D. Nasralla, C. C. Coussios, H. Mergental, M. Z. Akhtar, A. J. Butler et al., A randomized trial of normothermic preservation in liver transplantation, Nature, vol.557, pp.50-56, 2018.

C. C. Jadlowiec and T. Taner, Liver transplantation: Current status and challenges, World J. Gastroenterol, vol.22, pp.4438-4445, 2016.

J. Neuberger, An update on liver transplantation: A critical review, J. Autoimmun, vol.66, pp.51-59, 2016.

I. Vodkin and A. Kuo, Extended Criteria Donors in Liver Transplantation, Clin. Liver Dis, vol.21, pp.289-301, 2017.

K. Luckett, T. E. Kaiser, K. Bari, K. Safdar, M. R. Schoech et al., Use of Hepatitis C Virus Antibody-Positive Donor Livers in Hepatitis C Nonviremic Liver Transplant Recipients, J. Am. Coll. Surg, vol.228, pp.560-567, 2019.

J. Reiling, E. Forrest, K. R. Bridle, L. J. Britton, N. Santrampurwala et al., The Implications of the Shift Toward Donation After Circulatory Death in Australia

B. Nemes, G. Gámán, W. G. Polak, F. Gelley, T. Hara et al., Extended-criteria donors in liver transplantation Part II: Reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation, Expert Rev. Gastroenterol. Hepatol, vol.10, pp.841-859, 2016.

K. H. Liss, K. S. Mccommis, K. T. Chambers, T. A. Pietka, G. G. Schweitzer et al., The impact of diet-induced hepatic steatosis in a murine model of hepatic ischemia/reperfusion injury, Liver Transplant, vol.24, pp.908-921, 2018.

H. Ni, X. Chao, J. Kaseff, F. Deng, S. Wang et al., Receptor-Interacting Serine/Threonine-Protein Kinase 3 (RIPK3)-Mixed Lineage Kinase Domain-Like Protein (MLKL)-Mediated Necroptosis Contributes to Ischemia-Reperfusion Injury of Steatotic Livers, Am. J. Pathol, vol.189, pp.1363-1374, 2019.

W. Zhong, X. Wang, Z. Rao, X. Pan, Y. Sun et al., Aging aggravated liver ischemia and reperfusion injury by promoting hepatocyte necroptosis in an endoplasmic reticulum stress-dependent manner, Ann. Transl

X. Wang, M. E. O'brien, J. Yu, C. Xu, Q. Zhang et al., Prolonged Cold Ischemia Induces Necroptotic Cell Death in Ischemia-Reperfusion Injury and Contributes to Primary Graft Dysfunction after Lung Transplantation, Am. J. Respir. Cell Mol. Biol, vol.61, pp.244-256, 2019.

C. L. Jay, V. Lyuksemburg, D. P. Ladner, E. Wang, J. C. Caicedo et al., Ischemic cholangiopathy after controlled donation after cardiac death liver transplantation: A meta-analysis

, Ann. Surg, vol.253, pp.259-264, 2011.

S. Ramachandran, J. M. Liaw, J. Jia, S. C. Glasgow, W. Liu et al., Ischemia-reperfusion injury in rat steatotic liver is dependent on NFkappaB P65 activation, Transpl. Immunol, vol.26, pp.201-206, 2012.

H. Van-goor, C. Rosman, J. Grond, K. Kooi, G. H. Wubbels et al., Translocation of bacteria and endotoxin in organ donors, Arch. Surg, vol.129, pp.1063-1066, 1994.

K. Vajdova, R. Smrekova, M. Kukan, J. Jakubovsky, N. Van-rooijen et al., Endotoxin-induced aggravation of preservation-reperfusion injury of rat liver and its modulation, J. Hepatol, vol.32, pp.112-120, 2000.

T. Kojima, T. Yamamoto, M. Murata, H. Chiba, Y. Kokai et al., Regulation of the blood-biliary barrier: Interaction between gap and tight junctions in hepatocytes, Med. Electron Microsc, vol.36, pp.157-164, 2003.

Z. A. Sherif, A. Saeed, S. Ghavimi, S. M. Nouraie, A. O. Laiyemo et al., Global Epidemiology of Nonalcoholic Fatty Liver Disease and Perspectives on US Minority Populations, Dig. Dis. Sci, vol.61, pp.1214-1225, 2016.

M. E. Rinella, E. Alonso, S. Rao, P. Whitington, J. Fryer et al., Body mass index as a predictor of hepatic steatosis in living liver donors, Liver Transplant, vol.7, pp.409-414, 2001.

A. Shamsaeefar, S. Nikeghbalian, K. Kazemi, M. Mansorian, S. Gholami et al., Discarded organs at Shiraz Transplant Center, Exp. Clin. Transpl, vol.12, pp.178-181, 2014.

M. Hamar and M. Selzner, Steatotic donor livers: Where is the risk-benefit maximized? Liver Transplant, vol.23, pp.34-39, 2017.

A. M. D'alessandro, M. Kalayoglu, H. W. Sollinger, R. M. Hoffmann, A. Reed et al., The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation, Transplantation, vol.51, pp.157-163, 1991.

M. J. Chu, A. J. Dare, A. R. Phillips, and A. S. Bartlett, Donor Hepatic Steatosis and Outcome After Liver Transplantation: A Systematic Review, J. Gastrointest. Surg, vol.19, pp.1713-1724, 2015.

L. Mccormack, P. Dutkowski, A. M. El-badry, and P. Clavien, Liver transplantation using fatty livers: Always feasible?, J. Hepatol, vol.54, pp.1055-1062, 2011.

H. Crowley, W. D. Lewis, F. Gordon, R. Jenkins, and U. Khettry, Steatosis in donor and transplant liver biopsies, Hum. Pathol, vol.31, pp.1209-1213, 2000.

J. Briceno, G. Solorzano, and C. Pera, A proposal for scoring marginal liver grafts, Transpl. Int, vol.13, pp.249-252, 2000.

F. E. Sharkey, I. Lytvak, T. J. Prihoda, K. V. Speeg, W. K. Washburn et al., High-grade microsteatosis and delay in hepatic function after orthotopic liver transplantation, Hum. Pathol, vol.42, pp.1337-1342, 2011.

D. Verran, T. Kusyk, D. Painter, J. Fisher, D. Koorey et al., Clinical experience gained from the use of 120 steatotic donor livers for orthotopic liver transplantation, Liver Transplant, vol.9, pp.500-505, 2003.

J. A. Perez-daga, J. Santoyo, M. A. Suarez, J. A. Fernandez-aguilar, C. Ramirez et al., Influence of degree of hepatic steatosis on graft function and postoperative complications of liver transplantation, Transplant. Proc, vol.38, pp.2468-2470, 2006.

R. J. Ploeg, A. M. ;-d'alessandro, S. J. Knechtle, M. D. Stegall, J. D. Pirsch et al., Risk factors for primary dysfunction after liver transplantation-A multivariate analysis, Transplantation, vol.55, pp.807-813, 1993.

A. K. Chui, K. Haghighi, D. Painter, M. Jayasundera, G. Hall et al., Donor fatty (steatotic) liver allografts in orthotopic liver transplantation, Transplant. Proc, vol.30, pp.3286-3287, 1998.

Q. Y. Zhang, Q. F. Zhang, and D. Z. Zhang, The Impact of Steatosis on the Outcome of Liver Transplantation: A Meta-Analysis, BioMed Res. Int, 2019.

A. Hui, S. Kawasaki, M. Makuuchi, J. Nakayama, T. Ikegami et al., Liver injury following normothermic ischemia in steatotic rat liver, Hepatology, vol.20, pp.1287-1293, 1994.

K. Wada, K. Fujimoto, Y. Fujikawa, Y. Shibayama, H. Mitsui et al., Sinusoidal Stenosis As The Cause Of Portal Hypertension In Choline Deficient Diet Induced Fatty Cirrhosis Of The Rat Liver, Pathol. Int, vol.24, pp.207-217, 1974.

S. Ijaz, W. Yang, M. C. Winslet, and A. M. Seifalian, Impairment of Hepatic Microcirculation in Fatty Liver, vol.10, pp.447-456, 2003.

S. Todo, A. J. Demetris, L. Makowka, L. Teperman, L. Podesta et al., Primary nonfunction of hepatic allografts with preexisting fatty infiltration, Transplantation, vol.47, pp.903-905, 1989.

M. Angelico, Donor liver steatosis and graft selection for liver transplantation: A short review, Eur. Rev. Med. Pharmacol. Sci, vol.9, pp.295-297, 2005.

K. D. Chavin, S. Yang, H. Z. Lin, J. Chatham, V. P. Chacko et al., Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion, J. Biol. Chem, vol.274, pp.5692-5700, 1999.

A. M. El-badry, W. Moritz, C. Contaldo, Y. Tian, R. Graf et al., Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids, Hepatology, vol.45, pp.855-863, 2007.

L. A. Videla, R. Rodrigo, J. Araya, and J. Poniachik, Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease. Free Radic, Biol. Med, vol.37, pp.1499-1507, 2004.

P. A. Clavien, P. R. Harvey, and S. M. Strasberg, Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies, Transplantation, vol.53, pp.957-978, 1992.

J. F. Crismale and J. Ahmad, Endoscopic Management of Biliary Issues in the Liver Transplant Patient, Gastrointest. Endosc. Clin. N. Am, vol.29, pp.237-256, 2019.

M. Bekheit, M. Catanzano, S. Shand, I. Ahmed, E. S. El-kayal et al., The role of graft reperfusion sequence in the development of non-anastomotic biliary strictures following orthotopic liver transplantation: A meta-analysis, Hepatobiliary Pancreat. Dis. Int, vol.18, pp.4-11, 2019.

C. Macías-gómez and J. M. Dumonceau, Endoscopic management of biliary complications after liver transplantation: An evidence-based review, World J. Gastrointest. Endosc, vol.7, pp.606-616, 2015.

M. L. Deoliveira, W. Jassem, R. Valente, S. E. Khorsandi, G. Santori et al., Biliary complications after liver transplantation using grafts from donors after cardiac death: Results from a matched control study in a single large volume center, Ann. Surg, vol.254, pp.716-722, 2011.

Y. Zhai, R. W. Busuttil, and J. W. Kupiec-weglinski, Liver ischemia and reperfusion injury: New insights into mechanisms of innate-adaptive immune-mediated tissue inflammation, Am. J. Transplant, vol.11, pp.1563-1569, 2011.

A. J. Kowaltowski, R. F. Castilho, M. T. Grijalba, E. J. Bechara, and A. E. Vercesi, Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation, J. Biol. Chem, vol.271, pp.2929-2934, 1996.

A. L. Russ, K. M. Haberstroh, and A. E. Rundell, Experimental strategies to improve in vitro models of renal ischemia, Exp. Mol. Pathol, vol.83, pp.143-159, 2007.

M. Y. Wu, G. T. Yiang, W. T. Liao, A. P. Tsai, Y. L. Cheng et al., Current Mechanistic Concepts in Ischemia and Reperfusion Injury, Cell. Physiol. Biochem, vol.46, pp.1650-1667, 2018.

M. Selzner, N. Selzner, W. Jochum, R. Graf, and P. Clavien, Increased ischemic injury in old mouse liver: An ATP-dependent mechanism. Liver Transplant, vol.13, pp.382-390, 2007.

J. J. Lemasters, S. Ji, and R. G. Thurman, Centrilobular injury following hypoxia in isolated, perfused rat liver, Science, vol.213, pp.661-663, 1981.

M. Bilzer and A. L. Gerbes, Preservation injury of the liver: Mechanisms and novel therapeutic strategies, J. Hepatol, vol.32, pp.508-515, 2000.

A. B. Lentsch, A. Kato, H. Yoshidome, K. M. Mcmasters, and M. J. Edwards, Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury, Hepatology, vol.32, pp.169-173, 2000.

R. A. Weisiger, I. Fridovich, and . Superoxide-dismutase, ORGANELLE SPECIFICITY. J. Biol. Chem, vol.248, pp.3582-3592, 1973.

A. L. Nieminen, G. J. Gores, B. E. Wray, Y. Tanaka, B. Herman et al., Calcium dependence of bleb formation and cell death in hepatocytes, Cell Calcium, vol.9, pp.237-246, 1988.

M. Miura, Active participation of cell death in development and organismal homeostasis, Dev. Growth Differ, vol.53, pp.125-136, 2011.

J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer, vol.26, pp.239-257, 1972.

U. Ziegler and P. Groscurth, Morphological features of cell death, News Phys. Sci, vol.19, pp.124-128, 2004.

P. Davidovich, C. J. Kearney, and S. J. Martin, Inflammatory outcomes of apoptosis, necrosis and necroptosis, Biol. Chem, vol.395, pp.1163-1171, 2014.

S. J. Martin and C. M. Henry, Distinguishing between apoptosis, necrosis, necroptosis and other cell death modalities, Methods, vol.61, pp.87-89, 2013.

M. S. D'arcy, Cell death: A review of the major forms of apoptosis, necrosis and autophagy, Cell Biol. Int, vol.43, pp.582-592, 2019.

T. Holmes, . St, and . George's, Hospital: Case Of Necrosis Of The Ulna Following Diffuse Inflammation After Injury (And Probably Simple Fracture): Removal Of A Sequestrum Involving The Whole Shaft Of The Bone For Seven Inches Of Its Length, Assoc. Med. J, vol.1856, 1029.

G. Gulliver, On Necrosis; being an experimental inquiry into the agency ascribed to the absorbents, in the removal of the sequestrum, Med. Chir. Trans. 1838, vol.21, pp.1-19

Y. S. Cho, S. Challa, D. Moquin, R. Genga, T. D. Ray et al., Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation, Cell, vol.137, pp.1112-1123, 2009.

A. Linkermann, D. R. Green, and . Necroptosis, N. Engl. J. Med, vol.370, pp.455-465, 2014.

T. Vanden-berghe, A. Linkermann, S. Jouan-lanhouet, H. Walczak, and P. Vandenabeele, Regulated necrosis: The expanding network of non-apoptotic cell death pathways, Nat. Rev. Mol. Cell Biol, vol.15, pp.135-147, 2014.

A. Kaczmarek, P. Vandenabeele, D. V. Krysko, and . Necroptosis, The release of damage-associated molecular patterns and its physiological relevance, Immunity, vol.38, pp.209-223, 2013.

T. Vanden-berghe, N. Vanlangenakker, E. Parthoens, W. Deckers, M. Devos et al., Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features, Cell Death Differ, vol.17, pp.922-930, 2010.

D. V. Krysko, T. Vanden-berghe, K. D'herde, and P. Vandenabeele, Apoptosis and necrosis: Detection, discrimination and phagocytosis, vol.44, pp.205-221, 2008.

W. Tonnus and A. Linkermann, The in vivo evidence for regulated necrosis, Immunol. Rev, vol.277, pp.128-149, 2017.

D. V. Krysko, P. Agostinis, O. Krysko, A. D. Garg, C. Bachert et al., Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation, Trends Immunol, vol.32, pp.157-164, 2011.

L. Galluzzi, O. Kepp, F. K. Chan, and G. Kroemer, Necroptosis: Mechanisms and Relevance to Disease, Annu. Rev. Pathol, vol.12, pp.103-130, 2017.

S. He, L. Wang, L. Miao, T. Wang, F. Du et al., Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha, Cell, vol.137, pp.1100-1111, 2009.

S. Li, L. G. Ning, X. H. Lou, and G. Q. Xu, Necroptosis in inflammatory bowel disease and other intestinal diseases, World J. Clin, vol.6, pp.745-752, 2018.

A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap et al., Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat. Chem. Biol, vol.1, pp.112-119, 2005.

A. Linkermann, J. H. Brasen, M. Darding, M. K. Jin, A. B. Sanz et al., Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury, Proc. Natl. Acad. Sci, vol.110, pp.12024-12029, 2013.

Y. Wang, Q. Hao, J. M. Florence, B. G. Jung, A. K. Kurdowska et al., Influenza Virus Infection Induces ZBP1 Expression and Necroptosis in Mouse Lungs, Front. Cell. Infect. Microbiol, vol.9, p.286, 2019.

Y. K. Dhuriya and D. Sharma, Necroptosis: A regulated inflammatory mode of cell death, J. Neuroinflamm, vol.15, 0199.

Z. Huang, T. Zhou, X. Sun, Y. Zheng, B. Cheng et al., Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation, Cell Death Differ, vol.25, pp.180-189, 2018.

U. Ros, A. Peña-blanco, K. Hänggi, U. Kunzendorf, S. Krautwald et al., Necroptosis Execution Is Mediated by Plasma Membrane Nanopores Independent of Calcium, Cell Rep, vol.19, pp.175-187, 2017.

N. Vanlangenakker, M. J. Bertrand, P. Bogaert, P. Vandenabeele, and T. Vanden-berghe, TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members, Cell Death Dis, 2011.

H. Häcker and M. Karin, Regulation and function of IKK and IKK-related kinases, Sci. STKE, 2006.

J. Hitomi, D. E. Christofferson, A. Ng, J. Yao, A. Degterev et al., Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway, Cell, vol.135, pp.1311-1323, 2008.

M. A. O'donnell, D. Legarda-addison, P. Skountzos, W. C. Yeh, and A. T. Ting, Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling, Curr. Biol, vol.17, pp.418-424, 2007.

K. Moriwaki and F. K. Chan, RIP3: A molecular switch for necrosis and inflammation, Genes Dev, vol.27, pp.1640-1649, 2013.

J. Li, T. Mcquade, A. B. Siemer, J. Napetschnig, K. Moriwaki et al., The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, vol.150, pp.339-350, 2012.

Z. Cai, S. Jitkaew, J. Zhao, H. C. Chiang, S. Choksi et al., Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis, Nat. Cell Biol, vol.16, pp.55-65, 2014.

L. Sun, H. Wang, Z. Wang, S. He, S. Chen et al., Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase, Cell, vol.148, pp.213-227, 2012.

J. Zhao, S. Jitkaew, Z. Cai, S. Choksi, Q. Li et al., Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis, Proc. Natl. Acad. Sci, vol.109, pp.5322-5327, 2012.

Y. N. Gong, C. Guy, H. Olauson, J. U. Becker, M. Yang et al., ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences, Cell, vol.169, pp.286-300, 2017.

S. Zargarian, I. Shlomovitz, Z. Erlich, A. Hourizadeh, Y. Ofir-birin et al., Phosphatidylserine externalization, "necroptotic bodies" release, and phagocytosis during necroptosis, PLoS Biol, vol.15, 2017.

H. Zhao, T. Jaffer, S. Eguchi, Z. Wang, A. Linkermann et al., Role of necroptosis in the pathogenesis of solid organ injury, Cell Death Dis, vol.6, 1975.

A. Pefanis, F. L. Ierino, J. M. Murphy, and P. J. Cowan, Regulated necrosis in kidney ischemia-reperfusion injury, Kidney Int, vol.96, pp.291-301, 2019.

F. K. Chan, J. Shisler, J. G. Bixby, M. Felices, L. Zheng et al., A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses, J. Biol. Chem, vol.278, pp.51613-51621, 2003.

N. Holler, R. Zaru, O. Micheau, M. Thome, A. Attinger et al., Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule, Nat. Immunol, vol.1, pp.489-495, 2000.

D. Ofengeim and J. Yuan, Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death, Nat. Rev. Mol. Cell Biol, vol.14, pp.727-736, 2013.

X. Sun, J. Yin, M. A. Starovasnik, W. J. Fairbrother, and V. M. Dixit, Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3, J. Biol. Chem, vol.277, pp.9505-9511, 2002.

Y. H. Park, M. S. Jeong, H. H. Park, and S. B. Jang, Formation of the death domain complex between FADD and RIP1 proteins in vitro, Biochim. Biophys. Acta, vol.1834, pp.292-300, 2013.

M. A. O'donnell, E. Perez-jimenez, A. Oberst, A. Ng, R. Massoumi et al., Caspase 8 inhibits programmed necrosis by processing CYLD, Nat. Cell Biol, vol.13, pp.1437-1442, 2011.

D. M. Moquin, T. Mcquade, and F. K. Chan, CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis, PLoS ONE, vol.8, 2013.

M. B. Afonso, P. M. Rodrigues, A. L. Simão, D. Ofengeim, T. Carvalho et al., Activation of necroptosis in human and experimental cholestasis, Cell Death Dis, 2016.

A. Majdi, L. Aoudjehane, V. Ratziu, T. Islam, M. B. Afonso et al., Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease, J. Hepatol, vol.72, pp.627-635, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02400735

G. M. Kasof, J. C. Prosser, D. Liu, M. V. Lorenzi, and B. C. Gomes, The RIP-like kinase, RIP3, induces apoptosis and NF-kappaB nuclear translocation and localizes to mitochondria, FEBS Lett, vol.473, pp.285-291, 2000.

S. Feng, Y. Yang, Y. Mei, L. Ma, D. E. Zhu et al., Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain, Cell. Signal, vol.19, pp.2056-2067, 2007.

W. J. Kaiser, J. W. Upton, A. B. Long, D. Livingston-rosanoff, L. P. Daley-bauer et al., RIP3 mediates the embryonic lethality of caspase-8-deficient mice, Nature, vol.471, pp.368-372, 2011.

S. Roychowdhury, M. R. Mcmullen, S. G. Pisano, X. Liu, and L. E. Nagy, Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury, Hepatology, vol.57, pp.1773-1783, 2013.

S. Wang, H. M. Ni, K. Dorko, S. C. Kumer, T. M. Schmitt et al., Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury, Oncotarget, vol.7, pp.17681-17698, 2016.

M. B. Afonso, P. M. Rodrigues, T. Carvalho, M. Caridade, P. Borralho et al., Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis, Clin. Sci, 2015.

A. Linkermann, F. De-zen, J. Weinberg, U. Kunzendorf, and S. Krautwald, Programmed necrosis in acute kidney injury, Nephrol. Dial. Transplant, vol.27, pp.3412-3419, 2012.

C. Liedtke, J. M. Bangen, J. Freimuth, N. Beraza, D. Lambertz et al., Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury, Gastroenterology, vol.141, pp.2176-2187, 2011.

I. L. Ch'en, J. S. Tsau, J. D. Molkentin, M. Komatsu, and S. M. Hedrick, Mechanisms of necroptosis in T cells, J. Exp. Med, vol.208, pp.633-641, 2011.

S. R. Mulay, J. Desai, S. V. Kumar, J. N. Eberhard, D. Thomasova et al., Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis, Nat. Commun, 2016.

J. M. Hildebrand, M. C. Tanzer, I. S. Lucet, S. N. Young, S. K. Spall et al., Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death, Proc. Natl. Acad. Sci, vol.111, pp.15072-15077, 2014.

J. M. Murphy, Q. Zhang, S. N. Young, M. L. Reese, F. P. Bailey et al., A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties, Biochem. J, vol.457, pp.323-334, 2014.

G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The protein kinase complement of the human genome, Science, vol.298, pp.1912-1934, 2002.

X. Chen, W. Li, J. Ren, D. Huang, W. T. He et al., Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death, Cell Res, vol.24, pp.105-121, 2014.

H. Wang, L. Sun, L. Su, J. Rizo, L. Liu et al., Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3, Mol. Cell, vol.54, pp.133-146, 2014.

C. Günther, G. W. He, A. E. Kremer, J. M. Murphy, E. J. Petrie et al., The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis, J. Clin. Investig, vol.126, pp.4346-4360, 2016.

J. M. Murphy, P. E. Czabotar, J. M. Hildebrand, I. S. Lucet, J. G. Zhang et al., The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism, Immunity, vol.39, pp.443-453, 2013.

S. Alvarez-diaz, C. P. Dillon, N. Lalaoui, M. C. Tanzer, D. A. Rodriguez et al., The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis, Immunity, vol.45, pp.513-526, 2016.

H. Jaeschke, Reactive oxygen and ischemia/reperfusion injury of the liver, Chem.-Biol. Interact, vol.79, pp.115-136, 1991.

H. A. Rüdiger, R. Graf, and P. A. Clavien, Liver ischemia: Apoptosis as a central mechanism of injury, J. Investig. Surg, vol.16, pp.149-159, 2003.

T. Nakagawa, S. Shimizu, T. Watanabe, O. Yamaguchi, K. Otsu et al., Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, vol.434, pp.652-658, 2005.

V. Kohli, M. Selzner, J. F. Madden, R. C. Bentley, and P. Clavien, Endothelial Cell And Hepatocyte Deaths Occur By Apoptosis After Ischemia-Reperfusion Injury In The Rat Liver. Transplantation, vol.67, pp.1099-1105, 1999.

S. Natori, M. Selzner, K. L. Valentino, L. C. Fritz, A. Srinivasan et al., Apoptosis of Sinusoidal Endothelial Cells Occurs During Liver Preservation Injury By A Caspase-Dependent Mechanism1, Transplantation, vol.68, pp.89-96, 1999.

R. Cursio, J. Gugenheim, J. E. Ricci, D. Crenesse, P. Rostagno et al., A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis, FASEB J, vol.13, pp.253-261, 1999.

S. Natori, H. Higuchi, P. Contreras, and G. J. Gores, The caspase inhibitor IDN-6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury, Liver Transplant, vol.9, pp.278-284, 2003.

J. S. Gujral, T. J. Bucci, A. Farhood, and H. Jaeschke, Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: Apoptosis or necrosis? Hepatology, vol.33, pp.397-405, 2001.

B. Grasl-kraupp, B. Ruttkay-nedecky, H. Koudelka, K. Bukowska, W. Bursch et al., In situ detection of fragmented DNA (tunel assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: A cautionary note, Hepatology, vol.21, pp.1465-1468, 1995.

J. S. Gujral, T. R. Knight, A. Farhood, M. L. Bajt, and H. Jaeschke, Mode of Cell Death after Acetaminophen Overdose in Mice: Apoptosis or Oncotic Necrosis?, Toxicol. Sci, vol.67, pp.322-328, 2002.

H. Jaeschke and J. J. Lemasters, Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury, Gastroenterology, vol.125, pp.1246-1257, 2003.

M. Yang, D. J. Antoine, J. L. Weemhoff, R. E. Jenkins, A. Farhood et al., Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice, Liver Transplant, vol.20, pp.1372-1382, 2014.

K. Kimura, K. Shirabe, T. Yoshizumi, K. Takeishi, S. Itoh et al., Ischemia-Reperfusion Injury in Fatty Liver Is Mediated by Activated NADPH Oxidase 2 in Rats, Transplantation, vol.100, pp.791-800, 2016.

G. Zhao, C. Fu, L. Wang, L. Zhu, Y. Yan et al., Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury

J. Hong, S. Kim, and S. Lee, Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion, Toxicol. Appl. Pharmacol, vol.308, pp.1-10, 2016.

D. Rosentreter, D. Funken, J. Reifart, K. Mende, M. Rentsch et al., RIP1-Dependent Programmed Necrosis is Negatively Regulated by Caspases During Hepatic Ischemia-Reperfusion, Shock, vol.44, pp.72-76, 2015.

W. K. Saeed, D. W. Jun, K. Jang, Y. J. Chae, J. S. Lee et al., Does necroptosis have a crucial role in hepatic ischemia-reperfusion injury?, PLoS ONE, vol.12, 2017.

X. Yang, T. Yi, S. Zhang, Z. Xu, Z. Yu et al., Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury

S. Chen, X. Lv, B. Hu, Z. Shao, B. Wang et al., RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death, Apoptosis, vol.22, pp.626-638, 2017.

Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry et al., Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology, vol.64, pp.73-84, 2016.

S. Roychowdhury, R. L. Mccullough, C. Sanz-garcia, P. Saikia, N. Alkhouri et al., Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury, Hepatology, vol.64, pp.1518-1533, 2016.

J. Gautheron, M. Vucur, F. Reisinger, D. V. Cardenas, C. Roderburg et al., A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis, EMBO Mol. Med, vol.6, pp.1062-1074, 2014.

A. G. Sutter, A. P. Palanisamy, J. D. Ellet, M. G. Schmidt, R. G. Schnellmann et al., Intereukin-10 and Kupffer cells protect steatotic mice livers from ischemia-reperfusion injury, Eur. Cytokine Netw, vol.25, pp.69-76, 2014.

S. Li, T. Takahara, X. Li, M. Fujino, T. Sugiyama et al., 5-Aminolevulinic acid combined with ferrous iron ameliorate ischemia-reperfusion injury in the mouse fatty liver model, Biochem. Biophys. Res. Commun, vol.470, pp.900-906, 2016.

E. Esteban-zubero, F. A. García-gil, L. López-pingarrón, M. A. Alatorre-jiménez, J. M. Ramírez et al., Melatonin role preventing steatohepatitis and improving liver transplantation results, Cell. Mol. Life Sci, vol.73, pp.2911-2927, 2016.

N. Yamada, T. Karasawa, T. Wakiya, A. Sadatomo, H. Ito et al., Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: Potential role of ferroptosis, Am. J. Transplant, vol.20, pp.1606-1618, 2020.

R. K. Malireddi, S. Kesavardhana, and T. Kanneganti, Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis), vol.9, 2019.

P. Samir, R. K. Malireddi, and T. Kanneganti, The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front, Cell. Infect. Microbiol, vol.10, 2020.

S. J. Martin, Cell death and inflammation: The case for IL-1 family cytokines as the canonical DAMPs of the immune system, FEBS J, vol.283, pp.2599-2615, 2016.

C. J. Kearney and S. J. Martin, An Inflammatory Perspective on Necroptosis, vol.65, pp.965-973, 2017.

J. J. Oppenheim and D. Yang, Alarmins: Chemotactic activators of immune responses, Curr. Opin. Immunol, vol.17, pp.359-365, 2005.

A. D. Garg, A. Kaczmarek, O. Krysko, P. Vandenabeele, D. V. Krysko et al., ER stress-induced inflammation: Does it aid or impede disease progression?, Trends Mol. Med, vol.18, pp.589-598, 2012.

L. Zitvogel, O. Kepp, and G. Kroemer, Decoding cell death signals in inflammation and immunity, Cell, vol.140, pp.798-804, 2010.

U. Andersson, H. Yang, and H. Harris, High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells, Semin. Immunol, vol.38, pp.40-48, 2018.

S. Mihm, Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver, Int. J. Mol. Sci, vol.19, p.3104, 2018.

D. Bertheloot, E. Latz, and . Hmgb1, IL-1?, IL-33 and S100 proteins: Dual-function alarmins, Cell Mol. Immunol, vol.14, pp.43-64, 2017.

A. R. Vicentino, V. C. Carneiro, D. Allonso, R. F. Guilherme, C. F. Benjamim et al., Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis, Front. Immunol, vol.9, 1979.

D. Yang, Z. Han, and J. J. Oppenheim, Alarmins and immunity, Immunol. Rev, vol.280, pp.41-56, 2017.

P. Scaffidi, T. Misteli, and M. E. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation, Nature, vol.418, pp.191-195, 2002.

I. Shlomovitz, Z. Erlich, M. Speir, S. Zargarian, N. Baram et al., Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model, FEBS J, vol.286, pp.507-522, 2019.

J. M. Leyva-castillo, C. Galand, C. Kam, O. Burton, M. Gurish et al., Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity, vol.50, pp.1262-1275, 1264.

M. Ferhat, A. Robin, S. Giraud, S. Sena, J. M. Goujon et al., Endogenous IL-33 Contributes to Kidney Ischemia-Reperfusion Injury as an Alarmin, J. Am. Soc. Nephrol, vol.29, pp.1272-1288, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01929544

H. O. Yazdani, H. W. Chen, S. Tohme, S. Tai, D. J. Van-der-windt et al., IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation, J. Hepatol, 2017.

S. Lemay, H. Rabb, G. Postler, and A. K. Singh, Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury, Transplantation, vol.69, pp.959-963, 2000.

D. Uhlmann, G. Gaebel, B. Armann, S. Ludwig, J. Hess et al., Attenuation of proinflammatory gene expression and microcirculatory disturbances by endothelin A receptor blockade after orthotopic liver transplantation in pigs, Surgery, vol.139, pp.61-72, 2006.

X. D. Fan, H. B. Zheng, X. S. Fan, and S. Lu, Increase of SOX9 promotes hepatic ischemia/reperfusion (IR) injury by activating TGF-?1, Biochem. Biophys. Res. Commun, vol.503, pp.215-221, 2018.

K. J. Kelly, W. W. Williams, . Jr, R. B. Colvin, S. M. Meehan et al., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J. Clin. Investig, vol.97, pp.1056-1063, 1996.

N. Goes, J. Urmson, V. Ramassar, and P. F. Halloran, Ischemic acute tubular necrosis induces an extensive local cytokine response. Evidence for induction of interferon-gamma, transforming growth factor-beta 1, granulocyte-macrophage colony-stimulating factor, interleukin-2, and interleukin-10, Transplantation, vol.59, pp.565-572, 1995.

J. Gerlach, A. Jorres, R. Nohr, K. Zeilinger, G. Spatkowski et al., Local liberation of cytokines during liver preservation, Transpl. Int, vol.12, pp.261-265, 1999.

M. C. Oz, H. Liao, Y. Naka, A. Seldomridge, D. N. Becker et al., Ischemia-induced interleukin-8 release after human heart transplantation. A potential role for endothelial cells, Circulation, vol.92, 1995.

D. V. Krysko, A. D. Garg, A. Kaczmarek, O. Krysko, P. Agostinis et al., Immunogenic cell death and DAMPs in cancer therapy, Nat. Rev. Cancer, vol.12, pp.860-875, 2012.

M. R. Elliott, F. B. Chekeni, P. C. Trampont, E. R. Lazarowski, A. Kadl et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.461, pp.282-286, 2009.

M. E. Choi, D. R. Price, S. W. Ryter, and A. M. Choi, Necroptosis: A crucial pathogenic mediator of human disease, JCI Insight, 2019.

M. A. Zimmerman, I. Kam, H. Eltzschig, and A. Grenz, Biological implications of extracellular adenosine in hepatic ischemia and reperfusion injury, Am. J. Transplant, vol.13, pp.2524-2529, 2013.

A. D. Garg, D. V. Krysko, T. Verfaillie, A. Kaczmarek, G. B. Ferreira et al., A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death, EMBO J, vol.31, pp.1062-1079, 2012.

A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko et al., Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation, Biochim. Biophys. Acta, pp.53-71, 2010.

J. W. Dear, K. J. Simpson, M. P. Nicolai, J. H. Catterson, J. Street et al., Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury, J. Immunol, vol.187, pp.3347-3352, 2011.

D. E. Christofferson and J. Yuan, Cyclophilin A release as a biomarker of necrotic cell death, Cell Death Differ, vol.17, pp.1942-1943, 2010.

S. Ahrens, S. Zelenay, D. Sancho, P. Han?, S. Kjaer et al., F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells, Immunity, vol.36, pp.635-645, 2012.

S. Orozco and A. Oberst, RIPK3 in cell death and inflammation: The good, the bad, and the ugly, Immunol. Rev, vol.277, pp.102-112, 2017.

A. D. Garg, D. V. Krysko, P. Vandenabeele, and P. Agostinis, DAMPs and PDT-mediated photo-oxidative stress: Exploring the unknown, Photochem. Photobiol. Sci, vol.10, pp.670-680, 2011.

L. Galluzzi, O. Kepp, and G. Kroemer, Enlightening the impact of immunogenic cell death in photodynamic cancer therapy, EMBO J, vol.31, pp.1055-1057, 2012.

W. Van-eden, R. Spiering, F. Broere, and R. Van-der-zee, A case of mistaken identity: HSPs are no DAMPs but DAMPERs, Cell Stress Chaperones, vol.17, pp.281-292, 2012.

F. J. Northington, R. Chavez-valdez, E. M. Graham, S. Razdan, E. B. Gauda et al., Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI, J. Cereb. Blood Flow Metab, vol.31, pp.178-189, 2011.

H. Huang, J. Evankovich, W. Yan, G. Nace, L. Zhang et al., Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice, Hepatology, vol.54, pp.999-1008, 2011.

J. Tang and S. Zhuang, Histone acetylation and DNA methylation in ischemia/reperfusion injury, Clin. Sci, vol.133, pp.597-609, 2019.

M. I. Arshad, C. Piquet-pellorce, and M. Samson, IL-33 and HMGB1 alarmins: Sensors of cellular death and their involvement in liver pathology, Liver Int, vol.32, pp.1200-1210, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00874209

K. Zhu, W. Liang, Z. Ma, D. Xu, S. Cao et al., Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression, Cell Death Dis, vol.9, p.500, 2018.

D. Yang, Y. V. Postnikov, Y. Li, P. Tewary, G. De-la-rosa et al., High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses, J. Exp. Med, vol.209, pp.157-171, 2012.

H. England, H. R. Summersgill, M. E. Edye, N. J. Rothwell, and D. Brough, Release of interleukin-1? or interleukin-1? depends on mechanism of cell death, J. Biol. Chem, vol.289, pp.15942-15950, 2014.

T. Eigenbrod, J. H. Park, J. Harder, Y. Iwakura, and G. Núñez, Cutting edge: Critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells, J. Immunol, vol.181, pp.8194-8198, 2008.

A. U. Lüthi, S. P. Cullen, E. A. Mcneela, P. J. Duriez, I. S. Afonina et al., Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases, Immunity, vol.31, pp.84-98, 2009.

Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal et al., Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.464, pp.104-107, 2010.

Q. Hu, H. Ren, J. Ren, Q. Liu, J. Wu et al., Released Mitochondrial DNA Following Intestinal Ischemia Reperfusion Induces the Inflammatory Response and Gut Barrier Dysfunction, Sci. Rep, vol.8, p.7350, 2018.

D. Kang, S. H. Kim, and N. Hamasaki, Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions. Mitochondrion, vol.7, pp.39-44, 2007.

Y. Shi, J. E. Evans, and K. L. Rock, Molecular identification of a danger signal that alerts the immune system to dying cells, Nature, vol.425, pp.516-521, 2003.

M. Czapiga, J. L. Gao, A. Kirk, and J. Lekstrom-himes, Human platelets exhibit chemotaxis using functional N-formyl peptide receptors, Exp. Hematol, vol.33, pp.73-84, 2005.

A. E. Moghaddam, K. H. Gartlan, L. Kong, and Q. J. Sattentau, Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress, J. Immunol, vol.187, pp.1626-1633, 2011.

M. K. Pratten, A. M. Brooke, S. C. Broome, and F. Beck, The effect of epidermal growth factor, insulin and transferrin on the growth-promoting properties of serum depleted by repeated culture of postimplantation rat embryos, Development, vol.104, pp.137-145, 1988.

K. Karikó, H. Ni, J. Capodici, M. Lamphier, and D. Weissman, mRNA is an endogenous ligand for Toll-like receptor 3, J. Biol. Chem, vol.279, pp.12542-12550, 2004.

J. Lewis, Vertebrate development: Genes and segmentation, Nature, vol.341, pp.382-383, 1989.

G. R. Wickman, L. Julian, K. Mardilovich, S. Schumacher, J. Munro et al., Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs, Cell Death Differ, vol.20, pp.1293-1305, 2013.

R. Donato, RAGE: A single receptor for several ligands and different cellular responses: The case of certain S100 proteins, Curr. Mol. Med, vol.7, pp.711-724, 2007.

P. Sun, Q. Li, Q. Zhang, L. Xu, and J. Y. Han, Upregulated expression of S100A8 in mice brain after focal cerebral ischemia reperfusion, World J. Emerg. Med, vol.4, pp.210-214, 2013.

Y. Li, B. Chen, X. Yang, C. Zhang, Y. Jiao et al.,

, Signaling Causes Mitochondrial Dysfunction and Cardiomyocyte Death in Response to Ischemic/Reperfusion Injury, Circulation, vol.140, pp.751-764, 2019.

C. K. Yang and S. D. He, Heat shock protein 90 regulates necroptosis by modulating multiple signaling effectors, Cell Death Dis, 2016.

X. M. Zhao, Z. Chen, J. B. Zhao, P. P. Zhang, Y. F. Pu et al., Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis, Cell Death Dis, 2016.

S. Martens, S. Hofmans, W. Declercq, K. Augustyns, and P. Vandenabeele, Inhibitors Targeting RIPK1/RIPK3: Old and New Drugs, Trends Pharmacol. Sci, vol.41, pp.209-224, 2020.

Y. Ren, Y. Su, L. Sun, S. He, L. Meng et al., Discovery of a Highly Potent, Selective, and Metabolically Stable Inhibitor of Receptor-Interacting Protein 1 (RIP1) for the Treatment of Systemic Inflammatory Response Syndrome, J. Med. Chem, vol.60, pp.972-986, 2017.

M. C. De-almagro, T. Goncharov, A. Izrael-tomasevic, S. Duttler, M. Kist et al., Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death, Cell Death Differ, vol.24, pp.26-37, 2017.

F. Yang, L. Shang, S. Wang, Y. Liu, H. Ren et al., TNF?-Mediated Necroptosis Aggravates Ischemia-Reperfusion Injury in the Fatty Liver by Regulating the Inflammatory Response, Oxid. Med. Cell. Longev, 2019.

H. Xu, X. Du, G. Liu, S. Huang, W. Du et al., The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation, Mol. Metab, vol.23, pp.14-23, 2019.

W. Ding, L. Shang, J. F. Huang, N. Li, D. Chen et al., Receptor interacting protein 3-induced RGC-5 cell necroptosis following oxygen glucose deprivation, BMC Neurosci, vol.16, p.49, 2015.

A. Degterev and A. Linkermann, Generation of small molecules to interfere with regulated necrosis, Cell. Mol. Life Sci, vol.73, pp.2251-2267, 2016.

F. Angeli, J. P. Schneider, M. Proneth, B. Tyurina, Y. Y. Tyurin et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat. Cell Biol, vol.16, pp.1180-1191, 2014.

P. Vandenabeele, S. Grootjans, N. Callewaert, and N. Takahashi, Necrostatin-1 blocks both RIPK1 and IDO: Consequences for the study of cell death in experimental disease models, Cell Death Differ, vol.20, pp.185-187, 2013.

W. J. Kaiser, H. Sridharan, C. Huang, P. Mandal, J. W. Upton et al., Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL, J. Biol. Chem, vol.288, pp.31268-31279, 2013.

M. Najjar, C. Suebsuwong, S. S. Ray, R. J. Thapa, J. L. Maki et al., Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1, Cell Rep, vol.10, pp.1850-1860, 2015.

L. Aoudjehane, J. Gautheron, W. Le-goff, C. Goumard, J. Gilaizeau et al., Novel defatting strategies reduce lipid accumulation in primary human culture models of liver steatosis
URL : https://hal.archives-ouvertes.fr/hal-02735664

K. Jayant, I. Reccia, F. Virdis, and A. M. Shapiro, The Role of Normothermic Perfusion in Liver Transplantation (TRaNsIT Study): A Systematic Review of Preliminary Studies, HPB Surg, vol.6360423, 2018.

J. Jia, Y. Nie, J. Li, H. Xie, L. Zhou et al., A Systematic Review and Meta-Analysis of Machine Perfusion vs. Static Cold Storage of Liver Allografts on Liver Transplantation Outcomes: The Future Direction of Graft Preservation

M. Cypel, J. C. Yeung, T. Machuca, M. Chen, L. G. Singer et al., Experience with the first 50 ex vivo lung perfusions in clinical transplantation, J. Thorac. Cardiovasc. Surg, vol.144, pp.1200-1206, 2012.

M. L. Nicholson and S. A. Hosgood, Renal transplantation after ex vivo normothermic perfusion: The first clinical study, Am. J. Transplant, vol.13, pp.1246-1252, 2013.

R. Ravikumar, W. Jassem, H. Mergental, N. Heaton, D. Mirza et al., Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial, Am. J. Transplant, vol.16, pp.1779-1787, 2016.

H. Marecki, A. Bozorgzadeh, R. J. Porte, H. G. Leuvenink, K. Uygun et al., Liver ex situ machine perfusion preservation: A review of the methodology and results of large animal studies and clinical trials, Liver Transplant, vol.23, pp.679-695, 2017.

M. Bessems, B. M. Doorschodt, J. L. Kolkert, R. L. Vetelainen, A. K. Van-vliet et al., Preservation of steatotic livers: A comparison between cold storage and machine perfusion preservation. Liver Transplant, vol.13, pp.497-504, 2007.

S. D. Henry, E. Nachber, J. Tulipan, J. Stone, C. Bae et al., Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation, Am. J. Transplant, vol.12, pp.2477-2486, 2012.

O. De-rougemont, S. Breitenstein, B. Leskosek, A. Weber, R. Graf et al., One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death, Ann. Surg, vol.250, pp.674-683, 2009.

T. Minor, S. Manekeller, M. Sioutis, and F. Dombrowski, Endoplasmic and vascular surface activation during organ preservation: Refining upon the benefits of machine perfusion, Am. J. Transplant, vol.6, pp.1355-1366, 2006.

T. Minor, S. Akbar, R. Tolba, and F. Dombrowski, Cold preservation of fatty liver grafts: Prevention of functional and ultrastructural impairments by venous oxygen persufflation, J. Hepatol, vol.32, pp.105-111, 2000.

T. Minor, J. Stegemann, A. Hirner, and M. Koetting, Impaired autophagic clearance after cold preservation of fatty livers correlates with tissue necrosis upon reperfusion and is reversed by hypothermic reconditioning, Liver Transplant, vol.15, pp.798-805, 2009.

M. Koetting, B. Lüer, P. Efferz, A. Paul, and T. Minor, Optimal time for hypothermic reconditioning of liver grafts by venous systemic oxygen persufflation in a large animal model, Transplantation, vol.91, pp.42-47, 2011.

A. Franchello, N. Gilbo, E. David, A. Ricchiuti, R. Romagnoli et al., Ischemic preconditioning (IP) of the liver as a safe and protective technique against ischemia/reperfusion injury

, Am. J. Transplant, vol.9, pp.1629-1639, 2009.

D. Degli-esposti, M. Sebagh, P. Pham, M. Reffas, C. Poüs et al., Ischemic preconditioning induces autophagy and limits necrosis in human recipients of fatty liver grafts, decreasing the incidence of rejection episodes, Cell Death Dis, 2011.

B. Koneru, A. Shareef, G. Dikdan, K. Desai, K. M. Klein et al., The Ischemic Preconditioning Paradox in Deceased Donor Liver Transplantation-Evidence from a Prospective Randomized Single Blind Clinical Trial, Am. J. Transplant, vol.7, pp.2788-2796, 2007.

W. Jassem, E. Xystrakis, Y. G. Ghnewa, M. Yuksel, O. Pop et al., Normothermic Machine Perfusion (NMP) Inhibits Proinflammatory Responses in the Liver and Promotes Regeneration, Hepatology, vol.70, pp.682-695, 2019.

J. Reiling, N. Butler, A. Simpson, P. Hodgkinson, C. Campbell et al., Assessment and transplantation of orphan donor livers-A "back-to-base" approach to normothermic machine perfusion, Liver Transplant, 2020.

R. W. Jamieson, M. Zilvetti, D. Roy, D. Hughes, A. Morovat et al., Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model, Transplantation, vol.92, pp.289-295, 2011.

D. Nagrath, H. Xu, Y. Tanimura, R. Zuo, F. Berthiaume et al., Metabolic preconditioning of donor organs: Defatting fatty livers by normothermic perfusion ex vivo, Metab. Eng, vol.11, pp.274-283, 2009.

Y. L. Boteon, J. Attard, A. Boteon, L. Wallace, G. Reynolds et al., Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery, Liver Transplant, vol.25, pp.1007-1022, 2019.

B. Banan, R. Watson, M. Xu, Y. Lin, and W. Chapman, Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers, Liver Transplant, vol.22, pp.979-993, 2016.

S. Raigani, C. Carroll, S. Griffith, C. Pendexter, I. Rosales et al., Improvement of steatotic rat liver function with a defatting cocktail during ex situ normothermic machine perfusion is not directly related to liver fat content, PLoS, vol.2020, 232886.

Q. Liu, A. Nassar, L. Buccini, G. Iuppa, B. Soliman et al., Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion, Liver Transplant, vol.24, pp.233-245, 2018.