia, and M. N. Valcarcel-ares, Mitochondrial dysfunction and the inflammatory response, vol.13, pp.106-118, 2013.

L. Heilbronn, S. R. Smith, and E. Ravussin, Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus, Int. J. Obes. Relat. Metab. Disord, vol.28, pp.12-21, 2004.

C. H. Tsao, M. Y. Shiau, P. H. Chuang, Y. H. Chang, and J. Hwang, Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis, J. Lipid Res, vol.55, pp.385-397, 2014.

D. Namgaladze and B. Brune, Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation, Biochim. Biophys. Acta, vol.1861, pp.1796-1807, 2016.

M. Nomura, J. Liu, I. I. Rovira, E. Gonzalez-hurtado, J. Lee et al., Fatty acid oxidation in macrophage polarization, Nat. Immunol, vol.17, pp.216-217, 2016.

D. Vats, L. Mukundan, J. I. Odegaard, L. Zhang, K. L. Smith et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation, Cell Metab, vol.4, pp.13-24, 2006.

S. C. Huang, B. Everts, Y. Ivanova, D. O'sullivan, M. Nascimento et al., Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages, Nat. Immunol, vol.15, pp.846-855, 2014.

M. Furuhashi, R. Fucho, C. Z. Gorgun, G. Tuncman, H. Cao et al., Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice, J. Clin. Investig, vol.118, pp.2640-2650, 2008.

P. Calle, A. Munoz, A. Sola, and G. Hotter, CPT1a gene expression reverses the inflammatory and anti-phagocytic effect of 7-ketocholesterol in RAW264.7 macrophages. Lipids Health Dis, vol.18, 2019.

D. Namgaladze and B. Brune, Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization, Biochim. Biophys. Acta, vol.1841, pp.1329-1335, 2014.

Z. Zaslona, C. H. Serezani, K. Okunishi, D. M. Aronoff, and M. Peters-golden, Prostaglandin E2 restrains macrophage maturation via E prostanoid receptor 2/protein kinase A signaling, Blood, vol.119, pp.2358-2367, 2012.

V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E. E. Vincent et al., Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation, Cell Metab, vol.24, pp.158-166, 2016.

E. L. Mills, B. Kelly, A. Logan, A. S. Costa, M. Varma et al., Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, vol.167, pp.457-470, 2016.

A. Littlewood-evans, S. Sarret, V. Apfel, P. Loesle, J. Dawson et al., GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis, J. Exp. Med, vol.213, pp.1655-1662, 2016.

N. Keiran, V. Ceperuelo-mallafre, E. Calvo, M. I. Hernandez-alvarez, M. Ejarque et al., SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity, Nat. Immunol, vol.20, pp.581-592, 2019.

P. S. Liu, H. Wang, X. Li, T. Chao, T. Teav et al., alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming, Nat. Immunol, vol.18, pp.985-994, 2017.

B. K. Min, S. Park, H. J. Kang, D. W. Kim, H. J. Ham et al., Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype, Front. Immunol, vol.10, 2019.

, Int. J. Mol. Sci, vol.2020, p.5731

J. Meiser, L. Kramer, S. C. Sapcariu, N. Battello, J. Ghelfi et al., Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression, J. Biol. Chem, vol.291, pp.3932-3946, 2016.

K. Kang, S. M. Reilly, V. Karabacak, M. R. Gangl, K. Fitzgerald et al., Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity, Cell Metab, vol.7, pp.485-495, 2008.

J. I. Odegaard, R. R. Ricardo-gonzalez, M. H. Goforth, C. R. Morel, V. Subramanian et al., Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance, Nature, vol.447, pp.1116-1120, 2007.

A. Venkateswaran, B. A. Laffitte, S. B. Joseph, P. A. Mak, D. C. Wilpitz et al., Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha, Proc. Natl. Acad. Sci, vol.97, pp.12097-12102, 2000.

S. B. Joseph, M. N. Bradley, A. Castrillo, K. W. Bruhn, P. A. Mak et al., LXR-dependent gene expression is important for macrophage survival and the innate immune response, Cell, vol.119, pp.299-309, 2004.

C. Marathe, M. N. Bradley, C. Hong, F. Lopez, C. M. Ruiz-de-galarreta et al., The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages, J. Biol. Chem, vol.281, pp.32197-32206, 2006.

S. S. Im, L. Yousef, C. Blaschitz, J. Z. Liu, R. A. Edwards et al., Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a, Cell Metab, vol.13, pp.540-549, 2011.

J. H. Lee, P. Phelan, M. Shin, B. C. Oh, X. Han et al., SREBP-1a-stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1, Proc. Natl. Acad. Sci, vol.115, pp.12228-12234, 2018.

J. F. Varghese, R. Patel, and U. C. Yadav, Sterol regulatory element binding protein (SREBP) -1 mediates oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation through NLRP3 inflammasome activation, Cell Signal, vol.53, pp.316-326, 2019.

Y. Oishi, N. J. Spann, V. M. Link, E. D. Muse, T. Strid et al., SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism, Cell Metab, vol.25, pp.412-427, 2017.

X. Wei, H. Song, L. Yin, M. G. Rizzo, R. Sidhu et al., Fatty acid synthesis configures the plasma membrane for inflammation in diabetes, Nature, vol.539, pp.294-298, 2016.

M. R. Nejadmoghaddam, A. Minai-tehrani, R. Ghahremanzadeh, M. Mahmoudi, R. Dinarvand et al., Antibody-Drug Conjugates: Possibilities and Challenges, Avicenna J. Med. Biotechnol, vol.11, pp.3-23, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI