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Background: Long QT syndrome type 3 (LQT3) is caused by gain-of-function
mutations in the SCN5A gene, which encodes the α subunit of the cardiac voltage-
gated sodium channel. LQT3 patients present bradycardia and lethal arrhythmias during
rest or sleep. Further, the efficacy of β-blockers, the drug used for their treatment, is
uncertain. Recently, a large multicenter LQT3 cohort study demonstrated that β-blocker
therapy reduced the risk of life-threatening cardiac events in female patients; however,
the detailed mechanism of action remains unclear.

Objectives: This study aimed to establish LQT3-human induced pluripotent stem cells
(hiPSCs) and to investigate the effect of propranolol in this model.

Method: An hiPSCs cell line was established from peripheral blood mononuclear cells of
a boy with LQT3 carrying the SCN5A-N1774D mutation. He had suffered from repetitive
torsades de pointes (TdPs) with QT prolongation since birth (QTc 680 ms), which were
effectively treated with propranolol, as it suppressed lethal arrhythmias. Furthermore,
hiPSCs were differentiated into cardiomyocytes (CMs), on which electrophysiological
functional assays were performed using the patch-clamp method.

Results: N1774D-hiPSC-CMs exhibited significantly prolonged action potential
durations (APDs) in comparison to those of the control cells (N1774D: 440 ± 37 ms
vs. control: 272 ± 22 ms; at 1 Hz pacing; p < 0.01). Furthermore, N1774D-hiPSC-CMs
presented gain-of-function features: a hyperpolarized shift of steady-state activation and
increased late sodium current compared to those of the control cells. 5 µM propranolol
shortened APDs and inhibited late sodium current in N1774D-hiPSC-CMs, but did not
significantly affect in the control cells. In addition, even in the presence of intrapipette
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guanosine diphosphate βs (GDPβs), an inhibitor of G proteins, propranolol reduced late
sodium current in N1774D cells. Therefore, these results suggested a unique inhibitory
effect of propranolol on late sodium current unrelated to β-adrenergic receptor block in
N1774D-hiPSC-CMs.

Conclusion: We successfully recapitulated the clinical phenotype of LQT3 using
patient-derived hiPSC-CMs and determined that the mechanism, by which propranolol
inhibited the late sodium current, was independent of β-adrenergic receptor
signaling pathway.

Keywords: long QT syndrome type 3, induced pluripotent stem cell, sodium channel, β blocker, arrhythmia

INTRODUCTION

Congenital long QT syndrome (LQT) is an inherited
arrhythmogenic disease, associated with lethal arrhythmic
events and sudden cardiac death. Patients with LQT are currently
classified into over 15 genetic subtypes, and LQT1-3 accounts
for approximately 90% of the genotyped patients, specifically:
40–55%, 30–45%, and 5–10% are LQT1, LQT2, and LQT3,
respectively (Schwartz et al., 2012; Mizusawa et al., 2014). LQT1
and LQT2 are caused by loss-of-function mutations in KCNQ1
and KCNH2 genes, which encode cardiac slowly (IKs) and rapidly
(IKr) activating delayed rectifier potassium channels, respectively
(Moss et al., 2007; Shimizu et al., 2009). On the other hand,
LQT3 is caused by gain-of function mutations in the SCN5A
gene, which encodes cardiac voltage-gated sodium channels
(Bennett et al., 1995).

A number of studies reported genotype-phenotype
correlations among those three major genotypes (Moss et al.,
2000; Schwartz et al., 2001; Priori et al., 2004; Hobbs et al., 2006),
and genetic testing for patients with LQT is highly recommended
for identifying carriers in the families and determining the
appropriate choice of gene-specific treatment (Ackerman et al.,
2011; Skinner et al., 2019). Patients with LQT1 and LQT2 suffer
from cardiac events that occur during exercise or emotional
stress (Schwartz et al., 2001, 2012). They are usually treated
with β-blockers, as they are highly effective in reducing cardiac
event and mortality rates (Schwartz et al., 2001; Priori et al.,
2004). By contrast, patients with LQT3 experience cardiac events
during rest or sleep (Schwartz et al., 2001, 2012), and β-blocker
therapy has resulted less effective or even harmful in preventing
those cardiac events, according to small cohort studies and the
clinical features of LQT3 (Moss et al., 2000; Schwartz et al.,
2001; Priori et al., 2004). Recently, a large clinical cohort study,
which consisted of 406 patients with LQT3, demonstrated that
β-blocker therapy reduced the number of cardiac events in
female patients >1 year old (Wilde et al., 2016), thus β-blocker
therapy has regained importance as an optimal medicine for
LQT3. However, the pharmacological mechanism by which
β-blockers benefit LQT3 patients is still unclear.

In the present study, we investigated the cellular mechanism
by which β-blockers affected late sodium currents in human
LQT3 cardiomyocytes (CMs). To this end, we established a
human induced pluripotent stem cell line (hiPSCs) from a
young male carrying SCN5A-N1774D genotype and whose

repetitive torsades de pointes (TdPs) were effectively treated with
propranolol. In N1774D-hiPSC-derived CMs, prolonged action
potential durations (APDs) and increased late sodium current at
baseline were attenuated after propranolol administration. More
importantly, we determined that late sodium current inhibition
by propranolol was unrelated to β-adrenergic receptor signaling
pathway in the LQT3 hiPSC-CM model.

MATERIALS AND METHODS

Generation and Characterization of
LQT3-hiPSCs
We collected peripheral blood mononuclear cells from a
patient carrying SCN5A-N1774D after obtaining the written
informed consent, and employed an integration-free method
using episomal vectors to generate hiPSCs (Okita et al., 2013). We
used three different patient-derived iPSCs clones in this study.
As control hiPSCs lines, we used two different lines (201B7 and
253G1) generated from a healthy donor (Takahashi et al., 2007;
Nakagawa et al., 2008). This study was approved by the Kyoto
University ethics review broad and conformed to the principles
of the Declaration of Helsinki.

The pluripotency of established LQT3-hiPSCs were assessed
using immunostaining and teratoma assay (Yamamoto et al.,
2017; Wuriyanghai et al., 2018). Briefly, the hiPSC colonies
were fixed with 4% paraformaldehyde for 20 min at 4◦C.
The cells were permeabilized in 0.2% Triton X-100 (Nacalai
Tesque, Kyoto, Japan) and blocked with 5% FBS. The samples
were stained overnight at 4◦C with the following primary
antibodies: mouse monoclonal anti-OCT3/4 (1:50; Santa Cruz
Biotechnology, Delaware, CA, United States), mouse monoclonal
anti-SSEA4 (1:200; Santa Cruz Biotechnology), and mouse
monoclonal anti-TRA 1–60 (1:200; Santa Cruz Biotechnology).
The secondary antibody was donkey anti-mouse Alexa fluor
488 (1:1000, Invitrogen, Carlsbad, CA, United States). The
nuclei were stained with DAPI (1:2000, Wako Pure Chemical
Industries, Osaka, Japan). The specimens were observed under
a fluorescence microscope (Biozero BZ-9000; KEYENCE, Osaka,
Japan). For teratoma assay, the hiPSCs were injected into
severe combined immunodeficiency disease scid/scid mice under
the testis capsule. Tumor samples were surgically dissected at
8 weeks, fixed in 10% formalin and stained with hematoxylin and
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eosin. All animal experiments were performed in accordance with
the “Guide for the Care and Use of Laboratory Animals” (2011)
of the National Institutes of Health and the Regulation on Animal
Experimentation at Kyoto University, and approved by Ethics
Committee of Kyoto University.

Cardiomyocyte Differentiation
Cardiomyocyte differentiation was induced with an embryoid
body (EB) differentiation system as previously described (Yang
et al., 2008; Wuriyanghai et al., 2018). The hiPSCs aggregated
to form EBs and cultured in suspension for 20 days. On the
20th day of culture, EBs were dispersed into small clusters
using collagenase B (Roche Diagnostics GmbH, Mannheim,
Germany) and trypsin EDTA (Nacalai Tesque) and were plated
onto 0.1% gelatin coated dishes. After day 20, hiPSC-CMs
were maintained in DMEM/F12 with 2% fetal bovine serum,
2 mmol/L L-glutamine, 0.1 mmol/L non-essential amino acids,
0.1 mmol/L β-mercaptoethanol, 50 U/ml penicillin, and 50 µg/ml
streptomycin. The medium was renewed every 2–3 days.
Differentiated 6–8-week-old hiPSC-CMs were enzymatically
dispersed into single cells using collagenase B and trypsin
EDTA. The cells were plated on 0.1% gelatin coated glass cover
slips. Patch-clamp experiments were performed 4–7 days after
the procedures. Cardiac differentiation was performed more
than five times with each hiPSCs clone and the data pooled
from different lines or clones among the control and N1774D
group were analyzed.

Electrophysiological Assay
Electrophysiological assays were performed using the whole-cell
patch-clamp technique with the Multiclamp 700B microelectrode
amplifier and Axon Digidata 1440 digitizer hardware (Molecular
Devices, San Jose, CA, United States), as described previously
(Ma et al., 2011; Hayano et al., 2017; Wuriyanghai et al., 2018).

Action potentials (APs) were recorded with perforated patch-
clamp in the current mode at a bath temperature of 36 ± 1◦C.
APs were evoked at a constant pacing rate of 1 Hz, with
5 ms depolarizing current injections of 50–200 pA. The external
solution contained (in mM): 140 NaCl, 5.4 KCl, 1.8 CaCl2,
1.0 MgCl2, 10 HEPES, 10 Glucose, pH 7.40 (adjusted with
NaOH) and pipette solution contained (in mM): 150 KCl, 5
EGTA, 5 MgATP, 10 HEPES, 5 NaCl, 2 CaCl2 with pH of
7.2 and 300–500 µg/ml amphotericin B. The patch pipettes
had a resistance of 3–6 M�. Ventricular-type action potentials
were defined by the morphology of APs and the classification
based on previous report (Matsa et al., 2011): a deep diastolic
membrane potential (<−50 mV), a sharp systolic depolarization,
a long plateau phase, and AP duration at 90% repolarization
(action potential duration: APD90)/APD at 50% repolarization
(APD50) ratio <1.4.

Sodium current was recorded at the bath temperature
of 22–23◦C using whole-cell voltage-clamp technique. Pipette
resistances were between 0.8 and 1.8 M�, with access resistances
of <5 M�. The extracellular bath solution contained (in mM):
137 NaCl, 100 TEA-Cl, 1.8 CaCl2, 2 MgCl2, 10 HEPES, 10
Glucose, 0.2 NiCl2, 0.005 Nifedipine (pH was adjusted to 7.4 with
CsOH). The intrapipette solution was contained (in mM): 5 NaCl,

70 CsCl, 40 CSAs, 2.0 CaCl2, 10 EGTA, 10 HEPES, 5 MgATP, pH
7.3 (adjusted with CsOH). The standard holding potential was
−100 mV. Each protocol in detail is illustrated in the inset.

The current-voltage relationships were fit with the Boltzmann
equation: I = (V−Vrev) × Gmax × [1 + exp (V−V1/2)/k]−1,
where I is the peak sodium current during the test pulse
potential V. The parameters estimated by the fitting are
reversal potential (Vrev), maximum conductance (Gmax), and
slop factor (k). Steady-state availability was fit to the Boltzmann
equation: I/I max = [1 + exp (V−V1/2)/k]−1 to determine
the membrane potential for V1/2 (half-maximal inactivation)
and k (slop factor). I max is the maximum peak sodium
current. Data for the time course of recovery from inactivation
were fitted by a biexponential equation: I(t)/I max = Af
[1−exp(−t/τf)]+As [1−exp(−t/τs)], where Af and As represent
fractions of each components, respectively. Time course of
entry into the slow inactivation state and development of
closed-state inactivation were fitted with a single exponential
equation: I/I max = y0 + A[1−exp(−t/τ)], where the transfer
rate of sodium channels from closed-state to inactivated closed-
state without an intervening opening state was measured by a
double pulse protocol. Time course for development of closed-
state inactivation was fit with a single exponential equation,
I/I max = y0+ A [1−exp(−t/τ )].

Late sodium currents were recorded for 800 ms at −10 mV
before and after 20 µM tetrodotoxin (TTX; Nacalai Tesque)
application. The pipette solution contained (in mM): 5 NaCl,
70 CsCl, 40 CSAsp, 10 EGTA, 10 HEPES, 5 MgATP, pH 7.3
(adjusted with CsOH).

To assess the effect of propranolol for APD and sodium
current, recordings were performed before and after the
administration of 5 µM propranolol hydrochloride (FUJIFILM
Wako, Osaka, Japan).

Statistics
Data are expressed as mean± the standard error of measurement.
Statistical comparisons were analyzed using appropriate student’s
t-test and paired t-tests. A p value of <0.05 was considered
statistically significant.

RESULTS

Clinical Patient Profile
The proband was a 1-day-old infant who exhibited severe
bradycardia at 27 weeks of gestation (Kato et al., 2014). His
surface electrocardiogram showed an extremely prolonged QT
interval (QTc 680 ms) with functional atrio-ventricular block and
repeated TdPs immediately after his birth. He was suspected of
long QT syndrome and thus propranolol was administered to
suppress TdPs. But the treatment was not enough to suppress the
electrical storm. Therefore, mexiletine was added and, as a result,
TdPs disappeared.

Additionally, genetic testing identified a heterozygous SCN5A
mutation, named p. N1774D, confirming the diagnosis of
LQT3. Therefore, treatment of the patient with propranolol
was discontinued. However, TdPs recurred after its interruption,
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and thus propranolol administration was resumed, and as a
consequence, TdPs immediately disappeared.

Generation and Characterization of
SCN5A-N1774D-hiPSCs
Patient-specific LQT3 hiPSCs were generated from the peripheral
blood mononuclear cells of the pediatric patient carrying the

SCN5A-N1774D mutation. SCN5A-N1774D-hiPSCs displayed
characteristics of human embryonic stem cell morphology
and expressed human pluripotency makers: OCT3/4, SSEA4,
and TRA-1-60 (Figure 1A). To evaluate the pluripotency of
the generated hiPSC line, teratoma formation assays were
performed using scid/scid mice. The teratomas contained
tissues derivatives of three germ layers: ectoderm, endoderm,
and mesoderm (Figure 1B). Furthermore, the SCN5A-N1774D

FIGURE 1 | Characterization of LQT3-hiPSCs. (A) Immunofluorescence staining for stem cells makers. LQT3-hiPSC colonies derived from the peripheral blood
mononuclear cells of a patient with SCN5A-N1774D expressed pluripotency markers; SSEA4, TRA 1-60, and OCT 3/4. Blue (right) showed
40-6-diamidino-2-phenylindole (DAPI) staining of nuclei. Scale bars = 500 µm. (B) Hematoxylin-eosin staining of teratomas formed from LQT3-hiPSC showed
differentiation of the cells into various tissue derived from all three germ layers: melanocytes (ectoderm), gut-like structures (endoderm), and cartilage tissue
(mesoderm). (C) DNA sequences of the SCN5A gene identified in the control hiPSCs and LQT3 cells carrying N1774D heterozygous mutation in LQT3-hiPSCs, not
control hiPSCs. Scale bars: 100 µm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 761

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00761 August 11, 2020 Time: 19:12 # 5

Hirose et al. Propranolol Attenuates LQT3 Late INa

mutation (c.5319A > G) was confirmed in the patient-derived
hiPSCs, but not identified in the control samples (Figure 1C).

Prolonged APDs in N1774D-hiPSC-CMs
Action potentials of hiPSC-CMs were recorded using the
current-clamp technique. Figure 2A shows typical ventricular-
type APs. For this study, we measured APDs at 50% and
90% repolarization, APD50 and APD90, respectively, maximum
diastolic potential, and AP amplitude.

Action potential durations in N1774D-hiPSC-CMs were
significantly prolonged compared to those in control hiPSC-
CMs at 1 Hz pacing (APD50 and APD90: N1774D-hiPSC-CMs,
440 ± 37 ms and 377 ± 33 ms, respectively, n = 11, vs. control,
272 ± 22 ms and 192 ± 18 ms, respectively, n = 10; p < 0.01;
Figure 2 and Table 1). However, no significant difference in other
AP parameters was observed (Table 1).

N1774D-hiPSC-CMs Exhibited Increased
Late Sodium Current
The sodium channel currents in N1774D-hiPSC-CMs and
control cells were recorded by using the voltage-clamp technique
(Figure 3 and Table 2). Figure 3A illustrates representative
whole-cell current traces of N1774D-hiPSC-CMs and control
cells. As shown in Figure 3B, the peak sodium current densities
of N1774D-hiPSC-CMs were significantly increased, compared
to those of the control cells (N1774D: −333 ± 62 pA/pF, n = 15
vs. control: −175 ± 33 pA/pF, n = 15; p < 0.005; Table 2).
Moreover, the steady-state activation of sodium channels, shifted
to more negative potentials by 13 mV in N1774D-hiPSC-CMs,
compared to that of the control cells (Figure 3C and Table 2). No
significant differences in the voltage dependence of inactivation
and other kinetic properties were noted between control cells and
N1774D-hiPSC-CMs.

Next, we measured the late sodium current for both
cell lines. Figure 4A shows representative whole-cell sodium

TABLE 1 | AP parameters at baseline and after administration of propranolol in
control and N1774D-hiPSC-CMs at 1 Hz pacing.

Control N1774D

Baseline Propranolol
5 µM

Baseline Propranolol
5 µM

(N = 11) (N = 11) (N = 10) (N = 10)

RMP (mV) −69.3 ± 2.9 −67 ± 3.0 −70.0 ± 2.4 −69.9 ± 1.5

MDP (mV) −75.8 ± 2.9 −72.7 ± 2.7 −76.7 ± 3.3 −74.9 ± 2.2

APA (mV) 114.4 ± 3.4 114.4 ± 3.1 120.4 ± 1.6 119.9 ± 1.5

Max dV/dt (mV/ms) 30.2 ± 3.7 36.2 ± 9.0 32.8 ± 4.4 31.8 ± 3.6

APD50 (ms) 192 ± 18 178 ± 18† 377 ± 33# 268 ± 31†

APD90 (ms) 272 ± 22 267 ± 26 440 ± 37# 332 ± 37†

AP, action potential; RMP, resting membrane potential: The threshold potential
at which the action potential is initiated; MDP, maximum diastolic potential; APA,
AP amplitude; Max dV/dt, maximum rate of rise of the AP upstroke; APD50 and
APD90, AP durations at 50% and 90%. The data pooled from different lines or
clones among the control and N1774D group were analyzed. The number of
experiments is indicated in parentheses. Data are showed as means ± standard
error of measurement. #p < 0.01 vs. Control, †p < 0.01 vs. Baseline.

current traces from control and N1774D-hiPSC-CMs. The
ratio of late/peak sodium current in N1774D-hiPSC-CMs was
significantly increased compared with that in control cells
(N1774D: 0.47 ± 0.04%, n = 11, vs. control, 0.04 ± 0.01%, n = 5;
p < 0.0001; Figure 4B).

Propranolol Shortened APDs and
Reduced Late Sodium Current in
N1774D-hiPSC-CMs
We assessed the effect of propranolol on APDs and late sodium
current using hiPSC-CMs. Propranolol shortened APDs in
N1774D-hiPSC-CMs (APD90: 440 ± 37 ms at baseline vs.
332 ± 37 ms after propranolol treatment, respectively, n = 10; at

FIGURE 2 | Effect of propranolol on action potential recording in control and N1774D-hiPSC-CMs. (A) Representative traces of paced ventricular-type action
potential (AP) at 1 Hz pacing at baseline (black line) and after the administration 5 µM propranolol (red line) in control (left) and N1774D-hiPSC-CMs (right).
(B) Summarized data in effects of propranolol on AP duration of control and N1774D-hiPSC-CMs. The data pooled from different lines or clones among the control
and N1774D group were analyzed. ∗ p < 0.001, vs. control. APD90 was measured at 90% repolarization (APD90). APD90 values in N1774D-hiPSC-CMs were
significantly prolonged compared with those in control. Propranolol significantly shortened the values of APD90 in N1774D-hiPSC-CMs. ∗ p < 0.001, vs. baseline.
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FIGURE 3 | Sodium current recordings and gating properties of sodium channels in hiPSC-CMs. (A) Representative traces of sodium currents in control and
N1774D-hiPSC-CMs. The pulse protocol is shown in the inset. (B) Average current-voltage relationship for peak sodium current in control (n = 15, open circles) and
N1774D channels (n = 15, closed squares). Data were fitted with the Boltzmann equation (see “Materials and Methods”). The currents were normalized to the cell
capacitance to give a measure of peak current densities. The peak current densities were significantly lager in N1774D. (C) Voltage dependence of steady-state
inactivation and activation in control and N1774D-hiPSC-CMs. Curves were fit using the Boltzmann equation. The activation curve negatively shifted by 13 mV.
(D) Time course of recovery from inactivation was obtained by a double pulse potential shown in inset. Experimental data were fit to a biexponential. (E) Onset of
slow inactivation. Time course of entry into the slow inactivation state was measured by a double pulse protocol shown in inset. Curves were fit with a shingle
exponential equation. (F) Closed-state inactivation. The transfer rate of sodium channels from closed-state to inactivated closed-state without an intervening opening
state was elicited with a double pulse protocol shown in inset. The data pooled from different lines or clones among the control and N1774D group were analyzed.
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TABLE 2 | Biophysical properties in control and N1774D-hiPSC-CMs.

Control N1774D

Peak INa density (N = 15) (N = 15)

−175 ± 33 −333 ± 62†

Steady-state activation (N = 15) (N = 15)

V1/2 −34.9 ± 1.6 −47.7 ± 3.5†

k 5.6 ± 0.5 4.9 ± 0.3

Steady-state fast inactivation (N = 11) (N = 12)

V1/2 −67.4 ± 2.5 −73.2 ± 2.4

k 6.3 ± 0.2 6.7 ± 0.1

Recovery from inactivation (N = 12) (N = 11)

τf (ms) 21.5 ± 6.3 24.9 ± 4.8

τs (ms) 227.2 ± 42.4 236.8 ± 43.4

Onset of slow inactivation (N = 11) (N = 8)

A 0.47 ± 0.06 0.56 ± 0.07

τ (ms) 14.4 ± 4.0 22.9 ± 8.7

Closed-state inactivation (N = 10) (N = 9)

A 0.89 ± 0.02 0.84 ± 0.07

τ (ms) 123.1 ± 32.0 74.6 ± 17.4

Data are expressed as means ± standard error of measurement. Parameters were
calculated from fitting individual experiments illustrated in Figure 3. The data pooled
from different lines or clones among the control and N1774D group were analyzed.
†p < 0.01 vs. Control. A, fractional amplitude; τ, time constant; V1/2, midpoint
potential; k, slop factor, and n, number of tested cells, respectively.

1 Hz pacing; p < 0.01; Figure 2 and Table 1), but propranolol
did not significantly affect APDs in the control cells (APD90:
272 ± 22 ms at baseline vs. 267 ± 26 ms after propranolol
treatment, respectively, n = 11; at 1 Hz pacing; p = 0.15; Figure 2
and Table 1).

Figure 5A shows the representative traces of late sodium
current at baseline and after administration of 5 µM propranolol
to N1774D-hiPSC-CMs. Propranolol treatment decreased the
ratio of late/peak sodium current by approximately 25%, from
0.53 ± 0.05 to 0.40 ± 0.06% (n = 7; p < 0.001; Figure 5B). These

results suggested that propranolol attenuated late sodium current
and thus shortened APDs in N1774D-hiPSC-CMs.

Propranolol Directly Inhibited the Late
Sodium Current in N1774D-hiPSC-CMs
Finally, to examine whether propranolol affected the sodium
channels through G protein cascade or not, we recorded late
sodium currents by using intrapipette guanosine diphosphate βs
(GDPβs), a G protein inhibitor (Figure 5C). The late sodium
current was significantly reduced by treatment with propranolol
and 1 mM intrapipette GDPβs (baseline, 0.43 ± 0.07% vs.
propranolol 0.28 ± 0.07%, n = 8; p = 0.01; Figure 5D). However,
the reduction rate of late sodium current by propranolol
treatment was not statistically different after addition of
intrapipette GDPβs (without GDPβs: 24.7 ± 4.8% vs. with
GDPβs: 30.9 ± 6.9%; p = 0.48; Figure 5E). Thus, propranolol
directly blocked sodium channels and did not affect them via G
protein pathway through β-adrenergic receptors.

Additionally, the suppression of late sodium current by
propranolol was larger than that of the peak current whether
in absence or presence of intrapipette GDPβs (Figure 6). No
significant difference in the suppression rate of the peak and
the late sodium currents were observed whether in absence or
presence of GDPβs (Figure 6).

DISCUSSION

Patient-Specific iPSC-CMs as a Cell
Model for Studying SCN5A-N1774D
Associated LQT3
The efficacy of β-blockers has been controversial in patients
with LQT3 (Moss et al., 2000; Schwartz et al., 2001; Priori
et al., 2004). Recently, a large clinical study demonstrated the
efficacy of β-blockers on patients with LQT3 (Wilde et al., 2016);

FIGURE 4 | Late sodium current in control and N1774D-hiPSC-CMs. (A) Representative traces of sodium currents in the absence (black line) and presence (gray
line) of 20 µM tetrodotoxin (TTX). The used protocol is shown in the lower panel. Inset shows late sodium current between 500 and 600 ms. Tetrodotoxin-sensitive
current was calculated by subtraction. (B) Mean late sodium current of control and N1774D channels. Late sodium current is presented as the percentage of late
sodium current to peak sodium current. The data pooled from different lines or clones among the control and N1774D group were analyzed. The late sodium current
was significantly increased. ∗p < 0.001, vs. control.
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FIGURE 5 | Effect of propranolol on late sodium current in N1774-hiPSC-CMs. (A) Typical late sodium current traces recorded at baseline (black line), after 5 µM
propranolol application (red line), and after the additional treatment with 20 µM tetrodotoxin (TTX) (gray line). (B) Statistical analysis of the effect of propranolol on late
sodium current. The data pooled from different clones in N1774D-hiPSC-CMs were analyzed. Late sodium current was normalized to peak sodium current.
Propranolol significantly reduced the ratio of late/peak sodium current. ∗p < 0.001, vs. baseline. (C) Representative trace of late sodium current in the presence of
intrapipette GDPβs. Black line is at baseline, red line is in the presence of 5 µM propranolol, and gray line is in the presence of 5 µM propranolol and 20 µM TTX. We
recorded sodium currents in the presence of 5 µM propranolol following addition of 20 µM TTX after recording at baseline. (D) Summary of efficacy of propranolol on
late sodium current after intrapipette GDPβs treatment. Propranolol significantly reduced the ratio of late/peak sodium current in the presence of intrapipette GDPβs.
∗p < 0.001, vs. baseline. (E) Reduction rate of late sodium current with and without GDPβs. There is no significant difference between in the absence and the
presence of intrapipette GDPβs. GDPβs, guanosine diphosphate βs; TTX, tetrodotoxin.
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FIGURE 6 | Effect of propranolol on peak and late sodium current in N1774D-hiPSC-CMs. Effect of propranolol on peak and late sodium current in the absence (A)
and the presence of intrapipette GDPβs (B). The data pooled from different clones in N1774D-hiPSC-CMs were analyzed. (A) Without intrapipette GDPβs, the rate
of reduction was larger in late sodium current compared to in peak sodium current. (B) In the presence of intrapipette GDPβs, the rate of reduction was also larger in
late sodium current compared to in peak sodium current. ∗p < 0.001, vs. peak sodium current.

however, the pharmacological mechanism of β-blockers in LQT3
remains unclear.

Recently, the iPSC technology enables us to analyze the
disease-causing mechanism of inherited arrhythmia disorder
using self-beating cardiomyocytes with the same genetic
background as the patient, and several studies of hiPSC-based
disease modeling of LQT3 have been reported (Davis et al.,
2012; Fatima et al., 2013; Ma et al., 2013; Terrenoire et al.,
2013; Spencer et al., 2014; Yoshinaga et al., 2019). To elucidate
the mechanism, we established the LQT3-hiPSC-CM cell model
from a patient carrying the SCN5A-N1774D mutation who
was effectively treated with propranolol. In accordance with
his clinical course, propranolol attenuated the increased of late
sodium current and prolonged APDs in N1774D-hiPSC-CMs,
compared to the control cells. In addition, by using GDPβs,
an inhibitor of G proteins, we demonstrated that propranolol
inhibited the late sodium current through a pathway other
than β-adrenergic receptor signaling pathway. Thus, the efficacy
and pharmacological mechanism of propranolol have never, to
our knowledge, been hitherto elucidated in an LQT3-hiPSC-
CM model.

In our previous report (Kato et al., 2014), we analyzed
SCN5A-N1774D channels using a heterologous expression
system in HEK 293 cells and determined that N1774D channels
displayed increased peak sodium current densities (2.2 times), a
hyperpolarized shift of steady-state activation curve by 7.9 mV,
and increased late sodium current densities by 1.7 times,
compared to those of wild-type channels. In our LQT3-hiPSC
model, the steady-state activation curve was negatively shifted
by 12.8 mV and the peak and late sodium current densities
were 1.9 and 9.3 times greater, respectively, when compared to
those of the control hiPSC-CMs (Figures 2, 3). Considering that
our hiPSCs carried the heterozygous SCN5A-N1774D mutation,

the electrophysiological properties of hiPSC-CMs showed similar
trends but different degrees of change in sodium channel kinetics
to those of the heterologous expression system, possibly it might
result from the differences between the two cell types.

β-Blocker Therapy for Patients With
LQT3
β-blocker therapy is effective for treatment of patients especially
with LQT1 and LQT2, who experience cardiac events after
adrenergic stimulation, such as exercise or emotional stress. In
LQT1 and LQT2, β-blockers clinically reduce the rate of cardiac
events and mortality (Moss et al., 2000; Schwartz et al., 2001;
Priori et al., 2004). Therefore, based on the clinical evidence,
β-blocker therapy is recommended as the first-line treatment for
LQT1 and LQT2 (Priori et al., 2013).

In contrast, Schwartz et al. (2001) reported that the recurrence
of syncope and death rates in patients with LQT3 were higher
(50% and 17%, respectively, n = 18) than those with LQT1
and 2. Additionally, Priori et al. (2004) reported that 9 out
of 28 (32%) LQT3 patients experienced a cardiac event while
on β-blocker therapy at a rate four-fold higher than that of
LQT1 patients. Even though the number of LQT3 patients
enrolled in the study was small, β-blocker therapy in LQT3
was suggested to be ineffective in preventing fatal arrhythmias
and even contraindicated or harmful due to the clinical feature
of LQT3, that cardiac events mainly occur at rest, during
sleep or bradycardia.

However, recently, the efficacy of β-blocker therapy was
analyzed in a large multicenter LQT3 cohort study (Wilde et al.,
2016). Wilde et al. (2016) investigated 406 LQT3 patients and
demonstrated that β-blocker therapy reduced the risk of life-
threatening cardiac events in female patients >1 year of age. In
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the present study, our patient suffered from repetitive TdPs since
birth and propranolol was definitely effective in suppressing those
events. Despite accumulating clinical evidence that β-blocker
therapy might be beneficial to LQT3 patients, the underlying
mechanism by which β-blockers suppress malignant ventricular
arrhythmias remains mostly unclear. In our LQT3-hiPSC model,
prolonged APDs at baseline were attenuated after propranolol
administration (Figure 5), which was consistent with the clinical
efficacy of β-blocker therapy in LQT3.

Why Are β-Blockers Effective in Patients
With LQT3?
Cardiac Sodium Channel and β-Adrenergic
Stimulation
Cardiac sodium channels are known to be modulated by
β-adrenergic stimulation via phosphorylation sites on protein
kinases A and C, PKA and PKC, respectively (Grant, 2009).
In cardiac sodium channels, PKA activation increased the peak
sodium current density and shifted both steady-state activation
and inactivation to the hyperpolarized direction (Matsuda et al.,
1992; Ono et al., 1993). On the contrary, PKC activation reduced
peak sodium current densities and caused a negative shift of the
steady-state inactivation curve (Valdivia et al., 2009).

PKA activation did not affect the late sodium current in
wild-type sodium channels. On the other hand, in LQT3-related
mutant sodium channels, PKA activation had little or no effect on
Y1795C and Y1795H channels, but it enhanced the late sodium
current in 1KPQ, D1790G, R1623G, and V2016M channels
(Chandra et al., 1999; Tateyama et al., 2003; Tsurugi et al., 2009;
Chen et al., 2016).

In LQT3 mouse models, propranolol efficacy to prevent
lethal arrhythmias has been contradictory. Fabritz et al. (2010)
showed that chronic propranolol therapy did not suppress the
carbachol-mediated ventricular arrhythmias, such as TdPs, in
a heterozygous knock-in SCN5A-1KPQ LQT3 mice. On the
other hand, Calvillo et al. (2014) reported that propranolol
pretreatment prevented carbachol-mediated malignant
ventricular tachyarrhythmias in the SCN5A-1KPQ LQT3
knock-in transgenic mice. Thus, the pharmacological mechanism
of β-blockers in LQT3 mice and human cardiomyocytes derived
from patients with LQT3 has remained uncertain until now. In
the present study, we demonstrated that propranolol attenuated
the prolonged APD, by reducing the late sodium current in the
patient-derived LQT3-hiPSC-CMs, and provided new supportive
evidence of its efficacy on LQT3 by using a human CM model.

Propranolol Has an Inhibitory Effect on Sodium
Channels but Not Through β-Adrenergic Receptor
Blockade in an LQT3-hiPSC Model
Propranolol was previously reported to have a unique blocking
effect on sodium channels, which was not identified in other
β-blockers (Wang et al., 2010). In a heterologous expression
system using HEK293 cells, only propranolol, not metoprolol
or nadolol, blocked the cardiac sodium channels similar to
local anesthetics, and not by acting as β-blockers (Wang et al.,
2010). They also demonstrated that the block depends on
a critical D4/S6 residue, F1760, involved in local anesthetic
effects. In addition, Bankston and Kass (2010) demonstrated
that propranolol decreased late sodium current in F1473C and
1KPQ mutant channels. In this study, we showed no significant
difference in the suppression rate of late sodium current by
propranolol in presence, or not, of intrapipette GDPβs, an
inhibitor of G proteins (Figure 5E). This was found to be
consistent with the previous reports that propranolol has a
sodium channel blocking effect through interfering with the
cascade other than G protein cascades (Bankston and Kass, 2010;
Wang et al., 2010).

Interestingly, Bankston and Kass (2010) also reported that
propranolol within 40 nM to 40 µM range preferential inhibited
late but not peak sodium currents. In this study, administration
of 5 µM propranolol reduced late sodium current, but it
slightly decreased peak sodium current (Figure 6 and Table 3).
Regarding the plasma concentration of propranolol, it was
reported that there was wide inter-individual variation from
0.04 to 4 µM in peak plasma concentrations, and an increase
in the dose up to plasma levels of approximately 0.4 µM was
suggested when sufficient therapeutic effects were not achieved
(Woosley et al., 1979). Unfortunately, the plasma concentration
of propranolol in the patient in this study was not available,
and we recorded APs and late sodium current with only
5 µM propranolol using hiPSC-CM model. In addition, we
did not examine the effect of propranolol on the kinetics
of sodium channel current, which was demonstrated in a
heterologous expression system (Wang et al., 2010). Therefore,
further examination is needed to reveal the detailed relationship
between propranolol dose and the effects on electrophysiological
properties in hiPSC-CMs.

Study Limitations
In the present study, we did not employ the isogenic control
line which will prove the phenotype is directly imputable to the
mutation. In addition, we did not examine the efficacy of other

TABLE 3 | The change of peak and late sodium current after the administration of propranolol in N1774D-hiPSC-CMs.

Without GDPβs With GDPβs

Baseline (pA) Propranolol 5 µM (pA) Reduction rate (%) Baseline (pA) Propranolol 5 µM (pA) Reduction rate (%) p value

Peak current −11627 ± 2177 −9857 ± 1933 15.6 ± 4.6 −7779 ± 1035 −6599 ± 1044 17.5 ± 3.3 0.74

Late current 61.9 ± 15.7 37.5 ± 8.3 24.7 ± 4.8 38.0 ± 8.6 19.3 ± 4.5 30.9 ± 6.9 0.48

Data are expressed as means ± standard error of measurement. p value for vs. with GDPβs in reduction rate. The data pooled from different clones in N1774D-hiPSC-
CMs were analyzed.
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β-blockers. Another limitation is that hiPSC-CM is an in vitro
cellular model; therefore, it is impossible to assess the role of
sympathetic nervous system. Clinically, left cardiac sympathetic
denervation was reported to inhibit cardiac events in LQT3
patients (Schwartz et al., 2004), which indicated that β-blockers
would have an antiarrhythmic effect by suppressing sympathetic
nervous system in LQT3.

Conclusion
We successfully recapitulated the LQT3 disease phenotype in
the SCN5A-N1774D-hiPSC-CMs. Additionally, the propranolol
efficacy and mode of action were demonstrated in this cell
model. Specifically, propranolol blocked sodium channels by
means of a unique mechanism unrelated to β-adrenergic
signaling pathway, by preferentially inhibiting late rather than
peak sodium current.
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