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ARTICLE

Faster Atlantic currents drive poleward expansion
of temperate phytoplankton in the Arctic Ocean
L. Oziel 1,2,7✉, A. Baudena3,7, M. Ardyna4,5, P. Massicotte2, A. Randelhoff2, J.-B. Sallée3, R. B. Ingvaldsen6,

E. Devred 1 & M. Babin2

The Arctic marine biome, shrinking with increasing temperature and receding sea-ice cover,

is tightly connected to lower latitudes through the North Atlantic. By flowing northward

through the European Arctic Corridor (the main Arctic gateway where 80% of in- and

outflow takes place), the North Atlantic Waters transport most of the ocean heat, but also

nutrients and planktonic organisms toward the Arctic Ocean. Using satellite-derived altimetry

observations, we reveal an increase, up to two-fold, in North Atlantic current surface velo-

cities over the last 24 years. More importantly, we show evidence that the North Atlantic

current and its variability shape the spatial distribution of the coccolithophore Emiliania huxleyi

(Ehux), a tracer for temperate ecosystems. We further demonstrate that bio-advection, rather

than water temperature as previously assumed, is a major mechanism responsible for the

recent poleward intrusions of southern species like Ehux. Our findings confirm the biological

and physical “Atlantification” of the Arctic Ocean with potential alterations of the Arctic

marine food web and biogeochemical cycles.
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The European Arctic Corridor (EAC, Fig. 1) is the main
Arctic gateway where 80% of both in- and outflow takes
place1. One of the most prominent synoptic feature of the

EAC is the northward flowing North Atlantic Waters (NAW)
entering the Arctic Ocean through two main branches (indicated
in red in Fig. 1), which separate around 70°N. One branch keeps
flowing northward toward Fram Strait while the second one turns
eastward into the Barents Sea (BS). Over the last three decades, in
a context of amplified warming2 and sea-ice loss3, substantial
changes have been documented in the NAW inflow with a two-
fold increase of its volume occupation and a northward shift of
the polar front structure in the BS4. The NAW inflow largely
controls the physical and sea-ice conditions of the region5–8. In
addition, almost 50% of the total Arctic primary production takes
place in the EAC1,9–11, which is of major importance for
fisheries12.

Recent warming of the EAC related to the NAW inflow has
been suspected to trigger poleward intrusions of temperate phy-
toplankton13–16 and species from higher trophic levels17–21. By
carrying biomass and nutrients produced elsewhere, bio-
advection has recently been proposed as an “essential mechan-
ism” for ecosystem dynamics in the Arctic Ocean22,23. Although
the actual role of advection has already been identified as a
potential driver altering zooplankton dynamics24–26, it has never
been assessed quantitatively from observations for phytoplankton
in the EAC, or more generally in the Arctic Ocean22,23,27–29.

Here we investigate how ocean currents control the spatial
dynamics of a specific coccolithophore bloom-forming species,
Emiliania huxleyi (hereafter referred to as Ehux). Ehux is usually
associated with the surface layer of the temperate NAW in
summer, typically in a post-spring bloom context characterized
by low nutrients, low light and strong stratification30–32. Since
Ehux does not form winter resting spores, this tracer of Atlantic
ecosystem is generally considered to be a summer visitor in the
BS, unlike neritic diatoms species13. A combination of bottom-up
(i.e., winter darkness, cold temperatures and intense vertical

mixing; see Supplementary Note 2.6) and top-down controls (i.e.,
grazing, viral lysis33–35) prevent Ehux from year-to-year survival
in the north-easternmost parts of the BS. Because of their high
abundance in Ehux (i.e., 115 × 106 cells L−1 36), coastal regions
and fjords of the Norwegian Sea have been suspected to be the
source of Ehux for the whole EAC37.

Using a Lagrangian tracking approach based on satellite-
derived current fields, we explore how the advection of Ehux cells
from these upstream coastal temperate regions shapes the dis-
tribution of the massive Ehux blooms in the BS (i.e., via the
“seeding effect”38,39). By combining satellite-derived altimetry
with ocean-color Particulate Inorganic Carbon (PIC, a cocco-
lithophore biomass proxy) estimates, we demonstrate a major
role of bio-advection in phytoplankton transport along the EAC.

Results and discussion
Climatic modes and increasing NAW surface current velocities.
To document the interannual and decadal variability of surface
NAW currents, we first performed an Empirical Orthogonal
Function (EOF) analysis of the Sea Level Anomalies (1993–2016,
see Material and Methods), on which the seasonal signal was
removed. The EOF analysis showed that the two first modes of
variability accounted for more than 80% of the non-seasonal
variability (Fig. 2a; Supplementary Note 2.3). When summing the
two first modes of variability, a dipole structure emerged, cen-
tered on the NAW path between the Barents and Norwegian Sea
shelves (about east of 5°E) and the center of the Norwegian Sea
(about west of 5°E, Fig. 2a). The associated time-series showed a
linear positive trend of about +9 (normalized units, Fig. 2b) over
the last 24 years with high energy at the interannual and decadal
time scale (Supplementary Fig. 7). This trend toward a more
positive phase corresponds to an increase of the sea level gradient
across the NAW path, hence intensifying NAW currents, while
negative phases are associated with weaker NAW currents.

To reveal the impact of changing sea level on surface velocity
fields, absolute surface geostrophic velocities, derived from
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Absolute Dynamic Topography fields, are shown in Fig. 3a, b
during the extreme negative (i.e., 1993) and positive (i.e., 2015)
phases of the EOF. These two contrasting years illustrate the
ongoing strengthening of the ocean surface circulation in the
EAC associated with the Atlantic inflow. Surface geostrophic
current linear trends showed that surface currents changed in
most of the Atlantic pathway (Fig. 3c). In the Norwegian Sea, the
increase in the Atlantic surface current speed reached +2 mm s−1

yr−1, corresponding to a relative increase ranging from 30% on
the shelf to 100% in the basin. The surface currents in the eastern
BS Atlantic corridor also significantly increased by about +0.6
mm s−1 yr−1 (+14%). The positive EOF phase associated with
stronger north-eastward NAW surface currents since year 2000
reflects an increase in advection at or near the surface. This result
is consistent with the recent trends in NAW current velocities
observed upstream in the Nordic Seas40 or modelled in the BS41.

The interannual fluctuations as well as the long-term trend
observed in the time-series of surface geostrophic velocities are
mainly attributed to the dynamics of the North Atlantic Subpolar
Gyre (Pearson’s correlation coefficient r= 0.58; p= 0.0028 two-
sided t-test), and to the atmospheric forcing of the North Atlantic
Oscillation (Pearson’s correlation coefficient r=−0.60, p= 0.003
two-sided t-test), which are both tightly coupled42. This suggests
that the increase in surface advection in the EAC is likely due to a
natural multidecadal oscillation related to the upstream synoptic
oceanic circulation and atmospheric forcing, which could, in turn,
drive long-term climatic change in the BS43.

Increasing NAW surface currents control the spatial distribu-
tion of Ehux. The first hypothesis that ocean currents control the
summer spatial distribution of Ehux in the BS was tested using a
Lagrangian experiment (EXP1). We advected virtual particles

(here considered as the inoculum of Ehux cells), using observa-
tions of surface geostrophic velocities, from their expected over-
wintering location in March (defined by sea surface temperature
>4 °C and distance from coast ≤180 km: see material and methods
and Supplementary Note 2.5 and 2.6 for more details on the areal
distribution and timing of the inoculum). EXP1 revealed that the
spatial distribution of the virtual particles at the end of the
advection period matched the extent of Ehux blooms (evidenced
by satellite-derived Particulate Inorganic Concentration, PIC),
with 80% of tracked particles ending up within 50 km of an Ehux
blooming location (see Supplementary Note 2.7). The spatial
distribution of particles in 1998 (beginning of the satellite ocean-
color time-series) and 2015 are shown in Fig. 4, while the entire
1998–2016 period is displayed in Supplementary Fig. 14. The
year-to-year robustness of the matchup between virtual particles
and PIC clearly supports the fact that the NAW surface currents
shape the location and extent of Ehux blooms in the EAC.

Increasing NAW surface currents control the poleward
expansion of Ehux. It is noteworthy that the particles reached
further north and east in the EAC in 2015 than in 1998, in
agreement with Ehux blooms (Fig. 4). The north-eastward
expansion of the Ehux bloom, expressed here as the distance
reached by the leading-edge (see the Supplementary Method 1.1),
increased on average by 325 km during the last 19 years as
indicated by ocean-color observations (Fig. 5a), in close agree-
ment with previous estimations (324 km, 40–50°E, 1989–201616;)
and with the estimates from EXP1 (424 km, Fig. 5b).

The 4 °C surface isotherm (Fig. 4) is considered for Ehux as the
lowest temperature required for sufficient growth to allow bloom
formation (Supplementary Note 2.5). However, the Ehux blooms
do not seem to follow this isotherm in summer and appear to be
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constrained by another factor. For example, the north-eastward
expansion of the winter 4 °C isotherm, which delimits the areal
extent of the inoculum in our Lagrangian method, could
contribute to reduce the distance between the Ehux winter
location and the Arctic domain. To test this hypothesis, we
performed two additional Lagrangian experiments to examine
both the role of currents and winter temperature on the poleward
expansion of Ehux. In EXP2 we constantly initialized the virtual
particles at the same inoculation region for all years, using a
climatological mean temperature field to determine the inocula-
tion region. Hence, EXP2 exclusively reflected the role of currents
on the interannual variability of the advected particles. In
contrast, in EXP3, the constant inoculation region varied from
one year to another, but we used a climatological mean current to
advect the particles. In this way, the interannual variability of the
advected particles due to interannual variability of the inoculation
region was quantified. The interannual PIC leading-edge location
was highly correlated with the leading-edge from EXP2
(Pearson’s correlation coefficient r= 0.71, p < 0.01 two-sided t-
test), suggesting a stronger control of the bloom expansion by
currents than by winter temperature (EXP3, Pearson’s correlation
coefficient r= 0.43, p= 0.06 two-sided t-test). On the decadal
scale, currents (EXP2) were found responsible for the 56% (240
km) increase in the long-term leading-edge expansion against
44% (186 km) for winter temperature (EXP3), when compared to
the reference EXP1. This significant increasing trend in current
velocities (see Supplementary Note 2.8) was also revealed by the
greater distance covered by the virtual particles reaching the BS,
which increased by 110 km on average since 1993 (EXP2,
Supplementary Note 2.9).

Increasing water temperature has previously been assumed to
be the main driver of the spatial distribution of Ehux bloom in the
BS15,16,44. Our results demonstrate that the primary driver of the
Ehux dynamics (i.e., spatial distribution and timing) could be, in
fact, stronger surface currents, which in turn intrinsically shape
the temperature field and frontal structures. We show that
oceanic currents (i.e. their intensity and fluctuations) drive the
spatial distribution of the bloom, its interannual variability and
more than 50% of the long-term poleward expansion of Ehux
bloom in the BS. More importantly, from 2006 and onward, the
contribution of water temperature to the expansion of Ehux
bloom becomes negligible (Supplementary Table 3), and its
poleward expansion is entirely due to the accelerating currents.
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A newly “Atlantified” and retreating marine Arctic ecosystem.
Ehux is largely studied given its significant role in marine geo-
chemical cycles45,46 as illustrated by its sensitivity to ocean
acidification47, its effect on pCO2 and CO2 uptake48 and its role
on carbon export by providing calcite ballast effect49. Here, Ehux
was used as an indicator of Atlantic ecosystems32,50. By
expanding poleward and doubling its areal extent in the BS
(Supplementary Note 2.10), Ehux attests to the ongoing “Atlan-
tification” of the Arctic Ocean. Both arctic and Atlantic domains
have distinct ecological signatures51, and the latter is undeniably
“invading” the former4,52. Advected with the surface currents,
Ehux will have to survive during the travel (e.g., avoid
grazing53,54, subduction under the polar mixed layer in Fram
Strait55) until finding more favourable blooming conditions in the
BS in summer13. The fate of Ehux in the BS is therefore of major
importance as it determines the potential “seeding effect” of Ehux
in the Arctic regions. Ehux seems to be adapted to the low light,
low nutrient, oligotrophic and highly stratified conditions of the
NAW in summer30 such that its expansion, growth and blooming
in the Arctic Ocean will be limited at some point by those con-
straints (bottom-up) but also by the grazing pressure (top-down).

Despite its adaptation to low light conditions, Ehux still
requires sufficient light levels to sustain the energy-demanding
calcification of its coccoliths. Such conditions are met in highly
stratified oceans where Ehux can accumulate in the surface
layer56. At high latitudes (>81°N), even with sea surface
temperature above 3 or 4 °C, the survival of Ehux would require
adaptation to rapidly decreasing solar radiations in late
summer57. Ehux fate thus mainly relies on its ability to drift,
with the appropriate timing, to highly stratified and temperate
areas that allow it to stay in the surface euphotic layer. These
conditions58 would likely be met in the Eurasian interior shelves
of the Arctic Ocean28 (i.e., Kara, Laptev, and Siberian seas) where
surface waters are warming and freshening59. If the increase in
advection along the shelf slope continues in the future, we can
expect Ehux to become a summer resident of the newly
“Atlantified” Eurasian interior shelves, as previously revealed
during the last interglacial50,60.

By driving such a poleward expansion, advective processes could
affect the entire marine ecosystems by shifting species distribution61

and modifying interactions at higher trophic levels62. The
concomitant decline of silicate concentrations in NAW63 may also
contribute to the success of non-silicifying and small phytoplankton
such as Ehux64. In addition, a change toward temperate pelagic
species could have an impact on energy transfer to higher trophic
levels65 including marine mammals and commercial fish stocks66.
Considering the role of “bio-advection” in ecological models (i.e.,
trait-based and niche-based approaches) must improve predictions
of community shifts67. The comparable increase in poleward
advection of Pacific waters occurring in the Bering Strait68 suggests
that the shrinking polar domain of the Arctic Ocean may be prone
to intrusions of temperate species at a pan-Arctic scale.

Methods
Satellite altimetry. The satellite altimetry product was generated by the Sea Level
Thematic Assembly Center (SL-TAC) and distributed by the Copernicus Marine
and Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/).
This is a daily gridded global product in delayed-time (re-analysis product ID:
SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047) with a spatial
resolution of 1/4° available from 1993 to present time. A 1/4° Mercator projection
grid roughly corresponds to a resolution of 27.8 km in latitude × 9.5 km in long-
itude at 70°N. This product is generated using Sentinel 3 A, Jason 3, HY2A, Saral/
AltiKa, Cryosat 2, OSTM/Jason 2, Jason-1, Topex/Poseidon, Envisat, GFO, ERS-1/
2. The SL-TAC produced this dataset with a special care for synchronization,
homogenization, cross-calibration, correction of large-scale biases, and cross-
validation. Before merging missions by optimal interpolation, the SL-TAC filtered
the dataset to remove residual noise. The reader is referred to the product doc-
umentation for more details. The satellite altimetry product provides Sea Level
Anomaly that estimates the variation of the Sea Surface height around a vertical
reference (Mean Sea Surface). The product also provides Absolute Dynamic
Topography (=Sea Level Anomaly+Mean Dynamic Topography), geostrophic
velocity anomalies and absolute geostrophic velocities (derived respectively from
Sea Level Anomaly and Absolute Dynamic Topography). The Mean Dynamic
Topography employed by the SL-TAC was the MDT-CNES-CLS13 produced by
the Collecte Localisation Satellites Space Oceanography division and distributed
separately by Aviso (http://www.aviso.altimetry.fr).

SLA has been successfully used over the last 25 years to study the variability of
sea level and surface geostrophic circulation at different spatial and temporal scales.
However, most of the validation studies focused on the areas below the polar circle
(<66°N) such as in the Norwegian Sea where derived geostrophic currents were
successfully evaluated against in situ current meters69. The use of altimetry in
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Arctic regions has been avoided in the past due to (1) persistent sea-ice cover and
(2) limitation of some radar altimeters (TOPEX/POSEIDON, Jason-1, OSTM/
Jason-2 and Jason-3 missions), which do not acquire measurements above the
polar circle. First, sea ice was not an issue for this study because virtual particles
were only evolving in the year-round ice-free Atlantic domain. For the trend and
EOF calculation, data associated with sea ice were systematically precluded (see
below). Second, measurements above 66°N can rely on several other satellites: ERS-
1 and -2, Envisat, SARAL/AltiKa, GFO (<72°N), HY-2A, ICESat, Cryosat-2,
Sentinel-3. A comprehensive validation of the gridded product of geostrophic
velocities was recently provided for ERS-1/2 and Envisat satellites using surface
drifters and tide gauges in the whole EAC, with a particular focus on the Barents
Sea70,71. The authors demonstrated that RMS differences between the drifter
(corrected for Ekman currents) and altimetry velocities ranged within 7–15 cm s−1,
which was comparable to previous estimates at lower latitudes. More importantly,
they also concluded that the dataset provided sufficient spatial and temporal
coverage to consistently resolve the synoptic and large mesoscale variability.
Moreover, the product was recently found appropriate to monitor the long-term
northward Atlantic inflow in the Norwegian Sea40 with even lower RMS differences
between drifters and satellites velocities (0.7–8 cm s−1).

The dataset used in this study was enhanced from additional satellites (i.e.,
CryoSat-2 and Sentinel-3A) that offered a better data coverage at high latitudes for
recent years (since 2011). Surface currents inferred from altimetry were found to
reflect the variability of the deeper layers in the slope current in the Nordic Seas40.
For this study, the derived surface geostrophic velocities were evaluated again
toward five long-term in situ current meters in the southwestern Barents Sea and
showed reasonably good Pearson’s correlation coefficients (r= 0.43–0.71,
Supplementary Note 2.1). In addition, by evaluating the effect of steric and mass
related effect on the SLA, we demonstrated that the increasing long-term trend was
driven by change in currents (Supplementary Note 2.2).

Satellite sea surface temperature (SST). We used the NOAA 1/4° degree and
daily Optimum Interpolation Sea Surface Temperature version 2 (OISSTv2, pro-
vided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, https://www.esrl.
noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html72) to extract the 4 °C
isotherms during the month of March between 1998 and 2016. This dataset was
constructed by combining satellites observations from the Advanced Very High-
Resolution Radiometer (AVHRR) and the Advanced Microwave Scanning Radio-
meter on the Earth Observing System (AMSR-E) with in situ platforms (ships,
buoys) on a regular global spatial grid. Missing observations in SST were optimally
interpolated. The dataset was delivered with error fields providing a measure of
confidence. This allowed us to build monthly composites maps excluding values
with estimated errors higher than 50%, following the same method used for the
altimetry dataset. Note that the dataset also provided daily sea-ice concentration
maps, which were used as masks for the altimetry dataset. Additional information
can be found here: https://www.ncdc.noaa.gov/oisst.

Satellite particulate inorganic carbon (PIC). Ocean colour satellites detect coc-
colithophore blooms because they produce calcite plates (coccoliths) that shed light
and produce ‘turquoise’ colored waters. Remotely sensed ocean-color offers a 20-year
time-series from 1998 to present. In this study, we used the GlobColour database
(http://hermes.acri.fr), which provides a continuous dataset of ocean-color satellite
data products derived from the merging of five ocean-color sensors MEdium Reso-
lution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectro-
radiometer (MODIS), Sea-viewing Wide Field-of-view Sensor (Sea-WiFS), Visible
Infrared Imaging Radiometer Suite (VIIRS) and Ocean and Land Colour Imager
(OLCI-A). These sensors measure visible and near-infrared solar radiation reflected
back from the ocean surface layer. Such remotely sensed information is only available
during the daytime and in the absence of ice and clouds.

Level 3 PIC products were derived from NASA’s standard PIC algorithm73,74.
This algorithm is based on a robust relationship between the light backscattering
coefficient and the concentration of coccoliths, calcite plates forming the
coccosphere of the coccolithophores30,75. Some coccolithophore species, including
Ehux, produce and release coccoliths into the water during the later stages of a
bloom76–78, creating large patches of highly reflective waters, which can be
observed from space56. Satellite-derived PIC concentration provides a good proxy
for Ehux coccolith concentration because Ehux dominates the coccolithophore
population in the Norwegian Sea79 and in the Barents Sea80. Moreover, satellite
PIC products have been successfully validated during Ehux blooms in the Barents
Sea13,80,81, as well as in the global ocean56,74,82.

The leading-edge detection. The leading-edge was the main metric used in this
study to follow the poleward (i.e., northward and eastward) expansion of the Ehux
bloom. The leading-edge was derived as the 95th percentile of the longitude and
latitude positions of the virtual particles entering the eastern Barents Sea. See
Supplementary Method 1.1 for a more detailed description.

Empirical Orthogonal Function analysis of sea level and trends in surface
geostrophic velocities. Empirical Orthogonal Function (EOF) and trends analysis
were performed between 1993 and 2016, with monthly composite maps of non-

seasonal Sea Level Anomalies (SLA) and surface absolute geostrophic velocities.
Monthly composite maps were derived excluding pixels with error estimates (per-
centage of the SLA signal variance) higher than 50% or sea-ice concentrations higher
than 15%. The seasonal cycle, known to be highly variable for SLA and the velocity
fields, was removed because the analysis focused on the interannual and decadal time
scale. The maximum amplitude in SLA generally occurs in fall83, whereas the velocity
fields are maximum during the winter84. More details on the EOF analysis are
available in Supplementary Note 2.3. Trends in surface absolute geostrophic velocities
were only derived for pixels associated with more than 50% of data points.

Lagrangian calculation of particles trajectories. The Lagrangian experiments
needed daily temporal resolution and directly employed daily absolute surface
geostrophic velocities delivered from CMEMS. Three different Lagrangian simu-
lations were used to address specific objectives. In each simulation, particles were
advected with a 4th order Runge-Kutta integration scheme, with a time step of 3h.
The simulations showed good robustness to the addition of noise, which was
representative of the velocity fields uncertainties (Supplementary Note 2.4). The
different simulations are described below.

(1) Variable temperature and currents. The first simulation (EXP1) explored the
influence of seasonal current variability on Ehux distribution from 1998 to
2016. On the 1st of March of each year, we selected a patch of particles
representing the theoretical inoculum area of Ehux (i.e., SST ≥ 4 °C and
distance from coast < 180 km, see Supplementary Note 2.5). These particles
were advected, using satellite-derived velocities, over the entire growing
season, when sufficient light availability is expected to allow phytoplankton
growth (i.e., from the March 1st to September 1st). The choice of March 1st
as the starting date is discussed in Supplementary Note 2.6.

(2) Constant temperature and variable currents. The second simulation (EXP2)
investigated the long-term increase in particle advection in the BS
(1993–2016). In this simulation, instead of having a distinct ‘inoculum
patch’ for each year, we inoculated the same patch every year. This patch
was built using the March SST climatology (1993–2016) and the same
criterion than EXP1 (SST ≥ 4 °C and distance from coast < 180 km). The
particles were then also advected during the entire growing season (i.e., from
March 1st to September 1st) as in EXP.1.

(3) Variable temperature and constant currents. The third simulation (EXP3)
aimed at assessing the role of temperature in the long-term poleward
expansion of Ehux. EXP3 is similar to EXP1 with the exception that the
particles are advected each year on the same climatological velocity field
(varying ‘inoculum patch’).

Statistical analysis. Trends were estimated using linear least-squares regression.
Correlations were calculated using Pearson’s coefficient correlation r. Two-sided t-tests
with N–2 degrees of freedom were used to find significant levels (p-values) for trends
and correlations. The significance level for this study was considered as 95% (p < 0.05).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data used in this research are freely available to the public and may be
downloaded through the links detailed in the Methods section. Analysis outputs data for
the main figures are made available at https://gitlab.com/loloziel/oziel_et_al_nc_2020.

Code availability
The code for Lagrangian experiments is based on Lamta 0.2 Copyright (C) 2007/12/5
Francesco d’Ovidio (francesco.dovidio@locean-ipsl.upmc.fr). This is a free Octave
software under the terms of the GNU General Public License (http://www.gnu.org/
licenses/) and can be distributed and modified. Outputs were analyzed using ©Matlab
custom scripts that are accessible at https://gitlab.com/loloziel/oziel_et_al_nc_2020.
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