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Abstract: Foam is often present in satellite images of coastal areas and can lead to serious errors
in the detection of shorelines especially when processing high spatial resolution images (<20 m).
This study focuses on shoreline extraction and shoreline evolution using high spatial resolution
satellite images in the presence of foam. A multispectral supervised classi�cation technique is selected,
namely the Support Vector Machine (SVM) and applied with three classes which are land, foam and
water. The merging of water and foam classes followed by a segmentation procedure enables the
separation of land and ocean pixels. The performance of the method is evaluated using a validation
dataset acquired on two study areas (south and north of the bay of Sendaï�Japan). On each site,
WorldView-2 multispectral images (eight bands, 2 m resolution) were acquired before and after the
Fukushima tsunami generated by the Tohoku earthquake in 2011. The consideration of the foam
class enables the false negative error to be reduced by a factor of three. The SVM method is also
compared with four other classi�cation methods, namely Euclidian Distance, Spectral Angle Mapper,
Maximum Likelihood, and Neuronal Network. The SVM method appears to be the most e�cient
to determine the erosion and the accretion resulting from the tsunami, which are societal issues for
littoral management purposes.
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1. Introduction

Shorelines mark the transition between land and sea. They are vulnerable to nearshore currents,
human modi�cation, winds and waves. It is estimated that there are more than 348,000 km of
shorelines in the world and that 50% of the world’s population lives within 100 km of the coast [1].
The monitoring and management of shorelines are therefore of considerable social and economic
importance. Furthermore, among the most serious consequences of climate change, sea-level rise
threatens to signi�cantly alter shorelines leading to erosion and coastal �ooding [2].

Many satellite sensors currently enable the observation of land and ocean areas. High and
medium spatial resolution satellite sensors are typically characterized by medium spectral resolution
and by a revisit period longer than 1 day. Examples of this type of sensors are the OLI (Operational
Land Imager))/LANDSAT instrument (30 m, 7 bands, 16 days, NASA/USGS (United States Geological
Survey), [3]), the multispectral SPOT (Satellite pour l’observation de la Terre) instrument (6 m,
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4 bands, 26 days, CNES (Centre National d’Etude Spatiale), [4]), the Pleiades instrument (2.8 m,
4 bands, 1 day, CNES, [5]), the MSI (MultiSpectral Instrument)/Sentinel-2 sensor (10 m, 13 bands,
5 days, ESA (European Spatial Agency), [6]) and the WorldView-2 sensor (2 m, 8 bands, 11 days,
DigitalGlobe, [7]). The Sentinel-2 MSI sensor does not have 13 bands with 10 m resolution but has some
bands with 10 (bands 2, 3, 4 and 8), some with 20 (bands 5, 6, 7, 8a, 11 and 12) and some with 60 m (bands
1, 9 and 10). Low spatial resolution sensors are typically designed with more spectral bands than high
and medium spatial resolution sensors and they also show a higher radiometric sensitivity and a better
revisit period [8]. For example, the MODIS (Moderate-resolution Imaging Spectroradiometer)/Terra
and Aqua instrument (1000 m, 9 bands, 1 day, NASA), the VIIRS (Visible Infrared Imaging Radiometer
Suite) sensor (750 m, 8 bands, 1 day, NASA/NOAA (Oceanic and Atmospheric Administration)),
the OLCI (Ocean and Land Colour Instrument)/ Sentinel-3 sensor (300 m, 21 bands, 1 day, ESA) and the
GOCI (Geostationary Ocean Color Imager) instrument (500 m, 8 bands, 1 h, COMS (Communication,
Ocean, and Meteorological Satellite)). Nevertheless, high spatial resolution is often preferred to high
revisit period because the shoreline dynamics do not require a daily revisit period. The two satellites
and the sensor agility (capability to adapt the viewing angle to the area of interest) are su�cient
to monitor shoreline dynamics [3]. Regarding the sensitivity, the Signal to Noise ratio of MODIS
(>700) is much higher than Sentinel-2 (<174) and this is because the MODIS resolution is coarser than
Sentinel-2. Because Sentinel-2 was designed to study land area whose re�ectance is generally high,
a high resolution was therefore preferred to a strong SNR (Signal to Noise Ratio).

Previous studies investigated the potential of optical passive satellite data to study shoreline
changes [9�13]. The shoreline detection methodology can be divided into two approaches, namely the
spatial and the spectral approaches. The spatial method is based on the use of a single spectral band for
setting a threshold value which is consistent with potential morphological operations, segmentation and
vectorization of optical or SAR (Synthetic Aperture Radar) images [14�17]. The spectral method is based
on the use of the spectral dimension of pixels to organize them into classes through various procedures,
such as the procedure of unsupervised classi�cation [18], the Normalized Di�erence Vegetation Index,
referred to as NDVI [7] or the Modi�ed Normalized Di�erence Water Index, noted as MNDWI [19].
However, the optical signatures of the targets that are dealt with in this study, namely foam, water and
land, are highly sensitive to wavelengths. Therefore, the performance of their detection is improved
when using high spectrally resolved sensors such as hyperspectral data. The use of multispectral
bands as when exploiting spectral indices is thus not an optimal technique for distinguishing between
the various targets observed. The spectral method can also be more simply a manual method [20].
All these methods have been applied to medium resolution images (~30 m) where the foam is either
not visible on the images or not present in the ocean pixels (e.g., low wind speed). Several studies
focused on the automatic extraction of shorelines from medium resolution images (Landsat 8/OLI and
Sentinel-2/MSI) using subpixel detection techniques [6,13,21�25]. However, none of them discuss the
presence of foam. Pardo-Pascual et al. 2018, indicate that �Shorelines obtained from the NIR (Near
Infrared band) band have usually been accurate, but have shown to be more a�ected by whitewater
and foam�. However, they do not know if pixels containing foam are classi�ed as water or land. In this
study, the contribution of the class of foam was quanti�ed compared to results obtained when ignoring
it. Furthermore, the classi�cation was made at the pixel-level classi�cation but because the spatial
resolution was 2 m; this study can help to understand what is happening inside a 30 m resolution pixel
of Landsat, for example.

One of the most promising approaches to distinguishing between the foam pixels from the
water and land pixels is the multispectral classi�cation technique, which interestingly exploits the
di�erences in the spectral features of each of these three components (i.e., foam, land and water).
Many classi�cation methods have been developed for land classi�cation. Yu et al. [26] compared
Euclidean Distance (ED), Maximum Likelihood (ML), Spectral Angle Mapper (SAM), and Support
Vector Machine (SVM) classi�cation methods to map land cover types using Tiangong-2 multispectral
satellite data (CNSA (Chinese National Space Administration), [27]). For the classi�cation of land
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cover types of the Qinghai Lake area (China), the overall classi�cation accuracy of the SVM technique
was found to be the highest, followed by the SAM, ED, and ML performance results. For the land
cover types, classi�cation of the Taihu Lake area (China), the best performance was also obtained
when using the SVM method, followed by the ED, SAM and ML. SVM classi�cation has already been
applied to multispectral images to automatically detect the shoreline [28,29] but none of these studies
has taken into account the foam and this is the originality of the presented method.

The Paci�c coast of Tohoku in Japan near Fukushima prefecture is an area of major interest
since it was recently a�ected by a megathrust earthquake on 11 March 2011, whose magnitude was
9.0�9.1 (Mw) undersea. The epicenter was approximately 70 km east of the Oshika Peninsula of
Tohoku and the hypocenter at an underwater depth of approximately 29 km [30]. It was the most
powerful earthquake ever recorded in Japan, and the fourth most powerful earthquake in the world
since modern record-keeping began in 1900 [31]. The earthquake triggered powerful tsunami waves
that reached heights of up to 40.5 m in Miyako in Tflohoku’s Iwate Prefecture, and which traveled
up to 10 km inland in the Sendai area. Within the Fukushima prefecture, the average height of the
waves, which reached up to 5 km inland, was 15 m. According to the Geospatial Information Authority
of Japan, a surface area of approximately 560 km2 was �ooded by the tsunami [32]. The tsunami
caused the destruction of many dykes [33] and hit four nuclear plants on the east coast of Japan,
namely Onagawa, Fukushima Daini, Fukushima Daiichi and Tokai Daini [34]. The most signi�cant
damages concerned the Fukushima Daiichi Nuclear Power Plant (FDNPP) since the loss of external
power and emergency cooling system led to the meltdown of nuclear fuels in reactor cores, and caused
the release of a large quantity of radioactive material into the environment.

After the cataclysm, the scienti�c community was mobilized to evaluate the impact of the tsunami
and the nuclear accident on the environment and the health of the population. The AMORAD
(Am†lioration des mod–les de pr†vision de la dispersion et d’†valuation de l’impact des radionucl†ides
au sein de l’environnement) project, led by the French institute IRSN (Institut de Radioprotection
et de Suret† Nucl†aire), aims at improving radionuclide dispersion modeling and assessment of its
environmental impact on both the marine and terrestrial environment [35]. Another goal of the
AMORAD project is to monitor the evolution of the shoreline after the tsunami. In the case of Japan,
surveys and measurements were di�cult to achieve due to the high level of contamination and
restricted access. However, remote sensing satellite data can be used to analyze the in�uences of the
tsunami on the shoreline without in situ measurements. Remote sensing techniques are the most
adapted for studying the contaminated or inaccessible areas.

The objective of this study is to determine an e�ective classi�cation method that enables the
detection of the shoreline with very high resolution satellite images such as those from the World-View2
satellite. The method is based on the discrimination between land and ocean pixels in the presence
of foam which is often observed in coastal waters and clearly visible in high resolution images.
The proposed method allows an assessment of the erosion and the accretion processes induced not
only by the tsunami but also by other environmental phenomenon. Note that erosion and accretion
are societal issues for coastal management purposes. To achieve our objective, the SVM classi�cation
method was selected and applied to four multispectral high resolution images acquired by WorldView-2
sensor. Three di�erent pixel classes, namely land, foam and water were considered. The SVM method
was then compared with four other techniques before the merging of the water and foam classes,
resulting in two classes (land and ocean). The four other multispectral supervised classi�cation
techniques are the Euclidean Distance (ED), Spectral Angle Mapper (SAM), Maximum Likelihood
(ML), and Neural Network (NN). It should be highlighted that the originality of this study relies on
the consideration of foam pixels, thus allowing the exploitation of high resolution satellite data.

The paper is organized as follows: the data and the proposed methodology are presented in
Section 2. The SVM classi�cation method is applied to four satellite images and compared with
validation data in Section 3. The SVM classi�cation technique is compared with four other classi�cation
methods and discussed in Section 4.
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2. Materials and Methods

2.1. Study Area

The study area is located around and south of the bay of Sendai (North-East Japan) (Figure 1).
The coastal shore is composed of agricultural lands, natural landscapes and small towns. Several rivers
such as the Abukuma, Takase, Maeda or Kuma rivers �ow into the ocean in this area. Several harbors
are located on the coast, which is made up of beaches and cli�s. The beaches are often protected from
waves by dikes. The Fukushima Daiichi Nuclear Power Plant (FDNPP) is located in the south of
the area.

Figure 1. Regional (a) and local (b) study area in Japan. The speci�c areas that were covered by the
satellite images of this study are indicated by a red box. The Fukushima Daiichi Nuclear Power Plant is
marked by the nuclear symbol (south of the area).

2.2. Satellite Data

To analyze the evolution of the shoreline, satellite databases that consist of high spatial resolution
images of the study area acquired before and after the tsunami were considered. Most of the satellite
images were acquired by the optical imaging sensor WorldView-2 in the surroundings of the FDNPP site
after the tsunami because the Fukushima site was of no special interest before this event. The WorldView-2
data are provided by European Space Imaging. The WorldView-2 sensor provides high spatial resolution
data of 2 m for 8 spectral bands ranging from 400 nm to 1040 nm. The red boxes shown in Figure 1
indicate the areas covered by the Worldview-2 sensor.

The benthic composition of the study site is principally sandy bottom [36]. In the southern area,
the images were acquired on 8 November 2010 (before the tsunami) and on 10 February 2012 (after the
tsunami). In the northern area, the images were acquired on 4 August 2010 (before the tsunami) and
on 10 April 2012 (after the tsunami). Worldview-2 being a sun synchronous satellite, it acquires all the
images around 10:30 local time. Image registration was performed for these four images. Figure 2 shows
the images acquired on the southern area covering 3 � 26 km (coastal area lies between 37�160�37�300N
latitude and 141�010�141�030E longitude). Figure 3 shows the images acquired on the northern area,
covering 5 � 19 km (coastal area lies between 38�110�38�010N latitude and 140�540�140�580E longitude).
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Figure 2. The southern and northern areas listed as two red boxes in Figure 1: (a) Worldview-2 images
of the southern area acquired before (8 November 2010) and after the tsunami (10 February 2012),
with a visual focus on the Ukedo harbor. (b) Worldview-2 images of the northern area acquired before
(4 August 2010) and after the tsunami (10 April 2012), with a visual focus on the Yriage harbor.

Figure 3. Mean spectral pro�le of the 3 classes de�ned in this study: water (blue), land (orange) and
foam (grey) and their standard deviation.

The satellite data were corrected for the atmospheric e�ects by subtracting the Rayleigh re�ectance
and the aerosol re�ectance (black pixel method [37]) and dividing by the atmospheric transmittance.
The extent of the shoreline evolution can be seen in Figure 2a,b, which focus on Ukedo and Yuriage
harbors. For the sake of convenience, some the �gures in this paper show results for the Ukedo harbor
site, which is located at 37.48� N and 141.04� E, but it should be highlighted that the analysis was
carried out over the entire southern and northern areas.
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2.3. Methodology

A spectral-based method was used here to extract the shoreline even in the presence of foam pixels.
The classi�cation can be supervised or not, depending on the a priori knowledge of the user. Since the
classes were known in our study, a supervised classi�cation was therefore preferred. Three classes
were de�ned for representing our landscape, namely the water, foam and land classes. Three Regions
of Interest (ROI) were then selected on the images and the mean spectral pro�le of each ROI was then
derived. Only one ROI for each class was selected for the classi�cation and sand was the only class
considered for land. Because no value of the maximum distance set, all the pixels were classi�ed into
one of these three classes. For urban area, the spectral pro�le was often similar to the sand spectrum
(i.e, an increase of the re�ectance with the wavelength for minerals, concrete, tar : : : ). Vegetation was
also classi�ed as sand because the re�ectance is closer to the sand re�ectance than to the foam or the
water re�ectance. Here the ROI were picked by photointerpretation. Nevertheless, the mean spectral
re�ectance of each class can be also chosen in a spectral data base, provided that, the images have
been corrected for the atmospheric e�ect (to be normalized from the acquisitions conditions and be
compared to normalized re�ectance).

Figure 3 shows the mean spectral pro�le of each of the 3 classes. As an example, the land class is
represented by a ROI spectral pro�le that is based on sand properties.

The spectral pro�le of the water class is consistent with oceanic spectral re�ectance when
chlorophyll and a moderate concentration of suspended particulate matter (SPM) are present in
the water column [38]. An inversion of the Lee’s model [39] gives concentrations of 1 g m�3 of
chlorophyll, 8 mg m�3 of SPM, and a CDOM (Colored Dissolved Organic Matter) absorption at 440 nm
of 0.07 m�1. Lee’s model is a direct semi-analytical radiative transfer model providing the remote
sensing re�ectance (denoted Rrs) as a function of the water composition (chlorophyll concentration,
SPM concentration, CDOM absorption coe�cient at 440 nm). The inversion of this model is achieved
by minimizing the Euclidian distance between the model and the measured re�ectance through
optimization. The minimization is operated by a nonlinear curve-�tting in the least-squares sense with
bounds for each parameter. The outputs of the inversion are the optimized values of Chlorophyll,
SPM and CDOM. The spectral pro�le of the land class is consistent with a sand-like spectral re�ectance
which increases with the wavelength [40]. The spectral pro�le of the foam class is consistent with the
pro�le given by [41]. The standard deviation is highest for the foam and the land and lowest for the
water. This can be explained by the spatial heterogeneity of the foam and the land re�ectance compared
to the spatial homogeneity of the water re�ectance. The spectral pro�les of foam and land classes
show similarities in the visible domain but di�er in the near infrared domain. The water spectral
pro�le is easily distinguishable from the others. If pixels contain turbid waters in the image, they will
not be misclassi�ed in sand or foam class because turbid waters consist mainly of water, there is a
strong absorption in the blue, the red and the near infrared domain. The spectral features between
turbid waters and sand or foam re�ectances are so di�erent that a pixel of turbid water will always be
classi�ed in the water class and not in the sand or foam class.

Based on Figure 3, it should be highlighted that the consideration of all the spectral bands is
required to properly distinguish between the 3 classes using the classi�cation technique. The use of
only a single band associated with a threshold value would not be su�cient to obtain satisfactory
results due to possible spectral similarities between classes, especially for the case where the selected
band is inappropriate.

Support-vector machines (SVM) are supervised learning models which consist of associated
learning algorithms that analyze data used for classi�cation and regression analysis [42]. For a given set
of training examples, each pixel is marked as belonging to one or the other of two categories. An SVM
training algorithm builds a model that assigns new pixels to one category or the other, making it a
non-probabilistic binary linear classi�er. An SVM model is a representation of the pixels as points in
space that are mapped so that the examples of the separate categories are divided by a clear gap that is
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as wide as possible. New examples are then mapped into that same space and predicted to belong to
one category based on which side of the gap they fall.

Once the supervised classi�cation is obtained, foam and water pixels can be merged together
to provide the ocean class and an ocean/land map can then be derived. At this stage, pixels located
inland may be classi�ed in the water class if they belong to a lake or a �ooded area. Since the inland
water pixels are not relevant for the purpose of the shoreline detection, a segmentation process is then
applied. This process consists of assigning adjacent pixels belonging to the same class to the same
region. Each region is then numbered and the region corresponding to the sea (the largest) is the only
region kept. All the pixels not belonging to this region are considered to be land, removing the inland
waters, thus facilitating the shoreline extraction from the land and ocean map only. The �owchart of
the overall methodology is presented in Figure 4.

Figure 4. Flowchart of the classi�cation methodology. ROI stands for �Region Of Interest�.

To evaluate the erosion and the accretion between the 2 dates, the land/ocean maps must be
corrected from the normal tidal e�ects and from the subsidence phenomenon induced by the tsunami.
t1 refers to the date before the tsunami and t2 the date after the tsunami. Based on the satellite
acquisition times, the tidal e�ect was corrected over the image acquired at time t2 by taking into
account the di�erence of sea level between the 2 dates (t2 and t1). If we note the water level h1 (m) at
t1 and h2 (m) at t2, the di�erence of sea level due to normal tidal e�ect is then h2 � h1. Considering
that the tsunami has induced a subsidence of 37 cm in this area [43], the di�erence of sea level � h is
�nally of h2 � h1 + 0.37. The slope at the shoreline was produced by a bathymetric survey [44] with a
resolution of 2�3 m and an accuracy of 2%. The bathymetric survey was acquired after the tsunami
in 2013 but, because this map was only used to calculate the slope at the shoreline, the subsidence
correction of the map was of no use. The shift (positive or negative depending on the sign of � h) of the
shoreline is then given by Equation (1).

shi f t =
� h

tan(slope)
(1)

where tan(slope) is the tangent of the slope. The number of pixels to be removed or added at the
shoreline location in the land/ocean map (depending on whether the shift is positive or negative) is the
rounded value of shift divided by the spatial resolution of the Woldview-2 sensor (i.e., 2 m).

Since the performance of the SVM classi�cation method will be compared with four other methods,
namely the Euclidean Distance, the Spectral Angle Mapper, the Maximum Likelihood, the Support
Vector Machine (SVM) and the Neural Network (NN), in Section 4 (Discussion), these latter methods
are de�ned here.
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To enhance the method performance, the wave run up should also be taken into consideration using
series of images acquired during a short period to obtain an average shoreline. Nevertheless, because
the erosion and the accretion processes do not show the same magnitude of error as the error made
with the wave run up, the error was ignored in this study.

The Euclidean Distance (ED) is de�ned as d(x, rk), the distance between the spectral re�ectance of
the pixel x and the spectral re�ectance of the class rk (Equation (2)):

d(x, rk) =

r
X N

i= 1
(x(i) � rk(i)) 2 (2)

where N is the number of spectral bands, k is the number of the class, i is the number of the band,
x is the spectral pro�le of one pixel and rk is the mean spectral pro�le of class k. Richards et al. [45]
determined the classi�cation criterion for each pixel: if d(x, rk) < d

�
x, r j

�
, the pixel de�ned by vector x

belongs to class k.
The Spectral Angle Mapper Distance (SAM) method is based on the calculation of the angle

between the spectral pro�le of pixel x and rk , which is the mean spectral pro�le of class k. The spectral
angle � is de�ned by Richards et al. [45] as follows (Equation (3)):

� (x, rk) = cos�1(

P N
i= 1 x(i) � rk

(
P N

i= 1 x(i)2)
1/ 2
� (

P N
i= 1 r2

k )
1/ 2

) (3)

If � (x, rk) < �
�
x, r j

�
, the pixel de�ned by vector x belongs to class k.

The Maximum likelihood classi�cation (ML) method is based on the assumption that the statistics
for each class in each band are normally distributed; the probability that a given pixel belongs to
a speci�c class is calculated. Unless a probability threshold value is �xed, all pixels are classi�ed.
Each pixel is assigned to the class that shows the highest probability that is in fact the maximum
likelihood [45]. According to [45], rk and Ri are, respectively, the mean pro�le and the covariance
matrix of class k. The discriminant function g(x, rk) for each pixel is de�ned as follows (Equation (4)):

g(x, rk) = �ln( jRkj) � (x� rk)
T �R�1

k � (x� rk) (4)

The Neural Network (NN) is composed of a large number of simple, interconnected neurons
working in parallel within a network. The NN has the capability to develop an internal representation
of the spectral pro�le that is presented as input to the network. The learning phase is accomplished
through the dynamic adjustment of network interconnection strengths (adaptive weights) associated
with each neuron. Such a process, termed back propagation, uses the desired outcome (class) and a
de�ned input (training set) to initiate feedback to the neural network. In this study, the inputs were the
spectral re�ectance of the image pixels and the output were the classes. The training set was composed
of the re�ectance of the pixels contained in each ROI associated with each output class. The network
cycles through the training set until the synapse weights are such that the network correctly relates the
de�ned input to the desired output. When presented with new data, the internal synapse weights
excite or inhibit the �ring of speci�c processing units (neurons). The pattern of these neuron �rings
segregates the input signals into the output classes [46]. In this study, a sigmoid logistic activation
function was used.

2.4. Validation

For each classi�cation method, the land/ocean maps were compared to the reference shoreline as
a validation. The term �ocean� includes both foam and water. The reference shorelines were manually
obtained using the visual inspection of the satellite image (Figure 5a). This validation was considered
to be reliable because the human brain takes into account many contextual parameters such as the color,
the shape and the texture of the shore that the computer ignores. Other studies used human expertise
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for the shoreline reference [47,48]. A land/ocean reference map is then generated from the reference
shoreline. Ocean pixels are assigned the value of 1 (white color) while land pixels are assigned the
value of 0 (black color) (Figure 5b).

Figure 5. (a) Reference shoreline on the Ukedo harbor and (b) reference land/ocean map on 8 November 2010.

Two types of comparisons are carried out to evaluate the performances of the classi�cation
methods:

- the comparison between land/ocean maps for each classi�cation and the reference map; such a
comparison provides estimates of false positive and false negative errors.

- the comparison between the erosion and accretion surface areas estimated for each classi�cation
and the reference values.

2.4.1. False Positive and False Negative Errors

The �rst comparison consists of a simple subtraction, pixel by pixel, between the land/ocean maps
obtained for each classi�cation method and the corresponding land/ocean reference maps. Such a
subtraction enables the determination of whether the estimated shoreline is placed in the land or in the
ocean area. The false positive error occurs when the estimated shoreline is located in the land area.
The false negative error occurs when the estimated shoreline is located in the ocean area.

2.4.2. Erosion and Accretion

The estimation of erosion and accretion surface areas was obtained by subtraction as follows:
the pre-tsunami land/ocean map was subtracted from the post tsunami land/ocean map. The resulting
1 value means emergence of ocean (erosion), the resulting �1 value means an emergence of land
(accretion). To estimate the erosion and accretion surface, pixels multiplied by the surface of one pixel
(2 � 2 = 4 m2 for the WorldView2 sensor).

The derived erosion and accretion surface areas can be compared with reference values using the
Estimated Surface Relative Error (ESRE) as follows (Equation (5)):

ESRE(en %) =
Ŝ� Sre f

Sre f
� 100 (5)

where Ŝ is the estimated surface and Sre f is the reference surface obtained from the di�erence between
the reference shoreline before and after the tsunami.
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3. Results

Importance of the Consideration of the Foam Class

The SVM classi�cation was applied to the four WorldView-2 images when three classes (land,
foam and water) were used and when only two classes (land and water) were used to evaluate the
importance of adding the class of foam in the classi�cation. Figure 6 shows the di�erence between the
two classi�cations for a sample of the image acquired on 8 November 2010 (southern area) and the
image acquired on 10 August 2010 (northern area). Yellow areas correspond to land pixels, dark blue
areas to water pixels and light blue areas to foam pixels. The foam pixels were correctly classi�ed within
the foam class for the case where three classes were used (Figure 6a,e). For the case where two classes
were used, the foam pixels were classi�ed within the land class (Figure 6c,g). This is due to the fact that
the spectral pro�le of foam was fairly similar to the spectral pro�le of land (Figure 3). The land/ocean
maps obtained after merging water and foam pixels (when three classes) and the segmentation process
are reported in Figure 6b,d,f,h. In these maps, the inland water pixels disappeared.

Figure 6. First line (a�d): Support Vector Machine (SVM) classi�cation on the southern area on
8 November 2010 when 3 classes (land, foam and water) were used (a) and when 2 classes (land and
water) were used (c). (b,d): land/ocean maps obtained after merging water and foam pixels through
the segmentation process. Second line (e�h): SVM classi�cation on the northern area on 10 August
when 3 classes (land, foam and water) were used (e) and when 2 classes (land and water) were used (g).
(f,h): land/ocean maps obtained after merging water and foam pixels through the segmentation process.

The relative false positive (resp. false negative) error was obtained by dividing the sum the false
positive (resp. false negative) pixels by the number of ocean pixels in the reference. They are given
for each image in Table 1. For the four dates, the relative errors were lower than 1% for three classes
and lower than 2% for two classes which is low considering the ocean mask size but the introduction
of the new class made the false negative relative error signi�cantly decrease to a factor of 4.9 for the
4 August 2010. This is because the foam pixels were no longer classi�ed as land. Note that the false
positive errors remained stable for both two and three classes.

Table 2 presents the reference value of erosion and accretion in the two sites and the derived
values when the SVM classi�cation method was used for both two and three classes. The results
show that taking into account the new class of foam substantially improves the estimation of erosion
and the accretion. This is because the area covered by foam is of the same order as the erosion and
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accretion area. Thus, ignoring this class may result in signi�cantly overestimating or underestimating
the erosion or the accretion, typically by a factor of two or three.

Table 1. Relative false negative and positive errors (in %) for the four WorldView-2 images.

Date of Acquisition of
WV-2 Images

False Positive Error (%) False Negative Error (%)

2 Classes/3 Classes 2 Classes/
3 Classes

Southern site
08 Nov. 2010 0.88/0.83 1.54/0.89
10 Feb. 2012 0.69/0.68 0.30/0.19

Northern site
4 Aug. 2010 0.92/0.59 1.67/0.34
10 Apr. 2012 0.86/0.78 0.78/0.22

Table 2. Relative false negative and positive errors (in %) for the four WorldView-2 images.
SVM2 stands for SVM classi�cation with 2 classes and SVM3 stands for SVM classi�cation with
3 classes. Reference values of erosion and accretion for each site are displayed in bold.

Erosion (m2/km)
of Coast)

Accretion (m2/km
of Coast) ESRE on Erosion ESRE on Accretion

Southern site
(25 km of coast)

Reference values 16.5 6.9
SVM2
SVM3

48.3
19.7

1.10
8.6

192%
19%

�84%
24%

Northern site
(19 km of coast)

Reference values 29.1 27.3
SVM2
SVM3

58.2
28.6

69.1
30.7

100%
�2%

153%
13%

Table 2 also shows that the erosion process caused by the tsunami was higher than the accretion
process for the two sites; di�erences of 9.6 m2/km and 1.8 m2/km were observed for the southern and
northern site, respectively. This means that the tsunami removed more material from the coast than it
deposited. A similar phenomenon was observed after the tsunami induced by the Sumatra earthquake
in 2004 [49]. Kench et al. [49] indicated that erosional and depositional impacts were observed on all
islands. In general, changes were of a minor nature with a maximum reduction in the island area of
9% and an average of 3.75%. The tsunami accentuated predictable seasonal oscillations in shoreline
change, including localized erosion re�ected in fresh scarps and seepage gullies [49].

The results do not seem to be sensitive to the choice of ROIs because the re�ectance shapes of
sand, water and foam are stable whatever the site when images were corrected for the atmospheric
e�ect. Even if the shore is composed of rocks rather than sand, the spectral pro�le will be similar
(increasing with the wavelength). On the southern area, the shore was composed of both rocks and
sand and all the pixels were correctly classi�ed as land (Figure 6).

In the current study, it is noteworthy that the northern area was more a�ected by the tsunami
than the southern area (Table 2). This is due to the composition of the shore that is more compact
and massive in the south than in the north of Japan, where it is mainly composed of sandy beaches.
The areas of the coastline most dramatically altered by the tsunami were beaches and river mouths
where the silts, that had accumulated over a long period of time, was swept to other areas. In the
southern area, only river mouths were a�ected by the tsunami. A long stretch of the coastline is
composed of rocks and dikes which protect it from erosion and accretion.

4. Discussion

4.1. Comparison of the SVM Method with Other Methods of Classi�cations

The results obtained by the SVM classi�cation method described in Section 2 were compared with
four other classi�cation methods (ED, SAM, ML and NN). The spectral pro�les used for these di�erent
methods were the same as the pro�les used for the SVM method. Figure 7 shows a sample of the
image acquired on 8 November 2010 in the southern area and Figure 8 a sample of the image acquired
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on 10 August 2010 in the northern area. It can be observed that for both images, the SAM and ML
classi�cation methods wrongly retrieved a signi�cant number of foam pixels inland which were not
removed by the segmentation whereas the ED (Figures 7 and 8), the NN (Figures 7 and 8) and the SVM
(see Figure 6a) wrongly retrieved a signi�cant number of water pixels inland which were removed by
the segmentation process. The SVM method remains more robust in comparison to the ED and NN.

Figure 7. (Top panels) Pixel classi�cation retrieved by the 4 methods described in Section 2 (Euclidean
Distance (ED), Spectral Angle Mapper (SAM), Maximum Likelihood (ML), Neural Network (NN)) on
8 November 2010 for the southern area (Figure 1); 3 classes were used: land (yellow), foam (light blue)
and water (blue). (Bottom panels) Land/ocean maps obtained after merging foam and water pixels
using a segmentation procedure.

Figure 8. (Top panels) Pixel classi�cation retrieved by the 4 methods described in Section 2 (ED,
SAM, ML, NN) on 10 August 2010 for the northern area (Figure 1); 3 classes were used: land (yellow),
foam (light blue) and water (blue). (Bottom panels) Land/ocean maps obtained after merging foam and
water pixels using a segmentation procedure.
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4.2. Comparison of False Positive and False Negative Errors

For validation purposes, relative false positive and false negative errors were evaluated by
comparing the retrieved pixels with the reference for each classi�cation; the results are shown in
Figure 9 (left) for the southern area and Figure 9 (right) for the northern area.

Figure 9. (Left) Relative false negative (blue) and positive (orange) errors (in %) in the retrieved pixel
classi�cation for the southern area for the dates before and after the tsunami. (Right) Relative false
negative (blue) and positive (orange) errors (in %) in the retrieved pixels classi�cation for the northern
area for the dates before and after the tsunami.

On 8 November 2010 the ED, SVM and NN methods provide the lowest false positive and negative
errors whereas the SAM and ML classi�cation techniques lead to errors of more than 4% (Figure 8).
This is explained by the classi�cation technique used by SAM and ML where foam is largely detected
in land. On 10 February 2012, 4 August 2010 and 10 April 2012, the SVM and NN methods remain the
most e�ective techniques showing errors of less than 2%. The ML method systematically exhibits the
highest number of false positives and negatives errors, greater than 5%. False positive errors are often
higher than false negative errors because water pixels erroneously appear inland and more rarely,
land pixels are wrongly retrieved in water areas thanks to the new class of foam.

4.3. Estimation of Erosion and Accretion

As in Table 2 for the SVM classi�cation method, Table 3 shows the area of erosion and accretion
per km of coast and the Estimated Surface Relative Error (ESRE, Equation (5)), which is the relative
error on surface estimation compared to reference surfaces, for all the methods on both sites.

Table 3 clearly points out that the SVM method is highly e�cient to estimate both the erosion
process due to the tsunami, where relative errors of 19% and �2% respectively occurred compared to
the reference desired values, and the accretion process where relative errors of 24%, 13%, respectively,
occurred compared to the reference values. The erosion process was higher than the accretion process
for both sites.

For the ED method, which is the oldest and simplest classi�cation method, each class is represented
by a single spectrum and each pixel spectrum is compared to the class spectrum in absolute values
with the Euclidean distance. This method can be sensitive to the presence of shadow. The most
inaccurate result of the ED classi�cation method occurred for the image acquired on the 10 February
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2012. This image is the one whose illumination is the most variable within the image in presence of
haze, thus explaining why the error was higher than that obtained for the other images.

Table 3. Erosion and accretion pixels desired (the reference) and retrieved by the 5 methods for the
two sites. The Estimated Surface Relative Error (ESRE) is also reported. Minimum values of ESRE on
erosion and accretion for each site are displayed in bold.

Erosion
(m2/km)

Accretion
(m2/km) ESRE on Erosion ESRE on Accretion

Southern site
(25 km of coast)

Reference values 16.5 6.9
ED 104.1 8.5 529% 22%

SAM 9.4 64.7 �43% 834%
ML 1119.5 35.8 6671% 416%

SVM 19.7 8.6 19% 24%
NN 23.9 4.5 45% �35%

Northern site
(19 km of coast)

Reference values 29.1 27.3
ED 25.1 62.4 �14% 129%

SAM 39.0 22.7 34% �17%
ML 64.7 1644.5 123% 5926%

SVM 28.6 30.7 �2% 13%
NN 41.7 31.8 43% 16%

The SAM distance is often used when considering multispectral images. The SAM technique
allows the shapes of spectra to be compared rather than the absolute values. This is especially
interesting when irradiance changes in the presence of clouds and shadow. The error that occurred
when using the SAM distance was higher than 4% on 8 November 2010 and on 4 august 2010. For these
two dates, the foam pixels were retrieved inland (Figure 7 for the �rst date). As shown in Figure 3,
land and foam re�ectances show almost the same spectral shape. Therefore, signi�cant errors could
have been be made when the land pixels were classi�ed as foam. The SAM distance is therefore not
suitable to discriminate between land and foam pixels.

Contrary to the ED and SAM methods, the ML method takes into account the intra-class variability.
Indeed, the ML method considers both the variances and covariances of the class signatures when
assigning each pixel to one of the classes represented by the signature. Assuming that the distribution of
a class is normal, a class can be characterized by the mean vector and the covariance matrix. Given these
two characteristics for each cell value, the statistical probability is calculated for each class, identifying
which class the pixel belongs to or is a member of. If we compare the ML results to the other methods,
the error was always higher than 6% except for 4 August 2010. This can be explained by the small
samples of each class exhibiting a weak variability.

The SVM and NN methods were e�cient for all the dates because these two methods have a higher
generalization capability, in particular with regard to small training sample sizes. These results were
also con�rmed by [50], who concluded that SVM and NN algorithms provided better performance in
comparison to SAM for the classi�cation using LISS (Linear Imagine Self Scanning System)-IV satellite
sensor data. In the context of supervised crop type classi�cation [51], they also concluded that the
classi�cation results were strongly in�uenced by the type of classi�er. SVM classi�ers outperformed
random forest and NN in most cases. The poorest results by far were obtained with ML classi�cation.
This conclusion was also con�rmed by Yu et al. [26]. Our results show that the best methods to obtain
the land /ocean maps, and then the shoreline extraction, are the SVM (19% and �2% on the erosion and
24% and 13% on the accretion) and the NN classi�cation methods (45% and 43% on the erosion and
�35% and 16% on the accretion).

5. Conclusions

The purpose of this study was to propose a method for monitoring shorelines using high spatial
resolution images containing foam pixels contrary to most of the previous studies which ignore them.
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The method was �rst tested on Worlview-2 satellite images (2 m resolution and eight spectral bands)
acquired over the East coast of Japan close to the FDNPP that was severely damaged by the Tohoku
tsunami. The SVM classi�cation technique was �rst applied, and the new class of foam led to a
decrease in the false negative error by a maximum factor of 4.9 with the four images. The SVM method
was further compared with four other classi�cation methods (ED, SAM, ML and NN). The SVM and
NN methods were the most e�cient with false positive and false negative errors with less than 2%.
The results also showed that erosion and accretion processes caused by the tsunami were higher in the
northern area (respectively 29.1 m2/km, 27.3 m2/km) than in the southern area (16.5 m2/km, 6.9 m2/km)
due to the presence of beaches in the north. It was also shown that the erosion was higher (respectively
29.1 m2/km, 16.5 m2/km) than the accretion (27.3 m2/km, 6.9 m2/km) on both sites as observed after the
tsunami induced by the Sumatra earthquake in 2004.
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