S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung, and N. T. Thanh, Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment, Nano Today, vol.29, 2019.

J. Zeng, L. Jing, Y. Hou, M. Jiao, R. Qiao et al., Anchoring group effects of surface ligands on magnetic properties of Fe 3 O 4 nanoparticles: Towards high performance MRI contrast agents, Adv. Mater, vol.26, pp.2694-2698, 2014.

O. Veiseh, J. W. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug Deliv. Rev, vol.62, pp.284-304, 2010.

A. Van-de-walle, J. E. Perez, A. Abou-hassan, M. Hémadi, N. Luciani et al., Magnetic nanoparticles in regenerative medicine: What of their fate and impact in stem cells? Mater, Today Nano, vol.11, 2020.

G. Mary, A. Van-de-walle, J. E. Perez, T. Ukai, T. Maekawa et al., High-throughput differentiation of embryonic stem cells into cardiomyocytes with a microfabricated magnetic pattern and cyclic stimulation, Adv. Funct. Mater, 2020.

, Nanomaterials 2020, vol.10, p.1548

B. T. Mai, S. Fernandes, P. B. Balakrishnan, and T. Pellegrino, Nanosystems based on magnetic nanoparticles and Thermo-or pH-Responsive polymers: An update and future perspectives, Acc. Chem. Res, vol.51, pp.999-1013, 2018.

M. Martina, C. Wilhelm, and S. Lesieur, The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells, Biomaterials, vol.29, pp.4137-4145, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00327614

C. Derec, C. Wilhelm, J. Servais, and J. Bacri, Local control of magnetic objects in microfluidic channels, Microfluid. Nanofluidics, vol.8, issue.123, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00518937

D. Ferraro, Y. Lin, B. Teste, D. Talbot, L. Malaquin et al., Continuous chemical operations and modifications on magnetic ?-Fe 2 O 3 nanoparticles confined in nanoliter droplets for the assembly of fluorescent and magnetic SiO 2 @?-Fe 2 O 3, Chem. Commun, vol.51, pp.16904-16907, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219164

C. S. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev, vol.63, pp.789-808, 2011.

E. Cazares-cortes, S. Cabana, C. Boitard, E. Nehlig, N. Griffete et al., Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids, Adv. Drug Deliv. Rev, vol.138, pp.233-246, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02173371

A. G. Roca, L. Gutiérrez, H. Gavilán, M. E. Fortes-brollo, S. Veintemillas-verdaguer et al., Design strategies for shape-controlled magnetic iron oxide nanoparticles, Adv. Drug Deliv. Rev, vol.138, pp.68-104, 2019.

C. Jonasson, V. Schaller, L. Zeng, E. Olsson, C. Frandsen et al., Modelling the effect of different core sizes and magnetic interactions inside magnetic nanoparticles on hyperthermia performance, J. Magn. Magn. Mater, vol.477, pp.198-202, 2019.

S. K. Avugadda, M. E. Materia, R. Nigmatullin, D. Cabrera, R. Marotta et al., Esterase-cleavable 2D assemblies of magnetic iron oxide nanocubes: Exploiting enzymatic polymer disassembling to improve magnetic hyperthermia heat losses, Chem. Mater, vol.31, pp.5450-5463, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02409405

A. Espinosa, M. Bugnet, G. Radtke, S. Neveu, G. A. Botton et al., Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?, Nanoscale, vol.7, pp.18872-18877, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219175

A. Curcio, A. K. Silva, S. Cabana, A. Espinosa, B. Baptiste et al., Iron oxide nanoflowers @ cus hybrids for cancer tri-therapy: Interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy, Theranostics, vol.9, pp.1288-1302, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02409609

W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu et al., Facile synthesis of monodisperse superparamagnetic Fe 3 O 4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy, Adv. Mater, vol.23, pp.5392-5397, 2011.

M. P. Melancon, W. Lu, M. Zhong, M. Zhou, G. Liang et al., Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer, Biomaterials, vol.32, pp.7600-7608, 2011.

A. Espinosa, R. Di-corato, J. Kolosnjaj-tabi, P. Flaud, T. Pellegrino et al., Duality of Iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, ACS Nano, vol.10, pp.2436-2446, 2016.

T. Yu, P. Li, T. Tseng, and Y. Chen, Multifunctional Fe 3 O 4 /alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria, Nanomedicine, vol.6, pp.1353-1363, 2011.

M. Chu, Y. Shao, J. Peng, X. Dai, H. Li et al., Near-infrared laser light mediated cancer therapy by photothermal effect of Fe 3 O 4 magnetic nanoparticles, Biomaterials, vol.34, pp.4078-4088, 2013.

R. Gupta and D. Sharma, Manganese-doped magnetic nanoclusters for hyperthermia and photothermal glioblastoma therapy, ACS Appl. Nano Mater, vol.2020, pp.2026-2037

M. Liao, P. Lai, H. Yu, H. Lin, and C. Huang, Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics, Chem. Commun, vol.48, pp.5319-5321, 2012.

P. Sangnier, A. Preveral, S. Curcio, A. Silva, A. K. Lefèvre et al., Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia, J. Control, vol.279, pp.271-281, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01950959

W. Hong, I. L. Hsu, S. Huang, C. Lee, H. Ko et al., Assembled growth of 3D Fe 3 O 4 @Au nanoparticles for efficient photothermal ablation and SERS detection of microorganisms, J. Mater. Chem. B, vol.6, pp.5689-5697, 2018.

C. Huang, P. Chang, C. Liu, J. Xu, S. Wu et al., New insight on optical and magnetic Fe 3 O 4 nanoclusters promising for near infrared theranostic applications, Nanoscale, vol.7, pp.12689-12697, 2015.

P. Kharey, S. B. Dutta, M. Manikandan, I. A. Palani, S. K. Majumder et al., Green synthesis of near-infrared absorbing eugenate capped iron oxide nanoparticles for photothermal application, Nanotechnology, vol.31, p.95705, 2019.

A. Van-de-walle, A. Plan-sangnier, A. Abou-hassan, A. Curcio, M. Hémadi et al., Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells, Proceedings of the National Academy of Sciences, pp.4044-4053, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02409281

L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy et al., Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents, ACS Nano, vol.6, pp.10935-10949, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820693

P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois et al., Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia, J. Phys. Chem. C, vol.116, pp.15702-15712, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820701

A. Espinosa, J. Kolosnjaj-tabi, A. Abou-hassan, A. Plan-sangnier, A. Curcio et al., Magnetic (hyper) thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo, Adv. Funct. Mater, vol.28, 2018.

G. Hemery, A. C. Keyes, E. Garaio, I. Rodrigo, J. A. Garcia et al., Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis, Inorg. Chem, vol.56, pp.8232-8243, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01567664

F. A. Tourinho, R. Franck, and R. Massart, Aqueous ferrofluids based on manganese and cobalt ferrites, J. Mater. Sci, vol.25, pp.3249-3254, 1990.

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. Magn, vol.17, pp.1247-1248, 1981.

C. A. Gorski, R. M. Handler, B. L. Beard, T. Pasakarnis, C. M. Johnson et al., Fe atom exchange between aqueous Fe2+ and magnetite, Environ. Sci. Technol, vol.46, pp.12399-12407, 2012.

J. Tang, M. Myers, K. A. Bosnick, and L. E. Brus, Magnetite Fe 3 O 4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics ?, J. Phys. Chem. B, vol.107, pp.7501-7506, 2003.

R. M. Cornell and U. Schwertmann, Introduction to the Iron Oxides, The Iron Oxides, pp.1-7, 2004.

N. Lee, P. J. Schuck, P. S. Nico, and B. Gilbert, Surface enhanced raman spectroscopy of organic molecules on magnetite (Fe 3 O 4 ) nanoparticles, J. Phys. Chem. Lett, vol.6, pp.970-974, 2015.

T. J. Daou, G. Pourroy, S. Bégin-colin, J. M. Grenèche, C. Ulhaq-bouillet et al., Hydrothermal synthesis of monodisperse magnetite nanoparticles, Chem. Mater, vol.18, pp.4399-4404, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00206075

F. Vereda, J. De-vicente, M. D. Morales, F. Rull, and R. Hidalgo-Álvarez, Synthesis and characterization of single-domain monocrystalline magnetite particles by oxidative aging of Fe(OH) 2, J. Phys. Chem. C, vol.112, pp.5843-5849, 2008.

A. B. Bucharskaya, G. N. Maslyakova, M. L. Chekhonatskaya, G. S. Terentyuk, N. A. Navolokin et al., Plasmonic photothermal therapy: Approaches to advanced strategy, Lasers Surg. Med, vol.50, pp.1025-1033, 2018.

A. K. Silva, N. Luciani, F. Gazeau, K. Aubertin, S. Bonneau et al., Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting, Nanomedicine, vol.11, pp.645-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244559

D. Cabrera, A. Coene, J. Leliaert, E. J. Artés-ibáñez, L. Dupré et al., Dynamical magnetic response of iron oxide nanoparticles inside live cells, ACS, vol.12, pp.2741-2752, 2018.