Z. A. Memish, S. Perlman, M. D. Van-kerkhove, and A. Zumla, Middle East respiratory syndrome. The Lancet, vol.395, pp.1063-1077, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02100825

D. Hui and A. Zumla, Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features, Infect Dis Clin North Am, vol.33, issue.4, pp.869-889, 2019.

, Coronavirus disease (COVID-2019) situation reports

F. Institut-de-veille-sanitaire,

J. Lagier, M. Million, P. Gautret, P. Colson, S. Cortaredona et al., Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis, Travel Med Infect Dis, p.101791, 2020.

P. Chatterjee, T. Anand, K. J. Singh, R. Rasaily, R. Singh et al.,

, Healthcare workers & SARS-CoV-2 infection in India: a casecontrol investigation in the time of COVID-19, Indian J Med Res, vol.151, issue.5, pp.459-467, 2020.

M. O. Shittu and O. I. Afolami, Improving the efficacy of Chloroquine and Hydroxychloroquine against SARS-CoV-2 may require Zinc additives -a better synergy for future COVID-19 clinical trials, Infez Med, vol.28, pp.192-197, 2020.

M. O. Enzmann, M. P. Erickson, C. J. Grindeland, S. Lopez, S. E. Hoover et al., Treatment and preliminary outcomes of 150 acute care patients with COVID-19 in a rural health system in the Dakotas, Epidemiol Infect, vol.148, p.124, 2020.

V. Paar, B. Wernly, Z. Zhou, L. J. Motloch, U. C. Hoppe et al., Anti-coagulation for COVID-19 treatment: both anti-thrombotic and anti-inflammatory?, J Thromb Thrombolysis, 2020.

M. Z. Tay, C. M. Poh, L. Rénia, P. A. Macary, and L. Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nat Rev Immunol, 2020.

W. Wang, Y. Xu, R. Gao, R. Lu, K. Han et al., Detection of SARS-CoV-2 in Different Types of Clinical Specimens, JAMA, 2020.

H. Su, M. Yang, C. Wan, L. Yi, F. Tang et al., Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China, Kidney Int, vol.98, issue.1, pp.219-227, 2020.

G. Tavazzi, C. Pellegrini, M. Maurelli, M. Belliato, F. Sciutti et al., Myocardial localization of coronavirus in COVID-19 cardiogenic shock, Eur J Heart Fail, vol.22, issue.5, pp.911-915, 2020.

F. Xiao, M. Tang, X. Zheng, Y. Liu, X. Li et al., Evidence for Gastrointestinal Infection of SARS-CoV-2, Gastroenterology, vol.158, issue.6, pp.1831-1833, 2020.

F. Qi, S. Qian, S. Zhang, and Z. Zhang, Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses, Biochem Biophys Res Commun, vol.526, issue.1, pp.135-140, 2020.

X. Pan, D. Xu, H. Zhang, W. Zhou, L. Wang et al., Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis, Intensive Care Med, vol.46, issue.6, pp.1114-1116, 2020.

C. Ziegler, S. J. Allon, S. K. Nyquist, I. M. Mbano, V. N. Miao et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues, Cell, 2020.

V. G. Puelles, M. Lütgehetmann, M. T. Lindenmeyer, J. P. Sperhake, M. N. Wong et al., Multiorgan and Renal Tropism of SARS-CoV-2, N Engl J Med, 2020.

Y. Zhang, W. Cao, W. Jiang, M. Xiao, Y. Li et al., Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients, J Thromb Thrombolysis, 2009.

M. Xiao, Y. Zhang, S. Zhang, X. Qin, P. Xia et al., Brief Report: Anti-phospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol, 2020.

D. Bertin, A. Brodovitch, A. Beziane, S. Hug, A. Bouamri et al., Anti-cardiolipin IgG autoantibodies are an independent risk factor of COVID-19 severity. Arthritis Rheumatol, 2020.

P. De-chambrun, M. Frere, C. Miyara, M. Amoura, Z. Martin-toutain et al., High frequency of antiphospholipid antibodies in critically ill COVID-19 patients: a link with hypercoagulability?, J Intern Med, 2020.

S. Zayet, T. Klopfenstein, R. Kov?cs, S. Stancescu, and B. Hagenkötter, Acute Cerebral Stroke with Multiple Infarctions and COVID-19, France, 2020. Emerg Infect Dis, vol.26, 2020.

Y. Zhang, M. Xiao, S. Zhang, P. Xia, W. Cao et al., Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19, N Engl J Med, vol.8, p.38, 2020.

N. R. Patil, E. S. Herc, and M. Girgis, Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection, Hematol Oncol Stem Cell Ther, 2020.

W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, vol.426, issue.6965, pp.450-454, 2003.

A. Shulla, T. Heald-sargent, G. Subramanya, J. Zhao, S. Perlman et al., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry, J Virol, vol.85, issue.2, pp.873-882, 2011.

B. Engelmann and S. Massberg, Thrombosis as an intravascular effector of innate immunity, Nat Rev Immunol, vol.13, issue.1, pp.34-45, 2013.

M. Josephine, L. Lew, and L. Jeong-ho, A third of coronavirus cases may be 'silent carriers', classified Chinese data suggests. South China Morning Post, 2020.

H. Kong and C. ,

C. Wu, X. Chen, Y. Cai, J. Xia, X. Zhou et al., Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China, JAMA Intern Med, 2020.

P. Mehta, D. F. Mcauley, M. Brown, E. Sanchez, R. S. Tattersall et al., COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 2020.

L. Tan, Q. Wang, D. Zhang, J. Ding, Q. Huang et al., Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study, Sig Transduct Target Ther, vol.5, issue.1, p.33, 2020.

Y. Lavin, D. Winter, R. Blecher-gonen, D. E. Keren-shaul, H. Merad et al., Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment, Cell, vol.159, issue.6, pp.1312-1326, 2014.

S. Chakarov, H. Y. Lim, L. Tan, S. Y. Lim, P. See et al., Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches, Science, vol.363, issue.6432, p.964, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02358158

S. L. Gibbings, S. M. Thomas, S. M. Atif, A. L. Mccubbrey, A. N. Desch et al.,

, Three unique interstitial macrophages in the murine lung at steady state, Am J Respir Cell Mol Biol, vol.57, issue.1, pp.66-76, 2017.

J. Schyns, Q. Bai, C. Ruscitti, C. Radermecker, D. Schepper et al., Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung, Nat Commun, vol.10, issue.1, p.3964, 2019.

B. B. Ural, S. T. Yeung, P. Damani-yokota, J. C. Devlin, M. De-vries et al.,

C. Melenotte and . Al, Identification of a nerve-associated, lung-resident interstitial e1807836-16

, macrophage subset with distinct localization and immunoregulatory properties, Sci Immunol, vol.5, issue.45, p.8756, 2020.

M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu et al., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat Med, vol.26, issue.6, pp.842-844, 2020.

A. J. Byrne, J. E. Powell, B. J. O'sullivan, P. P. Ogger, A. Hoffland et al., Dynamics of human monocytes and airway macrophages during healthy aging and after transplant, J Exp Med, vol.217, issue.3, p.20191236, 2020.

N. P. Goplen, S. Huang, B. Zhu, I. S. Cheon, Y. M. Son et al., Tissue-Resident Macrophages Limit Pulmonary CD8 Resident Memory T Cell Establishment, Front Immunol, vol.10, p.2332, 2019.

T. Wu, Y. Hu, Y. Lee, K. R. Bouchard, A. Benechet et al., Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection, J Leukoc Biol, vol.95, issue.2, pp.215-224, 2014.

L. M. Wakim, J. Smith, I. Caminschi, M. H. Lahoud, and J. A. Villadangos, Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection, Mucosal Immunol, vol.8, issue.5, pp.1060-1071, 2015.

A. Pizzolla, T. H. Nguyen, S. Sant, J. Jaffar, T. Loudovaris et al., Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles, J Clin Invest, vol.128, issue.2, pp.721-733, 2018.

S. R. Mcmaster, A. N. Wein, P. R. Dunbar, S. L. Hayward, E. K. Cartwright et al., Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma, Mucosal Immunol, vol.11, issue.4, pp.1071-1078, 2018.

J. Zhao, J. Zhao, A. K. Mangalam, R. Channappanavar, C. Fett et al., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses, Immunity, vol.44, issue.6, pp.1379-1391, 2016.

C. U. Duerr, . Cda-m, B. C. Mindt, M. Rubio, A. P. Meli et al., Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells, Nat Immunol, vol.17, issue.1, pp.65-75, 2016.

K. Moro, H. Kabata, M. Tanabe, S. Koga, N. Takeno et al., Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses, Nat Immunol, vol.17, issue.1, pp.76-86, 2016.

S. Seo, P. Kuffa, S. Kitamoto, H. Nagao-kitamoto, J. Rousseau et al., Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells, Nat Commun, vol.6, p.8010, 2015.

M. Wallace, M. Malkovsky, and S. R. Carding, Gamma/delta T lymphocytes in viral infections, J Leukoc Biol, vol.58, issue.3, pp.277-283, 1995.

F. Poccia, C. Agrati, C. Castilletti, L. Bordi, C. Gioia et al., Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells, J Infect Dis, vol.193, issue.9, pp.1244-1249, 2006.

Z. Wang, Y. Wan, C. Qiu, S. Quiñones-parra, Z. Zhu et al., Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8 + T cells, Nat Commun, vol.6, p.6833, 2015.

P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, vol.579, issue.7798, pp.270-273, 2020.

M. Ahn, D. E. Anderson, Q. Zhang, C. W. Tan, B. L. Lim et al., Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host, Nat Microbiol, vol.4, issue.5, pp.789-799, 2019.

P. Zhou, Y. T. Chionh, S. E. Irac, M. Ahn, J. Ng et al., Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages, Sci Rep, vol.6, issue.1, p.38597, 2016.

M. Guilliams, F. Ginhoux, C. Jakubzick, S. H. Naik, N. Onai et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nat Rev Immunol, vol.14, issue.8, pp.571-578, 2014.

Z. Zhang, D. Xu, Y. Li, J. L. Shi, M. Wang et al., Longitudinal alteration of circulating dendritic cell subsets and its correlation with steroid treatment in patients with severe acute respiratory syndrome, Clin Immunol, vol.116, issue.3, pp.225-235, 2005.

T. Yoshikawa, T. Hill, K. Li, C. J. Peters, and C. Tseng, Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells, J Virol, vol.83, issue.7, pp.3039-3048, 2009.

J. Zhao, J. Zhao, K. Legge, and S. Perlman, Age-related increases in PGD (2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice, J Clin Invest, vol.121, issue.12, pp.4921-4930, 2011.

A. Silvin, C. I. Yu, X. Lahaye, F. Imperatore, J. Brault et al., Constitutive resistance to viral infection in human CD141 + dendritic cells, Sci Immunol, vol.2, issue.13, p.8071, 2017.

P. See, C. Dutertre, J. Chen, P. Günther, N. Mcgovern et al., Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.356, issue.6342, 2017.

N. Ruffin, E. Gea-mallorquí, F. Brouiller, M. Jouve, A. Silvin et al., Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors, Proc Natl Acad Sci U S A, vol.116, issue.43, pp.21685-21693, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02395893

L. Cervantes-barragan, R. Züst, F. Weber, M. Spiegel, K. S. Lang et al., Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon, Blood, vol.109, issue.3, pp.1131-1137, 2007.

S. Liu, D. J. Sanchez, R. Aliyari, S. Lu, and G. Cheng, Systematic identification of type I and type II interferon-induced antiviral factors, Proc Nat Acad Sci, vol.109, issue.11, pp.4239-4244, 2012.

J. Hadjadj, N. Yatim, L. Barnabei, A. Corneau, J. Boussier et al., Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients, Science, p.6027, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02900830

X. Chen, X. Yang, Y. Zheng, Y. Yang, Y. Xing et al., SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex, Protein Cell, vol.5, issue.5, pp.369-381, 2014.

P. Lui, L. Wong, C. Fung, K. Siu, M. Yeung et al., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3, Emerg Microbes Infect, vol.5, p.39, 2016.

R. Honce, E. A. Karlsson, N. Wohlgemuth, L. D. Estrada, V. A. Meliopoulos et al., Obesity-Related Microenvironment Promotes Emergence of Virulent Influenza Virus Strains, mBio, vol.11, issue.2, 2020.

E. Terán-cabanillas and J. Hernández, Role of leptin and SOCS3 in inhibiting the type I interferon response during obesity, Inflammation, vol.40, issue.1, pp.58-67, 2017.

M. J. Ciancanelli, S. Huang, P. Luthra, H. Garner, Y. Itan et al.,

, Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency, Science, vol.348, issue.6233, pp.448-453, 2015.

N. Hernandez, I. Melki, H. Jing, T. Habib, S. Huang et al., Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency

, J Exp Med, vol.215, issue.10, pp.2567-2585, 2018.

E. Sallard, F. Lescure, Y. Yazdanpanah, F. Mentre, and N. Peiffer-smadja,

, Antiviral Res, vol.178, p.104791, 2020.

Q. Zhou, V. Chen, C. P. Shannon, X. Wei, X. Xiang et al., Interferon-?2b treatment for COVID-19, Front. Immunol, vol.11, p.1061, 2020.

M. L. Dediego, J. L. Nieto-torres, J. M. Jimenez-guardeño, J. A. Regla-nava, C. Castaño-rodriguez et al., Coronavirus virulence genes with main focus on SARS-CoV envelope gene, Virus Res, vol.194, pp.124-137, 2014.

M. M. Angelini, M. Akhlaghpour, B. W. Neuman, and M. J. Buchmeier, Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles moscona A, editor. mBio, vol.4, pp.524-537, 2013.

A. L. Totura, A. Whitmore, S. Agnihothram, A. Schäfer, M. G. Katze et al., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection, mBio, vol.6, issue.3, pp.638-00615, 2015.

H. H. Wong, T. S. Fung, S. Fang, M. Huang, M. T. Le et al., Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology, vol.515, pp.165-175, 2018.

Y. Yang, L. Zhang, H. Geng, Y. Deng, B. Huang et al., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists, Protein Cell, vol.4, issue.12, pp.951-961, 2013.

M. Selinger, Towards formal representation and evaluation of arguments, Argumentation, vol.28, issue.3, pp.379-393, 2014.

R. Channappanavar, A. R. Fehr, R. Vijay, M. Mack, J. Zhao et al., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice, Cell Host Microbe, vol.19, issue.2, pp.181-193, 2016.

M. J. Cameron, L. Ran, L. Xu, A. Danesh, J. F. Bermejo-martin et al., Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome, J Virol, vol.81, issue.16, pp.8692-8706, 2007.

H. Zhang, Q. Hu, M. Zhang, F. Yang, C. Peng et al., Bach2 deficiency leads to spontaneous expansion of IL-4-producing T follicular helper cells and autoimmunity, Front Immunol, vol.10, p.2050, 2019.

V. A. Scheuplein, J. Seifried, A. H. Malczyk, L. Miller, L. Höcker et al.,

, High secretion of interferons by human plasmacytoid dendritic cells upon recognition of middle east respiratory syndrome coronavirus perlman S, editor, J Virol, vol.89, issue.7, pp.3859-3869, 2015.

J. Zhao, C. Wohlford-lenane, J. Zhao, F. E. Lane, T. E. Mccray et al., Intranasal treatment with Poly(I{middle dot}C) protects aged mice from lethal respiratory virus infections, J Virol, vol.86, issue.21, pp.11416-11424, 2012.

J. V. Pérez-girón, A. Belicha-villanueva, E. Hassan, S. Gómez-medina, J. Cruz et al., Mucosal polyinosinic-polycytidylic acid improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity, J Immunol, vol.193, issue.3, pp.1324-1332, 2014.

T. Sheahan, T. E. Morrison, W. Funkhouser, S. Uematsu, S. Akira et al., MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV Subbarao K, editor, PLoS Pathog, vol.4, issue.12, p.1000240, 2008.

K. A. Kulcsar, C. M. Coleman, S. E. Beck, and M. B. Frieman, Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection, JCI Insight, vol.4, issue.20, p.131774, 2019.

Y. Chen and L. Li, SARS-CoV-2: virus dynamics and host response, Lancet Infect Dis, pp.30235-30243, 2020.

L. Poon, K. H. Chan, O. K. Wong, T. Cheung, I. Ng et al., Detection of SARS coronavirus in patients with severe acute respiratory syndrome by conventional and real-time quantitative reverse transcription-PCR assays, Clin Chem, vol.50, issue.1, pp.67-72, 2004.

Y. Imai, K. Kuba, G. G. Neely, R. Yaghubian-malhami, T. Perkmann et al., Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury, Cell, vol.133, issue.2, pp.235-249, 2008.

M. Gómez, J. M. Periasamy, P. Dutertre, C. Irving, A. T. Ng et al., Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto, Sci Rep, vol.6, p.37796, 2016.

R. Channappanavar, J. Zhao, and S. Perlman, T cell-mediated immune response to respiratory coronaviruses, Immunol Res, vol.59, issue.1--3, pp.118-128, 2014.

H. Chu, J. Zhou, B. Wong, C. Li, J. Chan et al., Middle east respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways, J Infect Dis, vol.213, issue.6, pp.904-914, 2016.

J. Zhao, J. Zhao, N. Van-rooijen, and S. Perlman, Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice, PLoS Pathog, vol.5, issue.10, p.1000636, 2009.

K. Bahl, S. Kim, C. Calcagno, D. Ghersi, R. Puzone et al., IFN-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections, J Immunol, vol.176, issue.7, pp.4284-4295, 2006.

C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang et al., Dysregulation of immune response in patients with COVID-19 in Wuhan, China, Clin Infect Dis, 2020.

Z. Liu, W. Long, M. Tu, S. Chen, Y. Huang et al., Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19, J Infect, 2020.

J. Zhao, J. Zhao, and S. Perlman, T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice, JVI, vol.84, issue.18, pp.9318-9325, 2010.

M. Pope, S. W. Chung, T. Mosmann, J. L. Leibowitz, R. M. Gorczynski et al., Resistance of naive mice to murine hepatitis virus strain 3 requires development of a Th1, but not a Th2, response, whereas pre-existing antibody partially protects against primary infection, J Immunol, vol.156, pp.3342-3349, 1996.

D. L. Turner and D. L. Farber, Mucosal resident memory CD4 T cells in protection and immunopathology, Front Immunol, vol.5, p.331, 2014.

S. L. Swain, K. K. Mckinstry, and T. M. Strutt, Expanding roles for CD4+ T cells in immunity to viruses, Nat Rev Immunol, vol.12, issue.2, pp.136-148, 2012.

J. R. Teijaro, D. Turner, Q. Pham, E. J. Wherry, L. Lefrançois et al., Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection, J I, vol.187, issue.11, pp.5510-5514, 2011.

X. Xu and X. Gao, Immunological responses against SARS-coronavirus infection in humans, Cell Mol Immunol, vol.1, pp.119-122, 2004.

Y. Wang, W. Sin, G. Xu, Y. Wong, T. Pang et al., T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS, J Virol, vol.78, issue.11, pp.5612-5618, 2004.

L. Yang, H. Peng, Z. Zhu, G. Li, Z. Huang et al., Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients, Clin Immunol, vol.120, issue.2, pp.171-178, 2006.

H. Peng, L. Yang, L. Wang, J. Li, J. Huang et al., Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients, Virology, vol.351, issue.2, pp.466-475, 2006.

H. Oh, A. Chia, C. Chang, H. N. Leong, K. L. Ling et al., Engineering T cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope, J Virol, vol.85, issue.20, pp.10464-10471, 2011.

Z. Wang, L. Zhu, T. Nguyen, Y. Wan, S. Sant et al., Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease, Nat Commun, vol.9, issue.1, p.824, 2018.

A. R. Everitt, C. S. Pertel, T. John, S. P. Wash, R. S. Smith et al., IFITM3 restricts the morbidity and mortality associated with influenza, Nature, vol.484, issue.7395, pp.519-523, 2012.

Z. Wang, A. Zhang, Y. Wan, X. Liu, C. Qiu et al., Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection, Proc Natl Acad Sci, vol.111, issue.2, pp.769-774, 2014.

S. Baize, E. M. Leroy, M. C. Georges-courbot, M. Capron, J. Lansoud-soukate et al., Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients, Nat Med, vol.5, issue.4, pp.423-426, 1999.

N. Wauquier, P. Becquart, C. Padilla, S. Baize, and E. M. Leroy, Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis, PLoS Negl Trop Dis, vol.4, issue.10, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02292512

A. K. Mcelroy, R. S. Akondy, C. W. Davis, A. H. Ellebedy, A. K. Mehta et al., Human Ebola virus infection results in substantial immune activation, Proc Natl Acad Sci, vol.112, issue.15, pp.4719-4724, 2015.

A. Grifoni, D. Weiskopf, S. I. Ramirez, J. Mateus, J. M. Dan et al., Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals, Cell, vol.181, issue.7, pp.1489-1501, 2020.

B. Diao, C. Wang, Y. Tan, X. Chen, Y. Liu et al., Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19), Infect. Dis, p.2020

X. Zhang, Y. Tan, Y. Ling, G. Lu, F. Liu et al., Viral and host factors related to the clinical outcome of COVID-19, Nature, 2020.

Y. Liu, Y. Pang, Z. Hu, M. Wu, C. Wang et al., Thymosin alpha 1 (T?1) reduces the mortality of severe COVID-19 by restoration of lymphocytopenia and reversion of exhausted T cells, Clin Infect Dis, 2020.

D. Mathew, J. R. Giles, A. E. Baxter, D. A. Oldridge, A. R. Greenplate et al., Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications, Science, p.8511, 2020.

H. Lv, N. C. Wu, T. Tsang, O. Yuan, M. Perera et al., Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections, Cell Rep, vol.18, p.107725, 2020.

A. Grifoni, J. Sidney, Y. Zhang, R. H. Scheuermann, B. Peters et al., A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2, Cell Host Microbe, vol.27, issue.4, pp.671-680, 2020.

J. Mateus, A. Grifoni, A. Tarke, J. Sidney, S. I. Ramirez et al., Selective and crossreactive SARS-CoV-2 T cell epitopes in unexposed humans, Science, p.3871, 2020.

L. Bert, N. Tan, A. T. Kunasegaran, K. Tham, C. Hafezi et al., SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls, Nature, 2020.

L. E. Escobar, A. Molina-cruz, and C. Barillas-mury, BCG vaccine protection from severe coronavirus disease 2019 (COVID-19), Proc Natl Acad Sci, 2009.

D. Klinger, I. Blass, N. Rappoport, and M. Linial, Significantly improved COVID-19 outcomes in countries with higher BCG vaccination coverage: a multivariable analysis. Vaccines (Basel), vol.8, p.3, 2020.

A. Miller, M. J. Reandelar, K. Fasciglione, V. Roumenova, Y. Li et al., Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study, 2020.

M. K. Berg, Q. Yu, C. E. Salvador, M. I. Kitayama, and S. , Mandated Bacillus Calmette-Guérin (BCG) vaccination predicts flattened curves for the spread of COVID-19, Sci. Adv, vol.6, issue.32, p.1463, 2020.

M. Stuart, E. A. Black, and R. E. , Acute lower respiratory infection among bacille calmette-guérin (BCG)-vaccinated children, Pediatrics, vol.133, issue.1, pp.73-81, 2014.

J. Leentjens, M. Kox, R. Stokman, J. Gerretsen, D. A. Diavatopoulos et al., BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: a randomized, placebo-controlled pilot study, J Infect Dis, vol.212, issue.12, pp.1930-1938, 2015.

U. Hamiel, E. Kozer, and I. Youngster, SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults, JAMA, p.2020

,

W. Mulder, J. Ochando, L. Joosten, Z. A. Fayad, and M. G. Netea, Therapeutic targeting of trained immunity, Nat Rev Drug Discov, vol.18, issue.7, pp.553-566, 2019.

J. Huang, Y. Cao, J. Du, X. Bu, R. Ma et al., Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+

, CD8+ T cells promote cellular immune responses, Vaccine, vol.25, pp.6981-6991, 2007.

L. Gutierrez, J. Beckford, and H. Alachkar, Deciphering the TCR repertoire to solve the COVID-19 Mystery, Trends Pharmacol Sci, vol.41, issue.8, pp.518-530, 2020.

H. Wu, H. Zhu, C. Yuan, C. Yao, W. Luo et al., Clinical and immune features of hospitalized pediatric patients with coronavirus disease 2019 (COVID-19) in Wuhan, China, JAMA Netw Open, vol.3, issue.6, p.2010895, 2020.

M. Ni, F. Tian, -. Xiang, and Y. B. , Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID-19, J Med Virol, 2020.

M. Woodruff, R. Ramonell, K. Cashman, D. Nguyen, A. Ley et al., Critically ill SARS-CoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. medRxiv, 2020.

M. Aziz, M. Brenner, and P. Wang, Therapeutic Potential of B-1a Cells in COVID-19. Shock, 2020.

A. J. Wilk, A. Rustagi, N. Q. Zhao, J. Roque, G. J. Martinez-colon et al., A single-cell atlas of the peripheral immune response to severe COVID-19. medRxiv, 2020.

C. Schultheiß, L. Paschold, D. Simnica, M. Mohme, E. Willscher et al., Nextgeneration sequencing of T and B cell receptor repertoires from COVID-19 patients showed signatures associated with severity of disease, Immunity, 2020.

Q. Huang, J. Hu, J. Tang, L. Xu, and L. Ye, Molecular basis of the differentiation and function of virus specific follicular helper CD4+ T Cells, Front Immunol, vol.10, p.249, 2019.

E. K. Deenick and C. S. Ma, The regulation and role of T follicular helper cells in immunity, Immunology, vol.134, issue.4, pp.361-367, 2011.

M. Locci, C. Havenar-daughton, E. Landais, J. Wu, M. A. Kroenke et al., Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses, Immunity, vol.39, issue.4, pp.758-769, 2013.

I. Thevarajan, T. Nguyen, M. Koutsakos, J. Druce, L. Caly et al., Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19, Nat Med, 2020.

L. Mesin, J. Ersching, and G. D. Victora, Germinal center B Cell dynamics. Immunity, vol.45, issue.3, pp.471-482, 2016.

T. G. Ksiazek, P. E. Rollin, A. J. Williams, D. S. Bressler, M. L. Martin et al.,

, Clinical virology of ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among Ehf patients in KikWit, democratic republic of the congo, J Infect Dis, vol.179, issue.s1, pp.177-187, 1995.

A. K. Rowe, J. Bertolli, A. S. Khan, R. Mukunu, J. J. Muyembe-tamfum et al.,

, Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. Commission de Lutte contre les Epidémies à Kikwit, J Infect Dis, vol.179, issue.1, pp.28-35, 1999.

P. Woo, S. Lau, B. Wong, K. Chan, W. Hui et al., False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide, J Clin Microbiol, vol.42, issue.12, pp.5885-5888, 2004.

S. Agnihothram, R. Gopal, B. L. Yount, E. F. Donaldson, V. D. Menachery et al., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses, J Infect Dis, vol.209, issue.7, pp.995-1006, 2014.

J. Sui, W. Li, A. Roberts, L. J. Matthews, A. Murakami et al., Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants, J Virol, vol.79, issue.10, pp.5900-5906, 2005.

D. Muth, V. M. Corman, B. Meyer, A. Assiri, M. Al-masri et al.,

, Infectious Middle East respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia, J Clin Microbiol, vol.53, issue.9, pp.2951-2955, 2015.

R. Channappanavar, C. Fett, J. Zhao, D. K. Meyerholz, and S. Perlman, Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection, J Virol, vol.88, pp.11034-11044, 2014.

J. Peiris, C. M. Chu, V. Cheng, K. S. Chan, I. Hung et al.,

, Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study, Lancet, vol.361, issue.9371, pp.1767-1772, 2003.

L. Guo, L. Ren, S. Yang, M. Xiao, D. Chang et al., Profiling early humoral response to diagnose novel coronavirus disease (COVID-19), Clin Infect Dis, 2020.

W. Liu, L. Liu, G. Kou, Y. Zheng, Y. Ding et al., Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2, J Clin Microbiol, 2020.

R. Wölfel, V. M. Corman, W. Guggemos, M. Seilmaier, S. Zange et al.,

, Virological assessment of hospitalized patients with COVID-2019, Nature, 2020.

B. Lou, T. Li, S. Zheng, -. Su, Z. Li et al., Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset, Eur Respir J, 2020.

S. Edouard, P. Colson, C. Melenotte, L. Scola, B. Tissot-dupont et al., Evaluating serological status of COVID-19 patients using an indirect immunofluorescent assay, France, Eur J Clin Microbiol Infect Dis, 2020.

N. Okba, M. A. Müller, W. Li, C. Wang, C. H. Geurtsvankessel et al., Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease 2019 patients, Emerg Infect Dis, vol.26, issue.7, 2020.

Z. Yongchen, H. Shen, X. Wang, X. Shi, Y. Li et al., Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect, vol.20, pp.1-14, 2020.

L. Liu, Q. Wei, Q. Lin, J. Fang, H. Wang et al.,

, Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection, JCI Insight, vol.4, issue.4, 2019.

A. C. Walls, Y. Park, M. A. Tortorici, A. Wall, A. T. Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, vol.181, issue.2, pp.281-292, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02546518

F. Amanat, D. Stadlbauer, S. Strohmeier, T. Nguyen, V. Chromikova et al., A serological assay to detect SARS-CoV-2 seroconversion in humans, Nat Med, vol.26, issue.7, pp.1033-1036, 2020.

D. F. Robbiani, C. Gaebler, F. Muecksch, J. Lorenzi, Z. Wang et al.,

, Convergent antibody responses to SARS-CoV-2 in convalescent individuals, Nature, 2020.

C. Shen, Z. Wang, F. Zhao, Y. Yang, J. Li et al., Treatment of 5 critically ill patients with COVID-19 with convalescent plasma, JAMA, 2020.

Y. Cheng, R. Wong, Y. Soo, W. S. Wong, C. K. Lee et al., Use of convalescent plasma therapy in SARS patients in Hong Kong, Eur J Clin Microbiol Infect Dis, vol.24, issue.1, pp.44-46, 2005.

I. F. Hung, K. K. To, C. Lee, K. Lee, K. Chan et al., Convalescent Plasma Treatment Reduced Mortality in Patients With Severe Pandemic Influenza A (H1N1) 2009 Virus Infection, Clin Infect Diseases, vol.52, issue.4, pp.447-456, 2011.

B. Zhou, N. Zhong, and Y. Guan, Treatment with convalescent plasma for influenza A (H5N1) infection, N Engl J Med, vol.357, issue.14, pp.1450-1451, 2007.

J. Ko, H. Seok, S. Y. Cho, Y. E. Ha, J. Y. Baek et al., Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience, Antivir Ther, vol.23, issue.7, pp.617-622, 2018.

J. Van-griensven, T. Edwards, X. De-lamballerie, M. G. Semple, P. Gallian et al., Evaluation of convalescent plasma for ebola virus disease in guinea, N Engl J Med, vol.374, issue.1, pp.33-42, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01252702

D. F. Florescu, A. C. Kalil, A. L. Hewlett, A. J. Schuh, U. Stroher et al., Administration of brincidofovir and convalescent plasma in a patient with ebola virus disease, Clin Infect Dis, vol.61, issue.6, pp.969-973, 2015.

K. Duan, B. Liu, C. Li, H. Zhang, T. Yu et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients, Proc Natl Acad Sci, 2020.

J. B. Case, P. W. Rothlauf, R. E. Chen, N. M. Kafai, J. M. Fox et al., Replicationcompetent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis. bioRxiv, 2020.

F. Zhu, Y. Li, X. Guan, L. Hou, W. Wang et al., Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial, Lancet, vol.395, pp.31208-31211, 2020.

R. Rathnasinghe, S. Strohmeier, F. Amanat, V. L. Gillespie, F. Krammer et al., Comparison of Transgenic and Adenovirus hACE2 Mouse Models for SARS-CoV-2 Infection. bioRxiv, 2020.

L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene et al., An mRNA vaccine against SARS-CoV-2 -preliminary report, N Engl J Med, 2020.

, NIH clinical trial of investigational vaccine for COVID-19 begins, 2020.

J. Tang, N. Zhang, X. Tao, G. Zhao, Y. Guo et al., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus, Hum Vaccin Immunother, vol.11, issue.5, pp.1244-1250, 2015.

L. Enjuanes, M. L. Dediego, E. Alvarez, D. Deming, T. Sheahan et al., Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease, Virus Res, vol.133, issue.1, pp.45-62, 2008.

Z. H. Zhang, D. J. Jhaveri, V. M. Marshall, D. C. Bauer, J. Edson et al., A comparative study of techniques for differential expression analysis on RNA-Seq data provero P, editor, PLoS ONE, vol.9, issue.8, p.103207, 2014.

A. B. Papaneri, R. F. Johnson, J. Wada, L. Bollinger, P. B. Jahrling et al., Middle East respiratory syndrome: obstacles and prospects for vaccine development, Expert Rev Vaccines, vol.14, issue.7, pp.949-962, 2015.

L. Enjuanes, S. Zuñiga, C. Castaño-rodriguez, J. Gutierrez-alvarez, J. Canton et al., Sola Basis of Coronavirus Virulence and Vaccine Development, Adv. Virus Res, vol.96, pp.245-286, 2016.

C. Wang, W. Li, D. Drabek, N. Okba, R. Van-haperen et al., A human monoclonal antibody blocking SARS-CoV-2 infection, Nat Commun, vol.11, issue.1, p.2251, 2020.

X. Tian, C. Li, A. Huang, S. Xia, S. Lu et al., Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody, Emerg Microbes Infect, vol.9, issue.1, pp.382-385, 2020.

D. Pinto, Y. Park, M. Beltramello, A. C. Walls, M. A. Tortorici et al., Structural and functional analysis of a potent sarbecovirus neutralizing antibody

, , 2009.

M. Dogan, L. Kozhaya, L. Placek, C. Gunter, M. Yigit et al., Novel SARS-CoV-2 specific antibody and neutralization assays reveal wide range of humoral immune response during COVID-19. medRxiv, 2020.

C. Kreer, M. Zehner, T. Weber, M. S. Ercanoglu, L. Gieselmann et al., Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients, Cell, 2020.

Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir Med, 2020.

Y. Ding, H. Wang, H. Shen, Z. Li, J. Geng et al., The clinical pathology of severe acute respiratory syndrome (SARS): a report from, China. J Pathol, vol.200, issue.3, pp.282-289, 2003.

D. L. Ng, A. Hosani, F. Keating, M. K. Gerber, S. I. Jones et al.,

. Clinicopathologic, ings of a fatal case of Middle East respiratory syndrome coronavirus infection in the united arab emirates, Am J Pathol, vol.186, issue.3, pp.652-658, 2014.

A. Khanolkar, D. A. Kirschmann, E. A. Caparelli, J. D. Wilks, J. M. Cerullo et al., CD4 T cell-restricted IL-2 signaling defect in a patient with a novel IFNGR1 deficiency, J Allergy Clin Immunol, vol.141, issue.1, pp.435-439, 2018.

G. F. Wu, A. A. Dandekar, L. Pewe, and S. Perlman, CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination, J Immunol, vol.165, issue.4, pp.2278-2286, 2000.

K. Trandem, J. Zhao, E. Fleming, and S. Perlman, Highly activated cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-induced encephalitis, J Immunol, vol.186, issue.6, pp.3642-3652, 2011.

J. Sun, R. Madan, C. L. Karp, and T. J. Braciale, Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10, Nat Med, vol.15, issue.3, pp.277-284, 2009.

T. E. Cecere, S. M. Todd, and T. Leroith, Regulatory T cells in arterivirus and coronavirus infections: do they protect against disease or enhance it?, Viruses, vol.4, issue.5, pp.833-846, 2012.

A. De-lang, A. Osterhaus, and B. L. Haagmans, Interferon-gamma and interleukin-4 downregulate expression of the SARS coronavirus receptor ACE2 in Vero E6 cells, Virology, vol.353, issue.2, pp.474-481, 2006.

J. L. Silva-filho, C. Caruso-neves, and A. Pinheiro, Angiotensin II type-1 receptor (AT1R) regulates expansion, differentiation, and functional capacity of antigen-specific CD8+ T cells, Sci Rep, vol.6, issue.1, p.35997, 2016.

M. Zheng, Y. Gao, G. Wang, G. Song, S. Liu et al., Functional exhaustion of antiviral lymphocytes in COVID-19 patients, Cell Mol Immunol, 2020.

P. Liu, X. Pan, C. Chen, T. Niu, X. Shuai et al., Nivolumab treatment of relapsed/refractory Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in adults, Blood, vol.135, issue.11, pp.826-833, 2020.

Q. Ruan, K. Yang, W. Wang, L. Jiang, and J. Song, Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med, 2020.

T. Liu, J. Zhang, Y. Yang, H. Ma, Z. Li et al., The role of interleukin-6 in monitoring severe case of coronavirus disease 2019, EMBO Mol Med, vol.12, issue.7, p.12421, 2020.

C. Yongwen, Z. Feng, B. Diao, R. Wang, G. Wang et al., The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes, 20045427.

S. Li, L. Jiang, X. Li, F. Lin, Y. Wang et al., Clinical and pathological investigation of severe COVID-19 patients, JCI Insight, 2020.

H. Zhou, W. Chen, Z. Li, B. Yang, Q. Zhou et al., Delayed-Phase Thrombocytopenia in Patients of Coronavirus Disease 2019 (COVID-19), Br J Haematol, vol.190, issue.2, pp.179-184, 2020.

N. Tang, D. Li, X. Wang, and Z. Sun, Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia, J Thromb Haemost, vol.18, issue.4, pp.844-847, 2020.

A. Allegra, V. Innao, A. G. Allegra, and C. Musolino, Coagulopathy and thromboembolic events in patients with SARS-CoV-2 infection: pathogenesis and management strategies, Ann Hematol, 2020.

S. Shaigany, M. Gnirke, A. Guttmann, H. Chong, S. Meehan et al., An adult with Kawasaki-like multisystem inflammatory syndrome associated with COVID-19, Lancet, pp.31526-31535, 2020.

S. Ahmed, O. Zimba, and A. Y. Gasparyan, Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad, Clin Rheumatol, 2020.

D. Wichmann, J. Sperhake, M. Lütgehetmann, S. Steurer, C. Edler et al., Autopsy Findings and Venous Thromboembolism in Patients With COVID-19, Ann Intern Med, 2020.

E. A. Middleton, X. He, F. Denorme, R. A. Campbell, D. Ng et al., Neutrophil Extracellular Traps (NETs) contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome, 2020.

V. Dupont, L. Kanagaratnam, A. Goury, G. Poitevin, M. Bard et al., Excess soluble fms-like tyrosine kinase 1 correlates with endothelial dysfunction and organ failure in critically ill COVID-19 patients, Clin Infect Dis, 2020.

G. Lippi and E. J. Favaloro, D-dimer is associated with severity of coronavirus disease 2019: a Pooled Analysis, Thromb Haemost, vol.120, issue.5, pp.876-878, 2020.

M. Ackermann, S. E. Verleden, M. Kuehnel, A. Haverich, T. Welte et al.,

, Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19, N Engl J Med, vol.383, issue.2, pp.120-128, 2020.

Z. Varga, A. J. Flammer, P. Steiger, M. Haberecker, R. Andermatt et al., Endothelial cell infection and endotheliitis in COVID-19, Lancet, vol.395, issue.20, pp.30937-30942, 2020.

G. Goshua, A. B. Pine, M. L. Meizlish, C. Chang, H. Zhang et al., Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study, Lancet Haematol, pp.30216-30223, 2020.

A. Huisman, R. Beun, M. Sikma, J. Westerink, and N. Kusadasi, Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2, Int J Lab Hematol, 2020.

M. Panigada, N. Bottino, P. Tagliabue, G. Grasselli, C. Novembrino et al., Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis, J Thromb Haemost, vol.18, issue.7, pp.1738-1742, 2020.

D. Mcgonagle, K. Sharif, A. O'regan, and C. Bridgewood, The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease, Autoimmun Rev, vol.19, issue.6, p.102537, 2020.

L. Teuwen, V. Geldhof, A. Pasut, and P. Carmeliet, COVID-19: the vasculature unleashed, Nat Rev Immunol, vol.20, issue.7, pp.389-391, 2020.

J. Schulte-schrepping, N. Reusch, D. Paclik, K. Baßler, S. Schlickeiser et al.,

, Suppressive myeloid cells are a hallmark of severe COVID-199, Cell, p.2020

E. Guérin, M. Orabona, M. Raquil, B. Giraudeau, R. Bellier et al., Circulating immature granulocytes with T-cell killing functions predict sepsis deterioration*, Crit Care Med, vol.42, issue.9, pp.2007-2018, 2014.

Y. Katahira, H. Higuchi, H. Matsushita, T. Yahata, Y. Yamamoto et al., Increased granulopoiesis in the bone marrow following Epstein-Barr virus infection, Sci Rep, vol.9, issue.1, p.13445, 2019.

I. Rubio, M. F. Osuchowski, M. Shankar-hari, T. Skirecki, M. S. Winkler et al., Current gaps in sepsis immunology: new opportunities for translational research, Lancet Infect Dis, vol.19, issue.12, pp.30567-30572, 2019.

Y. Jiang, G. Zhao, N. Song, P. Li, Y. Chen et al., Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV, Emerg Microbes Infect, vol.7, issue.1, p.77, 2018.

L. E. Gralinski, T. P. Sheahan, T. E. Morrison, V. D. Menachery, K. Jensen et al., Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis Subbarao K, editor. mBio, vol.9, pp.1753-1771, 2018.

R. Ren, S. Wu, J. Cai, Y. Yang, X. Ren et al., The H7N9 influenza A virus infection results in lethal inflammation in the mammalian host via the NLRP3-caspase-1 inflammasome, Sci Rep, vol.7, issue.1, p.7625, 2017.

A. Caudrillier, K. Kessenbrock, B. M. Gilliss, J. X. Nguyen, M. B. Marques et al., Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury, J Clin Invest, vol.122, issue.7, pp.2661-2671, 2012.

S. R. Clark, A. C. Ma, S. A. Tavener, B. Mcdonald, Z. Goodarzi et al., Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nat Med, vol.13, issue.4, pp.463-469, 2007.

T. A. Fuchs, A. Brill, D. Duerschmied, D. Schatzberg, M. Monestier et al., Extracellular DNA traps promote thrombosis, Proc Nat Acad Sci, vol.107, issue.36, pp.15880-15885, 2010.

S. Massberg, L. Grahl, V. Bruehl, M. Manukyan, D. Pfeiler et al., Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases, Nat Med, vol.16, issue.8, pp.887-896, 2010.

V. Sreeramkumar, J. M. Adrover, I. Ballesteros, M. I. Cuartero, J. Rossaint et al., Neutrophils scan for activated platelets to initiate inflammation, Science, vol.346, issue.6214, pp.1234-1238, 2014.

M. Von-brühl, K. Stark, A. Steinhart, S. Chandraratne, K. I. Lorenz et al., Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo, J Exp Med, vol.209, issue.4, pp.819-835, 2012.

T. Yago, Z. Liu, J. Ahamed, and R. P. Mcever, Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice, Blood, vol.132, issue.13, pp.1426-1437, 2018.

C. Guo, B. Li, H. Ma, X. Wang, P. Cai et al., Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: pooled analysis of data from phase 3 and 4 clinical trials, Rheumatology (Oxford), vol.11, issue.1, pp.541-549, 2017.

J. Michot, L. Albiges, N. Chaput, V. Saada, F. Pommeret et al.,

, Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report, Ann Oncol, 2020.

D. Luna, G. Habibi, A. Deux, J. Colard, M. et al., Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab, Am J Hematol, 2020.

P. Luo, Y. Qiu, L. , X. , D. L. Li et al., Tocilizumab treatment in COVID-19: A single center experience, J Med Virol, 2020.

P. Toniati, S. Piva, M. Cattalini, E. Garrafa, F. Regola et al.,

, Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev, 2020.

K. Duan, B. Liu, C. Li, H. Zhang, T. Yu et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients, Proc Natl Acad Sci, 2020.

J. Radbel, N. Narayanan, and P. J. Bhatt, Use of tocilizumab for COVID-19-induced cytokine release syndrome: a cautionary case report, 2020.

M. Rojo, O. Cano-valderrama, S. Picazo, C. Saez, L. Gómez et al., Gastrointestinal perforation after treatment with tocilizumab : an unexpected consequence of COVID-19 pandemic, Am Surg, vol.86, issue.6, pp.565-566, 2020.

H. Chu, J. Chan, Y. Wang, -. Yuen, Y. Chai et al., Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19, Clin Infect Dis, 2009.