C. Small and R. J. Nicholls, A global analysis of human settlement in coastal zones, J. Coast. Res, vol.19, pp.584-599, 2003.

P. P. Wong, I. J. Losada, J. Gattuso, J. Hinkel, A. Khattabi et al., Coastal systems and low-lying areas, Clim. Chang, pp.361-409, 2014.

H. Blodget, P. Taylor, and J. Roark, Shoreline changes along the Rosetta-Nile Promontory: Monitoring with satellite observations, Mar. Geol, vol.99, pp.67-77, 1991.

A. P. Ruiz-beltran, A. Astorga-moar, P. Salles, and C. M. Appendini, Short-term shoreline trend detection patterns using SPOT-5 image fusion in the northwest of Yucatan, Mexico. Estuar. Coasts, vol.42, pp.1761-1773, 2019.

A. Collin, V. Duvat, V. Pillet, B. Salvat, and D. James, Understanding Interactions between Shoreline Changes and Reef Outer Slope Morphometry on Takapoto Atoll (French Polynesia), J. Coast. Res, vol.85, pp.496-500, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01924521

G. Hagenaars, S. De-vries, A. P. Luijendijk, W. P. De-boer, and A. J. Reniers, On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment, Coast. Eng, vol.133, pp.113-125, 2018.

P. Maglione, C. Parente, and A. Vallario, Coastline extraction using high resolution WorldView-2 satellite imagery, Eur. J. Remote Sens, vol.47, pp.685-699, 2014.

D. Sylla, A. Minghelli-roman, P. Blanc, A. Mangin, and O. H. Andon, Fusion of multispectral images by extension of the pan-sharpening ARSIS method, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol.7, pp.1781-1791, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859076

W. Chen and H. Chang, Estimation of shoreline position and change from satellite images considering tidal variation, Estuar. Coast. Shelf Sci, vol.84, pp.54-60, 2009.

H. Wang, N. Bi, Y. Saito, Y. Wang, X. Sun et al., Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary, J. Hydrol, vol.391, pp.302-313, 2010.

T. Kuleli, A. Guneroglu, F. Karsli, and M. Dihkan, Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Eng, vol.38, pp.1141-1149, 2011.

J. E. Pardo-pascual, J. Almonacid-caballer, L. A. Ruiz, and J. Palomar-vázquez, Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens, vol.123, pp.1-11, 2012.

S. Toure, O. Diop, K. Kpalma, and A. S. Maiga, Shoreline Detection using Optical Remote Sensing: A Review, ISPRS Int. J. Geo Inf, vol.8, p.75, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02050592

E. Ghoneim, J. Mashaly, D. Gamble, J. Halls, and M. Abubakr, Nile Delta exhibited a spatial reversal in the rates of shoreline retreat on the Rosetta promontory comparing pre-and post-beach protection, Geomorphology, vol.228, pp.1-14, 2015.

I. A. Erteza, An Automatic Coastline Detector for Use with SAR Images

R. Aedla, G. Dwarakish, and D. V. Reddy, Automatic shoreline detection and change detection analysis of netravati-gurpurrivermouth using histogram equalization and adaptive thresholding techniques, Aquat. Procedia, vol.4, pp.563-570, 2015.

S. Kale and D. Acarli, Shoreline Change Monitoring in Atikhisar Reservoir by Using Remore Sensing and Geographic Information System (GIS), Fresenius Environ. Bull, vol.28, p.4329, 2019.

A. Mukhopadhyay, S. Mukherjee, S. Mukherjee, S. Ghosh, S. Hazra et al., Automatic shoreline detection and future prediction: A case study on Puri Coast, Eur. J. Remote Sens, vol.45, pp.201-213, 2012.

W. Cao, Y. Zhou, R. Li, and X. Li, Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images

G. Vivek, S. Goswami, R. Samal, and S. Choudhury, Monitoring of Chilika Lake mouth dynamics and quantifying rate of shoreline change using 30 m multi-temporal Landsat data, Data Brief, vol.22, pp.595-600, 2019.

J. Pardo-pascual, E. Sánchez-garcía, J. Almonacid-caballer, J. Palomar-vázquez, E. P. De-los-santos et al., Assessing the accuracy of automatically extracted shorelines on microtidal beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery, Remote Sens, vol.10, 2018.

Q. Liu, J. C. Trinder, and I. L. Turner, Automatic super-resolution shoreline change monitoring using Landsat archival data: A case study at Narrabeen-Collaroy Beach, Australia. J. Appl

A. T. Do, S. De-vries, and M. J. Stive, The estimation and evaluation of shoreline locations, shoreline-change rates, and coastal volume changes derived from Landsat images, J. Coast. Res, vol.35, pp.56-71, 2019.

E. Sánchez-garcía, J. Palomar-vázquez, J. Pardo-pascual, J. Almonacid-caballer, C. Cabezas-rabadán et al., An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery

C. Cabezas-rabadán, J. E. Pardo-pascual, J. Palomar-vázquez, Ó. Ferreira, and S. Costas, Satellite Derived Shorelines at an Exposed Meso-tidal Beach, J. Coast. Res, vol.95, pp.1027-1031, 2020.

L. Yu, J. Lan, Y. Zeng, and J. Zou, Comparison of Land Cover Types Classification Methods Using Tiangong-2 Multispectral Image, Proceedings of the Tiangong-2 Remote Sensing Application Conference, pp.241-253, 2018.

B. Qin, L. Li, and S. Li, Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol.42, issue.3, 2018.

K. Kalkan, B. Bayram, D. Maktav, and F. Sunar, Comparison of support vector machine and object based classification methods for coastline detection, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol.7, 2013.

H. Zhang, Q. Jiang, and J. Xu, Coastline Extraction Using Support Vector Machine from Remote Sensing Image, J. Multimed, vol.8, pp.175-182, 2013.

P. Dunbar, H. Mccullough, G. Mungov, J. Varner, and K. Stroker, Tohoku earthquake and tsunami data available from the national oceanic and atmospheric administration/national geophysical data center, Geomat. Nat. Hazards Risk, vol.2, pp.305-323, 2011.

H. Benz and C. Ransom, USGS Updates Magnitude of Japan's 2011 Tohoku Earthquake to 9.0; US Geological Survery Website, 2011.

W. Liu, F. Yamazaki, H. Gokon, and S. Koshimura, Damage Detection of the 2011 Tohoku, Japan Earthquake from High-resolution SAR Intensity Images, Proceedings of the 15th World Conference on Earthquake Engineering, pp.24-28, 2012.

A. Raby, J. Macabuag, A. Pomonis, S. Wilkinson, and T. Rossetto, Implications of the 2011 Great East Japan Tsunami on sea defence design. Int. Disaster Risk Reduct, vol.14, pp.332-346, 2015.

M. Baba, Fukushima accident: What happened?, Radiat. Meas, vol.55, pp.17-21, 2013.

A. Minghelli, M. Lei, S. Charmasson, V. Rey, and M. Chami, Monitoring suspended particle matter using GOCI satellite data after the tohoku (Japan) tsunami in 2011, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol.12, pp.567-576, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02063520

D. Ambe, H. Kaeriyama, Y. Shigenobu, K. Fujimoto, T. Ono et al., Five-minute resolved spatial distribution of radiocesium in sea sediment derived from the Fukushima Dai-ichi Nuclear Power Plant, J. Environ. Radioact, vol.138, pp.264-275, 2014.

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, Atmospheric Correction of Satellite Ocean Color Imagery: The Black Pixel Assumption, Appl. Opt, vol.39, pp.3582-3591, 2000.

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, Hyperspectral remote sensing for shallow Waters. I. A semianalytical model, Appl. Opt, vol.37, pp.6329-6338, 1998.

Z. Lee, B. Lubac, J. Werdell, and R. Armone, An update of the quasi-analytical algorithm (QAA_v5), Int. Ocean Color Group Softw. Rep, pp.1-9, 2009.

A. Gerbermann and D. Neher, Reflectance of varying mixtures of a clay soil and sand. Photogramm. Eng. Remote Sens, vol.45, pp.1145-1151, 1979.

A. Kokhanovsky, Spectral reflectance of whitecaps, J. Geophys. Res. Ocean, vol.109, p.5021, 2004.

G. M. Foody and A. Mathur, Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification, Remote Sens. Environ, vol.93, pp.107-117, 2004.

T. Imakiire and M. Koarai, Wide-area land subsidence caused by "the 2011 off the Pacific Coast of Tohoku Earthquake". Soils Found, vol.52, pp.842-855, 2012.

T. Tsuruta, H. Harada, T. Misonou, T. Matsuoka, and Y. Hodotsuka, Horizontal and vertical distributions of 137 Cs in seabed sediments around the river mouth near Fukushima Daiichi Nuclear Power Plant, vol.73, pp.547-558, 2017.

J. Richards and X. Jia, Remote Sensing Digital Image Analysis-Hardback, 2006.

L. Wang, J. L. Silván-cárdenas, and W. P. Sousa, Neural network classification of mangrove species from multi-seasonal Ikonos imagery, Photogramm. Eng. Remote Sens, vol.74, pp.921-927, 2008.

C. Gomez, M. A. Wulder, A. G. Dawson, W. Ritchie, and D. R. Green, Shoreline change and coastal vulnerability characterization with Landsat imagery: A case study in the Outer Hebrides, Scotland. Scott. Geogr. J, vol.130, pp.279-299, 2014.

L. M. Dingerson, Predicting Future Shoreline Condition Based on Land Use Trends, Logistic Regression, and Fuzzy Logic, 2005.

P. Kench, S. Nichol, S. Smithers, R. Mclean, and R. Brander, Tsunami as agents of geomorphic change in mid-ocean reef islands, Geomorphology, vol.95, pp.361-383, 2008.

P. Kumar, D. K. Gupta, V. N. Mishra, and R. Prasad, Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data, Int. J. Remote Sens, vol.36, pp.1604-1617, 2015.

I. Nitze, U. Schulthess, and H. Asche, Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification, Proceedings of the 4th International Conference on GEographic Object Based Image Analysis, p.35, 2012.