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Abstract

Wind-driven outflows are observed around a broad range of accreting objects throughout the universe, ranging from
forming low-mass stars to supermassive black holes. We study the interaction between a central isotropic wind and an
infalling, rotating envelope, which determines the steady-state cavity shape formed at their interface under the
assumption of weak mixing. The shape of the resulting wind-blown cavity is elongated and self-similar, with a
physical size determined by the ratio between wind ram pressure and envelope thermal pressure. We compute the
growth of a warm turbulent mixing layer between the shocked wind and the deflected envelope, and calculate the
resultant broad-line profile, under the assumption of a linear (Couette-type) velocity profile across the layer. We then
test our model against the warm broad velocity component observed in CO J=16–15 by Herschel/HIFI in the
protostar Serpens-Main SMM1. Given independent observational constraints on the temperature and density of the
dust envelope around SMM1, we find an excellent match to all its observed properties (line profile, momentum,
temperature) and to the SMM1 outflow cavity width for a physically reasonable set of parameters: a ratio of wind to
infall mass flux of;4%, a wind speed of vw ; 30 km s−1, an interstellar abundance of CO and H2, and a turbulent
entrainment efficiency consistent with laboratory experiments. The inferred ratio of ejection to disk accretion rate,
;6%–20%, is in agreement with current disk wind theories. Thus, the model provides a new framework to reconcile
the modest outflow cavity widths in protostars with large observed flow velocities. Being self-similar, it is applicable
over a broader range of astrophysical contexts as well.

Unified Astronomy Thesaurus concepts: Stellar jets (1607); Stellar winds (1636); Protostars (1302); Accretion (14);
Stellar-interstellar interactions (1576); Astrochemistry (75)

1. Introduction

Massive outflows are observed everywhere in the universe,
ranging from individual forming stars through galactic-scale
events. When supersonic stellar or galactic winds interact with
the surrounding medium, be it the molecular envelope around
forming stars or the intergalactic gas, they are observed to impart
momentum and energy, and entrain a slower-moving massive
outflow. The actual entrainment mechanism and efficiency,
however, remain poorly understood and highly debated, both
because of a lack of strong observational constraints as well as a
relative paucity of theoretical predictions against which to test
observations.

A specific example of entrainment takes place when an
accreting protostar launches a highly collimated jet, possibly
surrounded by a wider-angle disk wind, carving out a large and
slow massive outflow cavity into the parent cloud (Frank et al.
2014). When the Herschel Space Observatory (Pilbratt et al.
2010) started observing protostars in H2O and high-J CO
rotational transitions, it quickly became clear that the dominant
source of the emission was from molecular outflows (e.g., van
Dishoeck et al. 2011; Kristensen et al. 2012, 2017). It also
became clear that these emission lines highlight a different

outflow component from the low-J CO transitions observed from
the ground, such as J=2–1 and 3–2 (e.g., Yildiz et al. 2013).
This Herschel-bright outflow component has both a significantly
higher temperature;200–500 K and a larger line width at half
maximum (FWHM) � 30 kms−1 compared to low-J CO line
profiles, where it only appears as a faint pedestal in very deep
integrations (Margulis & Snell 1989). Accordingly, it was
labeled the “broad” outflow component (Kristensen et al. 2012,
2017; Mottram et al. 2014, 2017).
The physical origin of the “broad” warm outflow component,

and its relation to both the slower cold outflow, seen in low-J
emission, and the faster protostellar jet or wind, is not clear. Two
hypotheses have been put forward: either this broad component
arises within a warm and dusty disk wind (Panoglou et al. 2012;
Yvart et al. 2016) or it arises where ambient material is currently
being entrained into the outflow by the protostellar wind, for
example, through nondissociative shock waves (Kristensen
et al. 2012, 2017; Mottram et al. 2014, 2017). While detailed,
dynamical, and thermochemical predictions exist for the disk wind
models, which reproduce the observed H2O emission (Yvart et al.
2016), only limited model predictions exist in the literature for
the entrainment scenario, and it thus remains a hypothesis. The
underlying physical issue is not a problem reserved for protostellar
outflows, but it remains an uncertainty for outflows in general.
The first type of entrainment scenario proposes that outflows

are entrained by large jet bow shocks. These models predict
substantial warm molecular material at intermediate velocities
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(e.g., Raga & Cabrit 1993; Downes & Cabirt 2003), but the
resulting outflow cavities have been deemed too elongated
compared to observations (Ostricker et al. 2001). To avoid this
potential issue, the second type of entrainment scenario proposes
that entrainment is dominated instead by a wide-angle wind. A
particularly popular version of this “wind-driven” scenario
assumes instantaneous full mixing between the shocked isotropic
wind and the shocked envelope material. Due to the complete
mixing, the cavity retains a primarily radial outflow motion with a
roughly constant expansion speed over time (Li & Shu 1996; Lee
et al. 2000), except very close to the disk midplane where the
cavity remains trapped near the outer disk radius (Wilkin &
Stahler 2003; Mendoza et al. 2004; López-Vázquez et al. 2019).
Such a radially expanding wind-blown cavity, however, grows
too quickly: with expansion speeds�10 km s−1 similar to those
observed in the broad component, it exceeds the typical radius
of�3000 au of protostellar outflow cavities (see, e.g., Lee et al.
2015; Gueth et al. 1998, for HH212 and L1157, respectively) in
only a few 1000 yr (Shang et al. 2006; López-Vázquez et al.
2019). This timescale is much shorter than the typical age
accepted for Class 0 outflow sources (104–105 yr; e.g., Kristensen
& Dunham 2018, and references therein).

In order to circumvent this “age” problem, in this paper we
consider wind-driven cavities with partial mixing, instead of full
mixing, and explore stationary solutions for the cavity shape,
formed as the fast stellar wind is obliquely deflected by the
envelope and forced to flow along the cavity wall instead of
radially outward. Indeed, numerical simulations of a spherical
wind propagating into a rotating and infalling slab show that
when mixing is inefficient, the cavity “flanks” quickly converge
to a quasi-steady shape (Delamarter et al. 2000). A modest
outflow cavity width can then be maintained over the whole
duration of the Class 0 phase. Such a configuration is also prone
to the development of a turbulent mixing layer at the contact
discontinuity between the shocked wind and the shocked
envelope gas, as they slide past one other (Raga et al. 1995).
In this paper, we will therefore follow a deliberate path to testing
whether such a mixing layer might explain the broad spectral
component observed around protostars by Herschel/HIFI and, at
the same time, the observed cavity sizes.

Steady wind cavity solutions were first computed by Brral &
Cantó (1981) for an isotropic wind expanding into a thick
isothermal self-gravitating toroid. Smith (1986) showed that
similarly elongated “flame-like” cavities could also be obtained
for isotropic envelopes with a purely radial pressure profile p(r)
∝r− n, provided that n<2 and the wind is obliquely deflected
at its closest point of impact (e.g., by a small-scale thin disk).
Both of these early calculations show that the addition of a
dense, disk-like component along the horizontal axis can provide
the required equatorial pinch to create steady, elongated outflow
shapes similar to those observed around protostars. Similar
physical conditions are expected for galactic-scale outflows (see,
e.g., Aalto et al. 2016). In this paper, we proceed one step further
than these previous investigations by computing stationary
solutions in a more realistic density and velocity distribution for
the envelope, namely, the more sophisticated Ulrich (1976)
infalling and rotating solution. Despite an identical ambient
density distribution, our cavity morphologies will strongly differ
from the calculations of Wilkin & Stahler (2003), Mendoza et al.
(2004), and López-Vázquez et al. (2019) in that we assume weak
mixing, instead of full mixing, between the shocked wind and
the shocked envelope, and we include the effect of thermal

pressure in the envelope. These two ingredients allow the
existence of stable stationary solutions on large scales, with
pointed shapes at the pole.
In Section 2 we determine the stationary cavity shape formed

by a wide-angle wind deflected by an infalling and rotating
protostellar envelope. In Section 3 we consider the deflected
wind material flowing along the cavity boundary and the
turbulent entrainment of envelope material within a mixing
layer. We then, in Section 4, compute the angular momentum
and synthetic line profiles associated with material within the
mixing layer. Next, we quantitatively compare the model
results against observations from Herschel of the broad CO
component in the protostar Serpens-Main SMM1 (Section 5).
Finally, in Section 6, we conclude with a recap of the
implications of these results.

2. Determination of the Cavity Shape

In this section, we produced by an isothermal Ulrich (1976)
infalling and rotating envelope model interacting with an
isotropic wind. We determine the fundamental nondimensional
parameters and characteristic values and perform a stationary
solution analysis in order to determine the range of cavity
shapes produced. The shape of the thin shell formed by this
interaction is determined by the (ram plus thermal) pressure
balance between the wind and the envelope along with a
“centrifugal term” due to the upward curving motion of the
shocked wind layer.
The analyses in this section, as well as in Section 3 and

Section 4, are presented in dimensionless form in order to focus on
the underlying self-similarity of the shape and the scaling relations
underpinning the solutions, which have general applicability for all
manner of outflows. In Section 5, we adopt appropriate physical
values in order to quantitatively determine the agreement between
the model and observations, in the specific case of a warm CO
outflow of a nearby protostar.

2.1. Infalling and Rotating Envelope Model

The Ulrich (1976) infalling envelope model generalizes from
the case of an isothermal cloud by combining the spherical
infall of envelope material under the force of gravity due to the
mass of the central object Må (Bondi 1952) together with a
treatment of the centrifugal deflection of the flow due to initial
solid-body rotation. Thus, in the outer envelope, before angular
momentum becomes dominant, the density structure is almost
spherical with ρ(r) ∝ r−3/2. At smaller radii, where centrifugal
forces dominate, the flow streamlines are deflected toward the
midplane, creating a disk-like structure inside the fiducial
radius

( )=
G¥


r

G M
. 1d

2

Here, G¥ is the specific angular momentum in the equatorial
plane. Assuming a ballistic solution for the infalling material,
the entire envelope solution can be described by a handful of
parameters: the mass of the protostar Må, the size of the disk rd,
and the mass infall rate Minf .
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Following Ulrich (1976), we therefore find for the density in
the envelope
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where r is the spherical radius, θ is measured from the disk plane,
and the subscript “0” denotes the initial value at a very large
distance from the origin. At any location (r, θ) in the infalling
envelope, the initial angular origin of the streamline, θ0, can be
obtained by solving
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Finally, the three components of the velocity of the infalling
material at the position (r, θ) are given by
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Note that we have corrected the typographical error in Equation
(8) of Ulrich (1976) as noted by Tobin et al. (2012).

2.2. Wide-angle Wind

In this paper, we assume a spherical isotropic wide-angle
wind of constant speed vw and mass-loss rate Mw, with the
density profile
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This approach enables a useful comparison with previous
work (Brral & Cantó 1981; Smith 1986; Wilkin & Stahler 2003;
Mendoza et al. 2004; López-Vázquez et al. 2019) and applicability
to a wide range of astrophysical contexts.

For example, while observations of young stars and Class 0
protostars show a strong and fast jet-like component along the
axis, surrounded by a (seemingly) mostly empty lower-velocity
outflow cavity, several MHD models predict that the jet may only
be an “optical illusion” and may represent only the central densest
core of a wider-angle wind, launched either from the inner disk
edge (“X-wind”model; Shang et al. 1998) or from a larger portion
of the disk surface (“D-wind” model; Cabrit et al. 1999).

Thus, in the context of protostellar outflows, the isotropic
wide-angle wind provides an acceptable approximation to the
X-wind in equatorial regions, where the interaction is the most
critical to defining the overall cavity shape (see below). We note
that the addition of a strongly directed jet-like wind enhances
breakout along the outflow axis and will thus modify the cavity
shape in the polar regions. Comparison with observations should
thus focus on regions close to the flow base, at wide angles to the
flow axis.

2.3. Determining Fundamental Nondimensional Parameters
and Characteristic Values

The trapping, breakout, and early evolution of the cavity
formed by an isotropic wind colliding against an Ulrich (1976)
infalling envelope were first calculated under the full mixing
hypothesis, including stellar gravity and various degrees of
wind collimation (Wilkin & Stahler 2003), and envelope
rotation (López-Vázquez et al. 2019). Full mixing requires that
the shell expansion is almost radial, hence the effect of thermal
pressure in the envelope was ignored compared to the infall
ram pressure in the frame of the expanding shell. A simplified
study of the asymptotic shell expansion based on simple ram
pressure balance was conducted by Mendoza et al. (2004). The
authors show that it depends only on a single free parameter,
namely the ratio of wind ram pressure to the fiducial infall ram
pressure at rd,

( )

l º

v M

v M
, 8w w

d inf

where

( ) ( )/ /= v GM r 9d d
1 2

is the Keplerian velocity at rd.
Trapped solutions with sizes less than rd were found for

l  1 2 (see Figures 5 and 8 from Mendoza et al. 2004). For
values of λ>1/2, the cavity solutions were found to break out
and expand forever, remaining pinched only along the disk
midplane near rd. Similar results were found by Wilkin &
Stahler (2003) and López-Vázquez et al. (2019), with an
additional breakout criterion on vw/vd for the polar cap to
escape stellar gravity. For the X-wind and D-wind models
currently favored in protostars, the denser and faster jet-like
components along the axis will greatly facilitate breakout along
the pole compared with the requirements for an isotropic wind
(see discussion in Wilkin & Stahler 2003). Therefore, here we
will assume that initial breakout has occurred and not consider
this velocity constraint in our models.
In the present investigation, we are interested in finding

steady asymptotic solutions to these breakout scenarios. For
this, we assume instead that at most weak mixing occurs
between the shocked wind and the shocked envelope material.
Under this assumption, these two shocked and deflected layers
will flow past each other, with an intermediate thin mixing
layer developing along the contact discontinuity between them.
A further difference between our models and those of Wilkin

& Stahler (2003), Mendoza et al. (2004), and López-Vázquez
et al. (2019) is that we take into account the role of thermal
pressure in the envelope in confining the shell. This is the
crucial element allowing a steady configuration to be reached
on large scales, instead of infinite expansion. Given that the
density distribution in the envelope retains a modified, r−3/2,
power law, we anticipate that the resulting steady cavities will
appear similar to the Smith (1986) elongated outflow cavities.
We thus introduce a characteristic scale length, rs, as the

location where the ram pressure in the wind, r vw w
2, is balanced

by the thermal pressure in the equivalent spherically symmetric
infalling envelope, r cinf s

2. Solving this equality yields
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where we define the useful characteristic velocity v0, fixed by
the source ejection versus accretion physics, as

⎛
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Another region where thermal pressure will dominate the
infall ram pressure is near the equator, where the cavity is
strongly pinched at r;rd (see López-Vázquez et al. 2019)
such that infall motions become almost parallel to the cavity
walls. This introduces a second fundamental nondimensional
parameter in our model, Λ, which is proportional to the ratio of
wind ram pressure to envelope thermal pressure at rd:
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is the Mach number of the infall velocity at rd. We show in the
next section that Λ only affects the cavity shape very close to
the disk midplane, where it determines the initial footpoint and
opening angle.

While the disk centrifugal radius rd provides an appropriate
scaling for the geometry at the flow base, we expect rs to
provide an appropriate scaling for the geometry at large
distances from the disk, where the cavity is confined by the
thermal pressure in the envelope, rather than by the infall ram
pressure.

Finally, we note that while trapped solutions confined by
gravity on small scales, �rd, were shown to be unstable, our
steady shells on large scales,?rd, are confined by thermal and
ram envelope pressure and thus expected to be stable (see
discussion in Wilkin & Stahler 2003). Moreover, our assumption
of weak (instead of full) mixing allows a nonradial escape route
for the bulk of the material reaching the shell by either moving

upward (wind) or downward (envelope). Such situations are
much more stable against wind or infall variations than the full
mixing case. This is supported by the robustness of the shell
shape with respect to changes in initial or global parameters.

2.4. Calculating the Cavity Shape

To determine the location of the static boundary where the
wind interacts obliquely with the infalling envelope, we follow
the formalism of Matsuyama et al. (2009; their Equations (2)–
(5), which are derived in the appendix to that paper), which
keeps track of both the mass and momentum flux deposited
along the boundary by the shocked wind on the inner side and
by the infalling material on the outer side.
The starting condition that ∂r/∂θ=0 at the pole, used to

compute cavity shapes with full mixing (e.g., López-Vázquez
et al. 2019), is no longer a requirement in the case of weak
mixing, where flame-like shapes are allowed. Instead, we
integrate from the disk midplane up, following Smith (1986). A
starting location in the disk, which also explicitly sets the angle
of incidence, is thus required in order to solve these equations.
As noted above, López-Vázquez et al. (2019) find that breakout
solutions lead to a strong pinch on the disk plane near rrd.
We have performed a detailed analysis of the possible angles of
incidence allowed at the midplane as a function of r/rd<1 for
all combinations of λ and Λ (see Appendix A). We find that
when the cavity is forced to meet the midplane at r/rd = 1,
the required angle of incidence at the midplane is such that the
infalling streamlines approach the cavity wall from inside the
cavity—an unphysical solution. As the midplane crossing
approaches rd, however, there always exists a location where
the angle of incidence of the cavity with the midplane is
parallel to the infalling envelope streamlines. We therefore use
this location as our footpoint for the cavity wall. Solutions
close to this starting position quickly converge above the disk
to the same surface; therefore, the exactness of the starting
position is not critical for these models.
The left panel of Figure 1 plots the shape of the cavity scaled

by rd for a variety of values of Λ, while fixing λ=1/2 (therefore

Figure 1. Cavity shapes for an isotropic wind colliding with an Ulrich (1976) infalling envelope for a range of Λ values (in all cases λ=1/2). The left panel plots the
results in units of rd. The right panel reveals the self-similarity of the solutions under the transformation to rs=0.5 Λ2 rd ( ) º -

GM v M M c2 w w inf
2

s
4, which

determines the physical scale of the cavity.
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L = d
2). With this scaling, the envelope appears broadest and

tallest when Λ is large due to the larger ratio of the ram pressure in
the wind to the thermal pressure in the envelope at rd. As shown
in the right panel of Figure 1, however, all solutions with different
Λ values are self-similar away from the base and actually have
identical physical sizes in units of rs (defined in Equation (10)).
The height of the cavity is found to be Zmax∼2.5 rs, while the
maximum cylindrical radius of the cavity is Rmax∼0.16 rs. It is
important to note that the self-similarity of these solutions breaks
down near the base, where the relevant scaling length remains rd
for all Λ.

The location and incidence angle at which the cavity
intersects the midplane for all these solutions is set by requiring
that the cavity interface be tangent to the infalling envelope
streamlines. Figure 2 shows in detail the cavity shapes near the
disk surface, as well as the orientation of the infalling
streamlines from the envelope for the cases investigated in
Figure 1. From the figure, it is clear that the smaller Λ solutions
intersect the base somewhat interior to the larger Λ solutions.
These solutions therefore result in less interaction with the
infalling envelope, as can be seen in the figure by noting the
trajectories of the envelope streamlines.

Until now we have fixed λ=1/2; however, breakout solutions
should exist for other values of λ. In Figure 3 we show the cavity
shape for Λ=25 and a variety of λ. At the base, the Λ solutions
are independent of λ while the maximum cylindrical radius and
height increase with increasing λ, quickly asymptoting to a fixed
solution. Furthermore, in Figure 4 we plot, as a function of λ, both
the maximum cylindrical radius Rmax of the cavity (in units of rs)
and the ratio of the height to the cylindrical radius at this widest
point in the cavity for each of the Λ cases used in the previous
figures. It is clear from these plots that for λ>1/2, all the
solutions become remarkably self-similar, with only a slight hint
that the shapes are slightly broader for larger λ and smaller Λ. We
further note that steady breakout solutions are found even for
values of λ<1/2 (down to λ ; 0.2). These solutions differ
from the Mendoza et al. (2004) trapped solutions which are

required a priori to have ∂r/∂θ=0 along the vertical axis,
creating a roundish “cap” strongly confined by infall ram pressure
when λ<1/2. Instead, our 0.2λ<1/2 cavities maintain
flame-like shapes, such that the infall ram pressure at the tip is
strongly reduced by the highly oblique incidence there and allows
for breakout.
The fact that our numerical solutions are not highly

dependent on the initial location of the interface at the disk
surface (see Appendix A), nor on the exact values of λ or Λ,
confirms that they are stable equilibrium solutions, as expected
when the confinement is dominated by envelope pressure.

3. Flows along the Cavity Wall

The shape of the cavity wall as a function of the two defining
input parameters (λ, Λ) was shown in Section 2 to be close to
self-similar as long as λ>1/2, especially at large distance
from the intersection with the midplane. Thus, it is reasonable
to expect that the flow of deflected material from either the
wind or envelope side of the cavity wall can also be described
in terms of a single simplified parameterization, with small
deviations as a function of Λ due primarily to the slightly
varying physical situation near the disk surface.
In order to keep track of the various flows, we divide the

cavity wall surface into three components. We present a
schematic of the various regions in Figure 5. First, there is the
deflected shocked wind (denoted in the text by a subscript 1)
that travels upward, parallel to and on the inside of the cavity
surface. Second, there is the deflected infalling envelope
(denoted in the text by a subscript 2), which travels downward,
parallel to and on the outside of the cavity surface. In the
absence of mixing across the surface, these two flows remain
independent and can be fully described at each location by a
mass and momentum flux explicitly determined by integration
along the surface (see Equations (2)–(5) in Matsuyama et al.
2009). Third, a turbulent mixing layer (denoted in the text by
the subscript L) in which slow-moving deflected envelope

Figure 2. Cavity shapes near the base for an isotropic wind colliding with an Ulrich (1976) infalling envelope for fixed λ=1/2 and varying Λ. The dashed lines
represent streamlines for material flowing within the infalling envelope.
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material is entrained upwards by the fast deflected wind can
develop at the contact discontinuity between these two flows.

3.1. Solutions without a Mixing Layer

We begin with solutions in which there is no mixing
between the upward and downward deflected flows. Figure 6
plots the mass flux as a function of (scaled) height for both the
interior ( M ;1 upward) and exterior ( M ;2 downward) layers. The
results are shown for a single hemisphere and scaled
accordingly, as there is no explicit requirement within the
model for symmetry about the disk plane. The right panel

fixes λ=1/2 and shows solutions for four values of Λ

whereas the left panel fixes Λ and shows solutions for four
values of λ. In these plots, it is important to recognize that the
mass-flux axes are scaled separately, with the outflowing
material M1 scaled to the total mass flux from the wind over a
hemisphere and the infalling material M2 scaled to the mass
infall rate from the envelope over a hemisphere. Thus, while
all the solutions are self-similar well above the midplane, the
relative importance of the upward versus downward mass flux
depends on both λ and vw/vd (see Equation (8)). In all cases,
the upward flowing surface asymptotes to the entire mass flux
in the wind, as required, whereas the the cavity intercepts only
a fraction of the infalling envelope, missing that part which
lands on the disk surface between the cavity footpoint and rd.
The trend with Λ, seen in the right panel, can therefore be
understood as a direct consequence of the fact that smaller Λ
solutions intercept the disk closer to the central source (see
Figure 2). As shown in the left-hand panel, all solutions at
fixed Λ are approximately self-similar modulo the wind and
infall mass flux scaling.
A similar set of solutions is found for the momentum flux as

a function of height along the interior (  P = M v ;1 1 1 outward)
and exterior (  P = M v ;2 2 2 inward) cavity layers, as shown in
Figure 7. The quantities shown in the figure are scaled
independently to the fiducial momentum flux in the wind and
infalling material. The relative scaling between these quantities,
however, is explicitly λ (see Equation (8)), and thus, it is
apparent that the downward momentum flux in the outer layer
is always much less than the upward momentum flux in the
inner layer except extremely close to the base. The left-hand
panel, again, shows that the solutions are approximately self-
similar over a wide range of λ for fixed Λ.
Finally, the mean velocities (v1, v2) for the two deflected

flows along the surface can be calculated directly from the ratio
of the respective momenta and mass fluxes. These are plotted in
Figure 8. The quantities shown in the figure are scaled
independently to vw and vd. The wind typically intersects the
surface at an acute angle and thus the majority of the
momentum from the wind is deposited in the deflected flow
rather than contributing ram pressure to support the surface
against the infalling envelope. Therefore, the magnitude of the
velocity of the deflected wind along the surface remains near
vw, asymptotically approaching vw at large heights. The
infalling envelope, however, is almost stationary at large
distances from the midplane and thus the deflected material at
large heights shows little movement downward along the
surface. The infalling velocity increases dramatically near the
base, deeper in the potential well of the central object, and thus
the downward velocity within the deflected envelope increases
toward the midplane. Note that the velocity v2 along the
external shell surface (deflected envelope) is always a tiny
fraction of the upward velocity v1 along the inner shell surface
(deflected wind), as long as vw/vd?1.
One more calculation is required in order to complete the

analysis of the flows in the absence of partial entrainment. For
consistency with the assumptions, it is necessary to show that
the shocked wind and shocked envelope layers remain thin in
comparison to the radius of the cavity. To accomplish this, we
first determine the pressure confining the shocked layers
(Figure 9). We note that on large scales the pressure may be

Figure 3. Cavity profiles for fixed Λ=25 and varying λ showing breakout
solutions when λ>0.2. The dashed lines represent streamlines for material flowing
within the infalling envelope onto the disk of radius rd=2rs/Λ

2. As discussed in
the text, in units of rs the cavity shape becomes fixed for any Λ at large λ.
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well approximated by
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Next, we compute the ratio of the thickness of the layers H1

and H2 against the radial extent of the cavity as a function of

location along the cavity. In detail, the thickness of each
deflected layer is equal to the surface density divided by the
mass density within the layer. In the thin-shell approximation,
the density within each layer is set by pressure equilibrium
through r r= =P c c1 1

2
2 2

2, where c1,2 are respectively the
sound speed in the deflected wind and the deflected infalling
envelope layer. Because P is proportional to the ram pressure
from the wind, the scalings for the relative thickness of the two

Figure 4. Left: maximum cylindrical radius, in units of rs, for a cavity produced by an isotropic wind colliding with an Ulrich (1976) infalling envelope for a range of
λ and Λ values. We find steady breakout solutions even when λ<1/2, to the left of the dotted vertical lines. Right: ratio of the height of the cavity to the cylindrical
radius of the cavity, measured at the location where the cavity is widest.

Figure 5. Schematic showing the various layers along the cavity wall, in which deflected wind material moves upward and deflected envelope material moves
downward. A central turbulent mixing layer with a linear “Couette-type” velocity gradient may grow between these two layers (see Section 3.2). Mathematical
notations used in the text for the velocity, mass flux, sound speed, and density in each part of the flow are also shown for easy reference.
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deflected layers simplify to
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Figure 10 presents the relative thickness H/R of the two
layers, normalized by their respective relevant scaling in each
case. Except near the top of the cavity, where the solution
converges back toward the axis of rotation, the deflected wind
and envelope layers remain thin provided >v c 10w 1 and

( )L >c c 10s 2
2 , respectively. Furthermore, Figure 8 shows

that the deflected wind suffers oblique shocks with speed
= ^v v v0.2s w, w. Using the general expression for the

maximum temperature reached behind a hydrodynamical shock
of speed vs to set an upper limit on c1, it may then be
determined that the condition for the shocked wind layer to
remain thin is equivalent to vw/cw>10, with cw the isothermal
sound speed in the wind.
Similarly, Figure 8 also shows that the deflected envelope

undergoes only small velocity jumps = <^v v v0.1s inf, d.
Because we will always have c c2 s, a conservative condition
ensuring that the deflected envelope layer will remain thin,
regardless of the value of vd, is simply that Λ>10. This
conservative condition on Λ becomes unnecessary, however, if
vd is large enough for the velocity jumps to remain supersonic
everywhere along the cavity wall. Using the expression for the

Figure 6.Mass flow along both the interior (upward: solid line) and exterior (downward: dashed line) layers. The solutions shown are for one hemisphere only. The y-
axis is scaled independently for the downward and upward flows. The left panel shows the results with Z in units of rd for a variety of λ while fixing Λ=25. The right
panel shows the results with Z in units of rs for a variety of Λ while fixing λ=1/2.

Figure 7. Momentum flow along both the interior (upward: solid line) and exterior (downward: dashed line) layers. The solutions shown are for one hemisphere only.
The y-axis is scaled independently for the downward and upward flows. The left panel shows the results with Z in units of rd for a variety of λ while fixing Λ=25.
The right panel shows the results with Z in units of rs for a variety of Λ while fixing λ=1/2.
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maximum temperature behind a shock at vs to set an upper limit
on c2, and rewriting the condition for a thin envelope layer
as ( )l > c v5 2 d

2 (using Equation (12)), we find that the
inequality is then automatically fulfilled under our wind
breakout condition λ>0.2, regardless of the value of Λ.

The combined results presented in Figures 6–10 reveal that,
in the absence of mixing, the deflected wind mass flowing
upward along the boundary surface will be similar to the total
mass flowing in the wind, Mw, and that the magnitude of the
momentum in this deflected flow will also be close to the wind
momentum flux M vw w.

Due to the large aspect ratio of the cavity, the bulk of the
deflected wind flows roughly perpendicular to the disk and at a
high velocity, ~v v1 w. Alternatively, if mixing takes place
between the momentum-rich outward-flowing layer and the

mass-rich infalling layer, the internal velocity structure of this
turbulent mixing layer should be significantly differentiated, as
for example, through a linear velocity gradient such as occurs
in a Couette flow (e.g., Raga et al. 1995). Such an occurrence
will naturally produce a wider spread of velocities between v2
and v1.

3.2. Solutions with a Mixing Layer

A general formalism for the growth of a turbulent mixing
layer between two axisymmetric flows was derived by Raga
et al. (1995). Their main formulae included some ambiguities
and typographical errors, and are therefore reproduced in
corrected form in Appendix B. These authors assume that
within the mixing layer there is both a fixed temperature,
referred to by its sound speed cL and a fixed pressure P across

Figure 8. Mean velocity along both the interior (upward: top two lines) and exterior (downward: bottom lines) layers. The solutions shown are for one hemisphere
only. The y-axis is scaled independently for the upward and downward flows. The left panel shows the results for a variety of λ while fixing Λ=25 with Z in units of
rd while the right panel shows the results for a variety of Λ while fixing λ=1/2 with Z in units of rs.

Figure 9. Normalized pressure along the boundary surface of the cavity. The left panel shows the results for a variety of λ while fixing Λ=25 with Z in units of rd.
The right panel shows the results for a variety of Λ while fixing λ=1/2 with Z in units of rs.
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the layer, varying only as a function of position along the flow.
Across the layer, they further assume that the velocity varies
linearly, as in a Couette flow, bounded by the velocities of the
fast v1 layer and slow v2 layer (see Figure 5). The coupled
equations for the change in mass flux and momentum flux
within the mixing layer due to entrainment across the inner and
outer boundaries are then solved so as to determine the
entrainment required across each bounding surface in order to
maintain the imposed Couette conditions.

As detailed by Raga et al. (1995), entrainment occurs in two
ways (see their Equations (1) and (2)): through the geometrical
growth of the mixing layer, intercepting a fraction of the flows
on either side, and through “turbulent entrainment” on the
slow-moving side (here the deflected envelope) as it is dragged
into the mixing layer by the fast-moving side. In this paper, we
follow the Raga et al. (1995) prescription for the turbulent
entrainment velocity a=v c cent 2

2
L (see their Equation (3)),

with a constant turbulent mixing parameter α. For simplicity,
we will further assume constant values of cL, c1, and c2 at all
positions.

At any location x along the surface, the linear velocity gradient
across the turbulent layer ensures that the mass-weighted mean
velocity within the mixing layer is ( ) [ ( ) ( )]= +v x v x v x 2L 1 2 .
At the same time, the ratio of the momentum flux PL versus the
mass flux ML in the mixing layer is skewed toward the higher
velocities within the layer, such that
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To maintain this ratio as slow envelope material ML2 is
turbulently entrained across the outer boundary surface, a
significant amount of fast-flowing shocked wind material ML1
must also be entrained across the inner boundary, with the
exact proportion set by the (changing) physical conditions
along the surface. For the trivial case of a constant velocity, v1,
in the fast-moving layer and no motion on the slow-moving
side (v2=0), Equation (17) shows that the Couette flow
requires ( ) ( ) ( ) P =x v M x2 3L 1 L . Because zero momentum can
be provided from the stationary side, this condition is met by

the mass entrainment rate from the fast-moving wind side being
exactly twice the mass entrainment rate from the stationary side
(Cantó & Raga 1991).
A careful consideration of the interface solutions presented

in Section 2 shows that for the self-similar cavities in this
paper, v1∼vw and ∣ ∣ v v2 w in all examined cases. This
simplifies the general formulae described by Raga et al. (1995);
however, the changing radius of curvature and the steadily
dropping pressure across the calculated wind–envelope surface
conspire such that the detailed solution for entrainment must be
calculated numerically and separately for all parameter pairs (λ,
Λ). Fortunately, despite this somewhat more complicated
geometry, Figure 11 shows that for all pairs (λ, Λ), the mass
flux entering the mixing layer from the fast-flowing wind side,
ML1, remains close to twice the turbulent entrainment from the
envelope side, ML2.
The self-similarity of the boundary location also provides,

for each (λ, Λ) pair, a scaling relation for the efficiency of the
turbulent mixing solutions in terms of the physical parameters
M v c, ,w w L, as well as α. The turbulent entrainment into the
mixing layer from the slow-moving, envelope, side of the
boundary, ML2, can be found by integrating the turbulent
entrainment along the boundary surface, x. That is,

( ) ( ) ( ) òp r=M R x x v dx2 , 18L2 2 ent

where ( )r x2 is the density of the deflected shocked envelope
along the outer boundary and ( )a=v c cent 2

2
L is the para-

meterized entrainment velocity. This equation is exact for
situations where the shocked ambient medium is static and
remains an excellent estimate when ∣ ∣ v v2 w. The result may
be rewritten in terms of the pressure across the boundary
surface

⎛
⎝⎜

⎞
⎠⎟ ( ) ( ) ( ) òp

a
=M

c
R x P x dx2 , 19L2

L

which is further reduced by recognizing that the pressure at
location x along the surface is set explicitly by the ram

Figure 10. Relative thickness of both the interior (upward: solid line) and exterior (downward: dashed line) layers as a function of height. The ratio H/R is normalized
in each case to the relevant scaling derived in Equations (15) and (16). The left panel shows the results for a variety of λ with Z in units of rd while fixing Λ=25. The
right panel shows the results for a variety of Λ with Z in units of rs while fixing λ=1/2 .
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pressure: ( ) ( ) =P x a x M v ,w w where ( ) gµa x rsin2 2 takes
into account the varying angle of incidence between the
isotropic wind and the boundary surface. Thus,

⎛
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⎠⎟ ( ) ( ) ( ) 
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a
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M v

c
R x a x dx2 . 20L2

w w

L

Furthermore, given the almost fixed ratio between mass
entrained into the mixing layer from the deflected wind versus
the deflected envelope (see Figure 11), the scaling for ML1, and
  = +M M ML L1 L2, should be the same as that for ML2.
Utilizing this scaling as normalization, Figures 12 and 13

show the fraction of deflected wind and deflected envelope that
is entrained into the mixing layer as a function of height above
the midplane, for a variety of (λ, Λ) pairs. Self-consistent

solutions require that these fractions remains less than unity,
otherwise the reservoir of shocked material flowing along the
cavity walls is not large enough to feed material into the mixing
layer at our assumed rates. From Figure 12, it is clear that for
the wind side this constraint requires

⎛
⎝⎜

⎞
⎠⎟ ( )a a º c

v
. 21max

L

w

Similarly, for the envelope side (Figure 13), the constraint is
trivially met for the same physical parameters assuming
 <M M0.5w inf , except at extreme heights, Z>rs, where the
cavity shape converges to the axis of rotation.
Furthermore, combining the information in Figures 12 and

13, and using the results of Figure 6, Figure 14 shows that the
total mass flux in the mixing layer for one outflow cavity lobe

Figure 11. Computed ratio of the mass flux entrained within the mixing layer from the fast-moving shocked wind material, ML1, vs. the turbulent entrainment from the
shocked envelope, ML2. Note that for all solutions the ratio remains close to 2, as expected to maintain a linear Couette velocity profile across the mixing layer.

Figure 12. Computed ratio of the cumulative material gained by the mixing layer from the shocked wind ( )ML1 vs. the available reservoir of shocked wind material
including that already in the mixing layer.
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is almost independent of the (λ, Λ) pair. Within a factor of a
few, the asymptotic value at high altitudes is
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where αmax is defined in Equation (21). We note that if
α>αmax, our physical model will not entirely break down.
The mixing layer will simply grow until it eventually engulfs
all of the deflected wind layer and ML saturates at its maximum
possible value of M 2w . Without a fast laminar wind layer to
enforce a Couette flow, however, the velocity field in the
mixing layer would become a Gaussian velocity distribution
peaked around a mean value v 2w , leading to line profiles
much narrower than in a linear gradient Couette flow.

4. Calculation of Angular Momentum and Line Profiles

4.1. Angular Momentum of the Shocked Envelope and Mixing
Layer

To compute the angular velocity of the shocked envelope,
fv2, , as well as the mixing layer, fvL, , we adopt the following

equations (see Equation (5) in Matsuyama et al. 2009):

( ) ( ) ( )r q
b

W =
¶
¶

S Wf fv
R R

R vsin
cos

23inf inf sa inf, 3
3

2 2 2,

and

( ) ( ) ( )r a
b

W =
¶
¶

S Wf fc
R R

R v
cos

, 242 2 2, 3
3

L L L,

where ( )pW =f fv R22, 2, and ( )pW =f fv R2L, L, .

Figure 13. Computed ratio of the cumulative material gained by the mixing layer from the deflected envelope ( )ML2 vs. the available reservoir of deflected envelope
material including that already in the mixing layer.

Figure 14. Mass flux of the material within the mixing layer.
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By integrating Equation (23) over R along the interface
from the top of the cavity to the disk plane, we obtain W f2, and
hence fv2, . Subsequently, inputting the derived W f2, into
Equation (24) and integrating it over R from the disk plane
upward along the interface, we obtain W fL, and hence fvL, . In
the top panels of Figure 15, we show fvL, (solid lines), fv2, , and

fvinf, as a function of R for fixed Λ and varying λ (left panels),
as well as for fixed λ and varying Λ (right panels). We can see
that for L > 20, fvL, is no larger than a few tenths of vd and
therefore can be considered as negligible compared to the bulk
velocity of the gas in the mixing layer ( »v v0.5L w) when
determining the shell shape and computing the observed line
profiles.

The bottom panels of Figure 15 plot the specific angular
momentum fRv for the same three velocity components as in
the upper panels, as a function of Z. We can see that the specific
angular momentum in the mixing layer is virtually independent
of λ and Λ. Because twice as much material is entrained from
the (nonrotating) wind side than from the envelope side, the

initial value of the specific angular momentum at the base is
one-third of that in the deflected envelope. As gas is advected
upwards in the mixing layer, this rotating material gets mixed
with deflected ambient material of smaller specific angular
momentum. However, because most of the mass entrainment
occurs at Z�0.1 rs, the specific angular momentum in the
mixing layer remains close to its initial value, ;0.15 vdrd.

4.2. Mixing-layer Line Profile

Having developed a model for how the material is entrained,
the next step is to calculate the resulting line profile for direct
comparison to observations. The model calculations in the
preceding sections were all dimensionless and are thus
applicable to essentially any type of entrainment irrespective
of physical scale. Thus, with the appropriate scaling, this model
could be compared with outflows from protostars (e.g.,
Mottram et al. 2014; Kristensen et al. 2017) to extragalactic
outflows (e.g., Aalto et al. 2016, 2017).

Figure 15. The f component of the infalling envelope at the interface (dotted–dashed), in the shocked envelope gas (dotted) and in the gas within the central mixing
layer (solid). The top panels plot velocity while bottom panels plot specific angular momentum. The left panels compare the results for fixed Λ=25 and varying λ
with R in units of rd. The right panels compare results for fixed l = 1 2 and varying Λ with R in units of rs.
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The line profiles for the shocked wind layer and for the turbulent
mixing layer are generated independently under the optically thin
assumption by computing the flux ( ) = dF v dVe LOS e emitted by
each elementary volume element dV, where òe is the emissivity per
unit volume of the molecular line of interest. At every height, z,
along the surface, the flux from each azimuthal interval, df, is
added to the velocity bin corresponding to the line-of-sight velocity
vLOS of the volume element. For the shocked wind layer, the
velocity has a unique modulus v1, dependent only on z, whereas
for the mixing layer, the flux is evenly distributed in velocity
between 0 and v1 prior to projection.

In Figure 16, we show example line profiles for our reference
model presented in the previous section (λ= 1/2, Λ=25).
We scale the projected velocities by vw and integrate the
emission up to 200rd (0.6rs) from the base of the outflow. Four
viewing angles are provided. The black curves show the line

profiles for the shocked wind layer only, assuming emissivity
proportional to density—mimicking the high-density LTE
(local thermodynamic equilibrium) regime. Except for the
edge-on case, the emission always peaks near the projected
wind velocity vw sinθobs. This occurs because the bulk of the
deflected wind flows at v1∼vw and is roughly parallel to the
disk axis, due to the elongated shape of the cavity. The blue
curves, on the other hand, show the computed line profiles for
the mixing layer only, assuming again that the emissivity is
proportional to the density. As expected, the line profiles are
much broader and flatter, peaking at zero and extending to a
fraction of vw. Finally, the solid red curves show the predicted
line profiles from the mixing layer when emissivity is
proportional to the density squared, mimicking the low-density
limit. This emissivity condition increases the contribution of
dense regions near the base, where the cavity opening angle is

Figure 16. Line profiles for the model with Λ=25 and λ=1/2. Each panel shows the result for a different direction of viewing as labeled, where θobs is measured
from the plane of the disk. The blue and red curves in each panel indicate the line profiles of material in the mixing layer, under the assumption that the emissivity of
CO J= 16—15 (òCO) is proportional to the density and square of the density, respectively. For reference, we also show in each panel the emission profile of the
material in the shocked wind layer alone if no entrainment occurs, under the assumption that emissivity scales linearly with gas density (black curve).
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still large. Due to projection effects, it produces more extended
line wings close to edge on and enhanced low-velocity
emission when close to pole on.

Our described model of partial entrainment of the wind,
along with some of the exterior envelope, through a turbulent
mixing layer thus ensures that a fraction of the outflowing
material is moving slowly due to the linear velocity gradient,
Couette-type flow within the mixing layer. Turbulent dissipa-
tion within the mixing layer also provides a heating mechanism
to make this material warmer than the shocked wind layer and
hence brighter in high-J CO lines.

In the following section, we investigate whether such a
model could explain at the same time the line profile,
momentum, and temperature of the broad component observed
in CO by Herschel toward the Serpens-Main SMM1 protostar,
as well as the observed outflow cavity size, for reasonable
envelope and wind parameters.

5. Application to the Broad Component of Class 0 Protostar
Serpens-Main SMM1

As an illustration of the applicability of our formalism to a
specific outflow case, we compare our model predictions with
observations of the protostar Serpens-Main SMM1. This
protostar is located in the Serpens Main cloud at a distance
of 438 pc (Herczeg et al. 2019). The protostar has a bolometric
luminosity of ∼100 Le (Goicoechea et al. 2012), and is
therefore on the border between low- and intermediate-mass
protostars. The envelope is correspondingly massive, with an
estimated mass of ∼50 Me (Enoch et al. 2008; Kristensen et al.
2012). When observed at high angular resolution, the protostar
breaks up into multiple sources; however, the central, most
massive protostar is responsible for the primary outflow (Hull
et al. 2016, 2017; Le Gouellec et al. 2019). When observed in
H2O and high-J CO emission with the HIFI instrument on
Herschel, this source shows the brightest line intensity in H2O
and CO J=16–15 in the sample of Kristensen et al. (2017).
For this reason, the broad-line component of SMM1 also has
the highest signal-to-noise ratio. Hence, this protostar is a
natural choice for a first comparison between the model
presented in this paper and observational data.

5.1. Broad Component Line Profile and Wind Velocity

When Herschel-HIFI started observing H2O emission toward
protostars, one of the biggest surprises was that the velocity-
resolved line profiles typically were dominated by a broad
outflow component with an FWHM of 30 km s−1 (e.g.,
Kristensen et al. 2012, 2017; Mottram et al. 2014). This line
width was significantly larger than seen in low-J CO from the
ground, e.g., J=3–2, where the FWHM is 15 km s−1

(Kristensen et al. 2012). It also became clear that when
observing higher-J CO transitions with HIFI, the line profiles
started resembling the H2O profiles so much so that the CO
J=16–15 profiles are indistinguishable from the H2O profiles
(Kristensen et al. 2017). That the CO profiles vary with
excitation suggests that the change in shape is indeed due to
excitation as opposed to chemistry. Furthermore, the change in
profile shape is likely related to an increase in temperature,
because when calculating the rotational temperature from the
ratio between CO lines, the temperature increases from 100 K
to ∼300 K (Yildiz et al. 2013; Kristensen et al. 2017). Thus,
the higher-J CO lines, and by implication the similar H2O lines,

trace a warmer, faster-moving component of the protostellar
outflow as compared to what is seen in low-J transitions
(Kristensen et al. 2017), and this component is primarily seen
as a broad outflow component in the velocity-resolved line
profiles.
Kristensen et al. (2012) and Mottram et al. (2014) speculated

that, because of the higher temperature and velocity, this broad
component is tracing gas closer to a shock front, possibly
located where the protostellar wind shocks against the infalling
envelope in an irradiated C-type shock. The colder gas, traced
by lower-J CO lines, then would be the subsequently entrained
swept-up ambient gas. Alternatively, the heating and entrain-
ment process of the broad component could take place within a
turbulent mixing layer at the interface between the shocked
wind and infalling envelope. This alternate scenario is
investigated below, using the model results presented in the
previous sections.
For the source SMM1, Kristensen et al. (2017) found that the

CO J=16–15 line profile could be decomposed into three
Gaussian components, one broad (FWHM ∼ 20 km s−1) and
two narrower components (FWHM ∼8–10 km s−1). The
narrower components are only seen in this high-J CO line and
likely originate in shocks very close to the protostar (Kristensen
et al. 2013), and they are not considered further here. Figure 17
compares the broad component, extracted from the CO
J=16–15 line profile in SMM1 by Kristensen et al. (2017)
after removal of the two narrower component Gaussian fits,
with our model predictions. Excellent agreement is found for
a mixing layer with vw=25–30 km s−1, an inclination of
θobs=30°measured from the plane of the disk, and an
emissivity proportional to density.

Figure 17. Observed broad component of the CO J=16–15 line profile in
SMM1 (filled blue) compared against synthetic line profiles produced in
Section 4. The synthetic profiles are generated at a viewing angle θobs=30°
from the disk plane, with an emissivity that scales linearly with gas density.
The blue and black curves assume that the CO emission originates from the
central mixing layer or from the deflected wind layer, respectively. The solid
profiles include both outflow lobes and are rescaled to vw=25 -km s 1 so that
the blue line can well match the left side of the observed SMM1 profile. An
additional blue dotted fit is provided for the redshifted lobe (right side) of the
SMM1 profile, requiring a somewhat larger vw=28 -km s 1.
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A few checks are in order to ensure that the model remains
self-consistent. First, for the “thin-shell” approximation to be
satisfied, the wind velocity must remain large enough to produce
a significant ram pressure which in turn confines the flow of
shocked wind along the cavity surface. In Section 3.1, we
showed that confinement requires vw/cw>10, where cw is the
isothermal sound speed in the wind. With our estimate for vw ;
30 km s−1, we therefore require cw<3 km s−1, or a maximum
wind temperature of 1000μ K, with μ the mean molecular
weight per particle (in a.m.u). This condition holds both in
D-winds heated by ambipolar diffusion in Class 0 sources
(Panoglou et al. 2012; Yvart et al. 2016) and in X-winds in
the absence of mechanical heating (Shang et al. 2002). In
Section 3.1, we also found that the deflected envelope layer will
always remain thin when Λ>10, regardless of the value of vd.
We will verify that this condition holds in SMM1 in Section 5.5.

Second, the model line profiles in blue that reproduce the
observed line profile shape for SMM1 in Figure 17 are obtained
only if a Couette linear velocity gradient exists across the
mixing layer. For this gradient to be maintained, the mass flow
entrained in the mixing layer from the wind side, ML1, should
not exhaust the available flux of shocked wind material M1

flowing along the shell. As discussed in Section 3.2, this
constraint sets an upper limit on the turbulent entrainment
coefficient in SMM1 ( ) a a = c v 0.035max L w (see
Equation (21) and Figure 12) where we have used our estimate

of vw=25–30 km s−1 from line profile modeling and cL=1
km −1 from the temperature ;250 K inferred by multiline CO
analysis of the broad component in SMM1 (see Kristensen
et al. 2017 and the next section). We will verify below that this
upper limit on α is still compatible with the observed
momentum in the broad component of SMM1.

5.2. Outflow Cavity Size

In Figure 18, we compare a published CO outflow map of
SMM1 (Hull et al. 2016) with our predicted self-similar cavity
shape from Figure 1 for various values of the scaling parameter
rs. Although only the inner region of the SMM1 outflow has
been mapped at high angular resolution, the joint constraints on
small and large scales indicate that rs must lie in the range
;10,000–40,000 au. Hence, we adopt rs=20,000 au as our
fiducial value in the following.
The cavity physical scale rs requires a specific ratio of mass-

loss rate in the wind to infall rate in the envelope (see
Equation (10)), given by
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Figure 18. Model cavity shapes superimposed onto the observed CO map from Hull et al. (2016). The magenta and blue lines correspond to Λ=25 and Λ=50 in
our model, respectively (see Figure 1). They have been rescaled to rs=10,000 au (magenta) and rs=40,000 (blue) in order to match the observed CO map profile.
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Because SMM1 is quite bright (100 Le), we adopt a fiducial
sound speed in the envelope of cs ; 0.4 km s−1 corresponding
to a temperature of 40K. This value is consistent with radiative-
transfer modeling of the dust emission from the envelope
surrounding SMM1 (Kristensen et al. 2012), which recovers a
sound speed of 0.3–0.5 km s−1 in the envelope at the relevant
physical scales, 350–3000 au, shown in Figure 18, which are
also those of the Herschel/HIFI beam. With this value of cs, we
find that the observed size of the outflow cavity in SMM1 can be
reproduced with a wide-angle wind mass flux on the order of 4%
of the envelope infall rate, which is quite modest. In the
following sections, we use our model and the observed
momentum in the broad component to constrain the absolute
value of Mw and then that of Minf , through Equation (25).

5.3. Momentum in the Mixing Layer

The two-sided momentum in the broad component of SMM1
was estimated from observations of CO J=3–2, 6–5, 10–9, and
16–15 taken with the JCMT, APEX, and Herschel-HIFI (Yildiz
et al. 2013). The respective line profiles were rebinned to the
same velocity scale and to channels of 3 km s−1 width. For each
channel, a rotational diagram was constructed, and, assuming
LTE and optically thin emission, the rotational temperature and
CO column density NCO were calculated. The rotational
temperature was ∼250 K, irrespective of velocity. With this
mass spectrum in place, the mass-weighted momentum ΠBC of
the broad component summed over both lobes is given by
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where XCO is the (unknown) fractional abundance of CO
molecules by number with respect to H nuclei in the broad
component and Πobs is the fiducial “observed” momentum
assuming a standard interstellar CO abundance of 5×10−5.
Equation (26) shows that the value of Πobs only depends on the
observed CO intensity and excitation temperature, irrespective
of the true XCO. It is therefore the quantity usually reported in
observational papers. Using an updated distance, d=438 pc,
to the Serpens Main cloud (Herczeg et al. 2019), we recalculate
the Yildiz et al. (2013)-derived fiducial momentum inside a
beam radius of Rb=5 5=2400 au to be P  ´8 2obs


- M10 2 kms−1.
In our entrainment model, the two-sided momentum con-

tained in the mixing layer up to a distance z=±Rb is given by
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where η(z) is the normalized ratio plotted in Figure 14 and αmax

is defined in Equation (21). Because η(z) increases very slowly
with height, the integral on z may be approximated as ηbRb,
where ηb ≡η(Rb).

If the momentum in the broad component of SMM1 inside
Rb= 2400 au is provided by mixing-layer entrainment from a
wide-angle wind, then 2ΠL=ΠBC. Using Equation (26) with
Πobs ; 8±2×10−2 Me kms−1 and taking ηb ; 1 (which
we will verify in Section 5.5), we infer that the wide-angle
wind must have a mass flux
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5.4. Infall Rate

We can now compute the required envelope infall rate in our
model and compare it with the infall rate independently
suggested by dust envelope models. Combining Equations (25)
and (28), we infer the required infall mass flux to reproduce
both the outflow cavity size and the momentum in the broad
component to be
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The required value is larger than typical infall rates for low-
mass Class 0 protostars. It is in line, however, with that
expected for sources with particularly massive envelopes such
as SMM1, whose luminosity ∼100 Le places it on the border
between low- and intermediate-mass protostars. Using the
estimated H2 density at 1000au, n1000, in the SMM1 dust
envelope model of Kristensen et al. (2012) and rescaling by d2

from d=230 to 438 pc, we infer an “observed” envelope infall
rate at R1000=1000 au of
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where the factor of 1.4 accounts for the mass in the form of
Helium. We note that Må appears at the same power in Minf and
Menv, hence its exact value, currently unknown in SMM1, does
not matter for the comparison. There is therefore good
agreement with our mixing-layer model as long as XCO, the
CO abundance in the mixing layer with respect to H nuclei, is
close to the standard interstellar value of 5×10−5, and the
turbulent entrainment parameter α is close to the maximum
value to maintain a Couette flow, αmax=cL/vw ; 0.03. We
note that such a value of α matches very well with a model fit
to supersonic mixing-layer experiments6; thus, it appears

6 Cantó & Raga (1991) showed that the variation of opening angle versus
Mach angle in experiments could be reproduced with ò ≡ vent/c2=0.089ò2
with ( )º c c3 ;2 2 L this is equivalent to our adopted prescription

a=v c cent 2
2

L with a 0.03.
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physically plausible. With these values for XCO and α, the wind
mass flux that is required to provide the broad component
momentum is   ´ - -M M6 10 yrw

6 1 (see Equation (28)).

5.5. Constraints on Ejection/Accretion Ratio and Disk Radius

We have shown in Section 5.2 that the outflow cavity size in
SMM1 can be reproduced with a modest ratio of wind mass flux to
envelope infall rate of ;4%. The disk accretion rate onto the central
star, however, may be smaller than the envelope infall rate onto the
disk. Assuming that the bolometric luminosity; L100 of the SMM1
source (Goicoechea et al. 2012) is dominated by the accretion
luminosity   L GM M Racc acc and adopting stellar radii R on the
birth line computed by Hosokawa & Homukai (2009), we infer a disk
accretion rate of   

-M M10acc
4 yr−1 if =M M0.2 and

  ´ -M M3 10acc
5 yr−1 if =M M0.5 . With the wide-angle

wind mass flux   ´ - -M M6 10 yrw
6 1 derived in the previous

section, the ratio of wind ejection rate to disk accretion rate is thus
;0.06–0.2 for Må=0.2–0.5Me. Such values are in the typical range
predicted by D-wind and X-wind ejection models from accretion disks
around young stars. Therefore, the wind mass-flux requirements in our
model for SMM1 appear physically reasonable.

We next estimate the expected range of the parameter λ, the
ratio of wind to infall ram pressure, for SMM1. From
Equations (8) and (10), we have
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This is consistent with the condition λ  0.2 for which our
cavity solutions break out and reach their full extent (see
Figure 4), for the typical disk sizes in Class 0 sources
(Maury 2019). Interferometric continuum observations suggest
that SMM1 possesses a particularly large and massive disk
of;300 au (Enoch et al. 2009), hence the breakout condition is
very likely fulfilled.

Finally, we estimate the typical Λ parameter as
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This low value of Λ is consistent with our assumption of ηb ; 1
on the scale z=Rb ; 0.1rs of the Herschel beam (see the
curves for η(z) in the right panel of Figure 14). Even with a
large disk, rd ; 300 au, the condition Λ>10 for the weakly
shocked deflected envelope layer to remain thin is also fulfilled.

5.6. Temperature and Density in the Mixing Layer

As an additional test of our model, we investigate whether
the observed temperature TL ;250 K of the broad component
in SMM1 suggested by multiline CO analysis (Kristensen et al.
2017) would be consistent with the heating of the mixing layer
in our model by turbulent viscosity.

In principle, a full nonequilibrium thermochemical calcul-
ation should be performed as a function of position along the
mixing layer. Such a complex problem is, however, outside the

scope of the present paper and is deferred to future work. For
simplicity, we assume here that the temperature and chemistry
in the mixing layer have reached a steady state on the scales
observed by the Herschel-HIFI beam and check whether
thermal equilibrium at TL ;250 K could indeed be sustained.
Following Binette et al. (1999), we take a turbulent viscosity

μ=(α/4)ρLcLh, with h the total thickness of the mixing layer.
A derivation of this expression for supersonic isothermal
mixing layers with a linear velocity profile (Couette flow) is
given in Appendix C. We can then express the turbulent
heating rate per unit volume in the mixing layer as
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where we make use of ( ) =dv dh v hw with =h ML

( )p rR v2 L L , R is the local shell radius, r=P cL L
2 is the local

pressure in the layer, and a = c vmax L w is defined in
Equation (21).
Thermal equilibrium at constant TL will be maintained as

long as

( )G L + L , 34visc exp rad

where Λexp is the rate of “expansion cooling” in the mixing
layer as the pressure P drops with altitude and Λrad is the
radiative cooling rate (both per unit volume). The contribution
of H2 formation is ignored in this analysis, as well as the
advection of thermal energy into the layer, because c1= vw
and c2=vw. Under our isothermal hypothesis for the mixing
layer, the expansion cooling rate may be simply expressed as
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where x denotes the position along the layer. We thus obtain
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where η is the normalized mass flux within the mixing layer
plotted in Figure 14. Therefore, in our model, the ratio of
expansion cooling to viscous heating in the mixing layer is
independent of the turbulent entrainment efficiency α, and it
only scales with ( )c vL w

2. Furthermore, the remaining terms in
this ratio are only weakly dependent on the values of λ and Λ

(see Figures 9 and 14). On the typical scale z r0.1 s

encompassed by the Herschel/HIFI beam, we find that
( )L Gexp visc ( ) c v200 L w

2. With our fitted values of cL ; 1
km s−1 and vw;30 km s−1 for the broad component of
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SMM1, we infer that expansion cooling should be negligible
with respect to viscous heating.

Thus, we only need to compare the viscous heating rate with
the radiative cooling rate. As noted by Kristensen et al. (2017;
see their Figure 11), cooling by CO largely dominates over the
cooling by H2 at temperatures of 250K (for a standard CO/H2

abundance ratio). We further assume that CO cooling is excited
mainly by collisions with H2 in the low-density limit (which we
will verify a posteriori for SMM1). Denoting L0(T) as the CO
cooling rate coefficient (in -erg s 1 cm3) at temperature T, and
XCO and XH2 as the CO and H2 abundances relative to the total
number density of H nuclei, ( )r=n m1.4H L H , we have
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The ratio of turbulent heating to CO cooling is then
independent of the mixing-layer density ρL. With a mean layer
velocity v v 2L w (Couette flow), a typical value of M2 L

within the Herschel beam of 2ΠL/Rb (see Equation (27)), and
2ΠL=ΠBC, where ΠBC is the momentum in the warm CO
broad component, this ratio can be expressed as

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

( )





p a
a

a
a

G
L

=
P

´

´
´

P

-

- -

-

- -

c

L T X X

RR v
m

X

c

L T

v R

R M

2
1.4

0.4
0.5

1 km s

3 10 erg s cm

30 km s 2400 au

1000 au

8 10 km s
. 38

visc

CO

L
2

0 L CO H

b w
2

BC max
H

2

H

L
1

2 24 1 3

0 L

w
1

2
b

max

2 1

obs

2

2

It is remarkable that apart from XH2, there are no free parameters
in this ratio, as all of the other factors are well constrained by
observations of SMM1: the value of cL is fixed by the relative
intensities of the high-J CO lines, indicating TL ; 250 K. The
corresponding value of ~ ´ -L 3 10 erg0

24 s−1 cm3 at 250K
is set by molecular collision rate calculations (Neufeld &
Kaufman 1993). The value of vw derives from our model fit to
the CO(16−15) line profile in Figure 17. The cavity radius R;
1000 au at z=Rb= 2400 au derives from our model fitting of
the outflow shape in Figure 18. The value of α ;αmax is
required for our model to be consistent with the dust envelope
infall rate in SMM1 (see Section 5.4). Finally, the product ΠBC

XCO is equal to Πobs×(5×10−5), where the value of
P = ´ - -M8 10 km sobs

2 1 is fixed by the observed CO
line profile intensity and excitation temperature in SMM1 (see
Equation (26)).

We conclude that if hydrogen is mostly in molecular form
( X 0.5H2

) and CO cooling is not far from the low-density
regime, the ratio in Equation (38) is close to 1 for our mixing-
layer model of SMM1 and thermal equilibrium can be
maintained at the observed temperature ;250 K of the broad
CO J=16–15 component.

The low-density CO cooling expression applies only until
( )  L n H 0.50 2 LTE, where LTE is the cooling rate per CO

molecule in the high-density LTE regime. At 250 K,
 - 10LTE

18 erg s−1 (Neufeld & Kaufman 1993), hence the

validity extends to ( ) ´n H 1.7 102
5 cm−3. To estimate the

density in the SMM1 mixing layer on the scale of the HIFI
beam, we note that the shell pressure distribution on large
scales is approximated by Equation (14). We infer the H
nucleus density predicted in the mixing layer at Z Rb for the
SMM1 model parameters to be
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If all hydrogen is in molecular form, we have ( ) =n H2

 ´n0.5 0.7 10H
5 cm−3 and the low-density regime of CO

cooling assumed in Equation (38) is indeed justified for SMM1
on HIFI beam scales.

5.7. Summary and Discussion of the Model Fit to Protostar
Serpens-Main SMM1

In summary, we have shown that our simple model of a
turbulent mixing layer across a static wind/envelope interface
is able to reproduce successfully all of the observed properties
of the broad CO outflow component discovered by Herschel/
HIFI in the Serpens-Main SMM1 protostar for a self-consistent
and physically realistic set of parameters. The CO J=16 – 15
line profile shape and velocity extent are reproduced for a
typical wind speed vw ; 30 km s−1 and a view angle of
θobs=30°to the disk plane (i.e., the median value expected
for random inclinations). This wind speed is smaller than
predicted for an X-wind from the innermost disk radius at
;0.1 au (vw ; 150 km s−1; see, e.g., Shang et al. 1998) but
remains compatible with a slow MHD disk wind launched from
a few astronomical units in the disk (see, e.g., Tabone et al.
2020). Next, the observed outflow cavity size on 300–3000 au
scales, when combined with the estimated dust temperature in
the envelope, requires a ratio of wind mass flux to infall rate of
4%. With this imposed ratio, the observed CO-emitting
momentum in the broad component (provided by wind
entrainment) is consistent with the observed infall rate in the
dusty envelope for a standard interstellar CO abundance and a
turbulent entrainment coefficient α ; 0.03 (consistent both
with our assumption of a Couette flow in the mixing layer and
with mixing-layer laboratory experiments). The corresponding
wind mass flux then represents a fraction of ;0.06–0.2 of the
disk accretion rate onto SMM1 (as determined from its
bolometric luminosity), consistent with current disk wind
models. Finally, the observed temperature in the broad CO
outflow component of SMM1 is consistent with a balance
between turbulent heating and CO cooling in the mixing layer
if H2 is mostly in molecular form, which is very likely at such
low temperatures. We also verify that the values of λ and Λ in
our SMM1 model are consistent with the conditions for cavity
breakout and the requirement of thin shells across the full range
of disk radii expected in such a source, rd=10–300 au.
An obvious next step for this modeling work would be to

compute self-consistently the time-dependent evolution of
temperature and chemistry through the wind shock and along
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the mixing layer, using for example the molecular MHD disk
wind models of Panoglou et al. (2012) and Yvart et al. (2016)
as initial conditions. Such a calculation would provide an
important check on our model requirement of an interstellar CO
abundance in the mixing layer of SMM1 to match independent
constraints on the infall rate obtained from dust emission
observations. It would also aid in the identification of the best
tracer for the predicted narrow emission from the shocked wind
layer (see black double-horned profile in Figure 17).

Furthermore, because our model assumes a steady wind-
blown cavity, it provides a natural explanation not only for the
broad Herschel-bright CO component but also for the narrow
outflow cavity radii �3000 au observed at the Class 0 stage of
104–105 yr, despite observed CO velocities on the order of 10
km s−1. In contrast, for wind-driven shell models with full
mixing, quasi-radial outflow motions of the same amplitude
lead to excessive cavity radii in only a few thousand years (see,
e.g., Shang et al. 2006; López-Vázquez et al. 2019).
Comparison over a larger sample of protostars with well-
characterized broad components and outflow cavities will be
necessary to verify that self-consistent models can be found, as
in SMM1, and to investigate how the required wide-angle wind
properties would need to vary with source properties.

6. Conclusions

In this paper, we have reconsidered the interaction of a wind
expanding into a surrounding medium under the assumption of
partial mixing across the boundary layer separating the shocked
wind and envelope. Our solutions differ from conventional
wind/envelope interaction models where instantaneous full
mixing is assumed (e.g., Li & Shu 1996; Lee et al. 2000;
López-Vázquez et al. 2019) in that we produce static, rather
than expanding, shells. To maintain the stationary shape, we
allow the shocked and deflected wind to flow upward at close
to vw along the interior of the cavity wall while the shocked and
deflected envelope moves slowly downwards along the exterior
of the cavity wall. A turbulent entrainment layer is thus able to
form between these two deflected flows.

Specifically, we determine the shape of the stationary cavity
formed when an isotropic wind interacts with an infalling and
rotating (Ulrich 1976) envelope. The resulting model is then
quantitatively compared with observations of the protostellar
outflow from SMM1 in the Serpens Molecular Cloud.

The main results of our analysis are as follows:

1. The shape of the steady-state cavity (Section 2.3) is
determined by two nondimensional parameters, λ, the
ratio of the wind ram pressure to the fiducial infall ram
pressure (Equation (8)), and Λ, the ratio of the wind ram
pressure to the envelope thermal pressure at the edge
of the disk (Equation (12)). We show that Λ sets the
footpoint of the cavity at the disk plane (Figure 2) and
that breakout solutions require λ>0.2, with the cavity
shapes becoming self-similar for λ>0.5 (Figure 3). In
the self-similar regime, the size scaling of the cavity is
determined by rs (Equation (10)).

2. Under the assumption of no mixing (Section 3.1), the
shocked and deflected wind moves upward along the
cavity at close to the velocity vw, while the shocked and
deflected envelope moves downward only slowly, except
very near the base (Figure 7). Furthermore, away from the

base, the associated downward momentum flux is much
less than the upward momentum flux (Figure 8).

3. Under the assumption of partial mixing within a turbulent
layer between the upward and downward shocked
deflected layers (Section 3.2), the overall amount of
material brought into the mixing layer, from both sides, is
directly proportional to the mass-loss rate in the wind
multiplied by the entrainment efficiency α and vw/cL
(Figure 14). Furthermore, as previously shown by Cantó
& Raga (1991), the mass entrainment from the upward,
wind, side is roughly twice that of the downward,
envelope, side (Figure 11), where the approximate
proportionality is set by the assumption that across the
mixing layer, the flow velocity profile is linear (i.e., a
Couette flow).

4. The shape of the line profile produced by material
flowing along the cavity wall strongly depends on which
layer is responsible for the emission (Section 4.2). The
upward, shocked wind layer moves fast, v∼vw, and has
little curvature, resulting in a narrow profile peaked at the
projected wind velocity. Alternatively, due to the
Couette-type flow, emission from the mixing layer is
broad and peaks at rest velocity (Figures 16 and 17).

5. We find an excellent correspondence between the broad
component of the CO J=16−15 line profile observed
by Herschel toward the protostar Serpens-Main SMM1,
and a mixing-layer model with vw= 25–30 km s−1, a
viewing angle 30° from the disk plane, and an emissivity
proportional to density (Section 5). Furthermore, taking
α;0.03, a value that matches very well with exper-
imental measurements of supersonic mixing, and assum-
ing a standard CO abundance and a reasonable ratio of
wind to infall rate of 4%, we find excellent quantitative
agreement between the observed momentum in the CO
broad component, the observed infall rate of SMM1, and
the observed outflow cavity size (Section 5.4).

6. We compute the turbulent heating, expansion cooling,
and radiative CO cooling within the mixing layer and
show that their ratio is appropriate to keep the gas warm
at the observed temperature TL;250 K in SMM1
(Section 5.6).

7. Finally, our model provides a natural explanation for the
narrow outflow cavity radii observed at the Class 0 stage
of 104–105 yr (Section 5.7). Unlike wind-driven shell
models with full mixing, in which radial motions quickly
lead to large cavity sizes, our partial mixing solutions
with a mixing layer separating the shocked wind and
envelope produce a time-independent, steady cavity
where observed velocities are parallel to the cavity walls
and thus do not lead to excessive expansion.

To summarize, we provide a model for the interaction
between a wind and a surrounding envelope that potentially can
be applied widely, from protostellar outflows to galactic scales.
The model produces steady-state cavities and broad-line
profiles peaked at the rest velocity, and constrains the turbulent
entrainment efficiency. It therefore provides a new framework
in which to interpret the observations of warm wind-driven
outflows, and in particular to reconcile modest outflow cavity
widths with the large observed flow velocities. While the model
successfully reproduces a number of observational constraints
for a single protostellar outflow, Serpens-Main SMM1, an
obvious next step is to apply this analysis to a larger sample of
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protostellar sources in order to test its success; this will be done
in a forthcoming publication.
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Appendix A
The Boundary Condition of the Interface at the Disk Plane

We determine the boundary condition of the interface at the
disk plane by requiring pressure balance between the stellar
wind and envelope sides. This directly leads to a one-to-one
relation between R0 (the distance of the wind/envelope
interface from the central star at the disk plane) and β0 (the
angle of incidence at the base). Formally,

( ) ( ) ( )b = L -- R r R rsin 1 , A12
0

1
0 d

3 2
0 d

which depends on Λ. In Figure A1, we show β0 as a function of
R0 for Λ=25 (magenta line), 50 (blue line), 100 (red line), and
200 (solid black line). For the purpose of reference, we also
show in the same figure the local angle of incidence of the
infalling envelope gas at the midplane as a function of R0

(dotted black line).
It can be seen that for a given Λ, the allowed angle of

incidence of the interface increases monotonically with R0 and
reaches π/2 near rd for all Λ values that we have considered in
this paper (β0=π/2 indicates that the interface is perpend-
icular to the disk plane). In the inner region, we find that the
incidence angle of the envelope material at the disk plane

Figure A1. The allowed angle of incidence of the wind–envelope interface at the disk plane as a function of R0, for models with different Λ values. The dotted black
line indicates the angle of incidence of the infalling material at R0.
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becomes larger than the allowed β0 of the wind/envelope
interface. This corresponds to an unphysical solution where the
envelope gas pushes the interface from the same side as the
stellar wind. It is therefore a requirement that R0 is sufficiently
large so that a stable wind/envelope interface that is balanced
by the pressure of the stellar wind and infalling envelope from
either side is possible.

For the fiducial models presented in the paper, the wind/
envelope interfaces at the footpoint are parallel to the local
streamline of the material of the infalling envelope at the disk
plane (corresponding to the intersecting point between the
dashed line and each colored solid line in Figure A1). For a
given Λ, when the interface footpoint is placed at a somewhat
larger R, the cavity quickly converges to the fiducial case
within a small distance from the base, as is shown in Figure A2.
The footpoint, however, cannot become arbitrarily close to rd
without the infalling material crushing the wind and preventing
a breakout solution, dependent on the value of λ. Thus, the
footpoint location is highly constrained, with larger λ values
allowing a broader range of solutions at the base, all
converging to self-similar solutions at altitude.

Appendix B
Equations for the Growth of the Mixing Layer

Several typographical errors were present in the general
equations from Raga et al. (1995) describing the growth of the
mixing layer between two axisymmetric moving fluids of speed
v1 and v2<v1: in their Equation (13), the term ¢hP should have
been - ¢hP , while in their Equation (16), the factor rc next to
( )+ ¢h h P1 2 should not be present. Below, we reproduce their
Equations (15) and (16) where the latter typo has been
corrected, and we use the subscript “L” to denote quantities in
the mixing layer, instead of the lower case letter “l,” which was
difficult to differentiate from the digit “1” in Raga et al. (1995).
Furthermore, for consistency with the notation in the main
paper, here we refer to the velocity within the mixing layer as

vL whereas in Raga et al. (1995) it is just v. All other notations
are kept the same. Because we assume an isothermal mixing
layer with uniform sound speed cL, we do not have to integrate
their energy equation. Thus the system reduces to solving the
following set of coupled equations for ( )h x1 and ( )h x2 , which
are the respective widths by which the mixing layer encroaches
into each fluid:

( ) ( )

( ) ( ) ( )
( )

r r r r

r
r ar

- + - -

+ = + -
¢

v v
dh

dx
v v

dh

dx

h h v
d
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In these equations, the subscript “1” denotes quantities
pertaining to the fast fluid (in our case, the deflected wind), the
subscript “2” pertains to the slow fluid (in our case, the
deflected envelope), x is the distance along the flow, rc and P
are the cylindrical radius and the pressure at the current point,
respectively, primes denote derivatives versus x, and the mean
velocities in the mixing layer for a linear Couette flow are given
by

( )=
+

v
v v

2
B3L

1 2

Figure A2. Cavity shapes near the base for an isotropic wind colliding with an Ulrich (1976) infalling envelope for different Λ values. The magenta and black lines
correspond to the model of (Λ=25, λ=1/2) and (Λ=200, λ=10), respectively. For each model, the solid curve represents the “fiducial” solution where the
wind/envelope interface at the footpoint lies parallel to the local streamline of the material of the infalling envelope at the disk plane, whereas the dashed line
represents a different solution where the base of the interface is located at a larger R0. For a given Λ, the solutions of different base positions converge at a small
distance from the disk plane (a few 0.01rd). The thin dotted lines in the background indicate the streamlines of the material within the infalling envelope.
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and

( )
( )=

-
-

v
v v

v v3
. B4L

2 1
3

2
3

1 2

The mass densities in the three layers are determined through
transverse pressure equilibrium as

( )r r r= = =c c c P, B51 1
2

2 2
2

L L
2

where we assume here for simplicity that the sound speeds c1,
c2, and cL do not vary with position.

An added complication for our paper is that our two fluids do
not flow in the same direction. Fortunately, we always have

 <v v v v2 d 1 w. We thus assume =v 02 when integrating
these equations upward along x, i.e., that mass entrainment into
the mixing layer from the slow envelope side is largely
dominated by the turbulent entrainment term.

Appendix C
Viscous Dissipation in the Mixing Layer

We consider the simplified case, relevant to the present
paper, of an isothermal, supersonic mixing layer of width h
between two fluids with v 02 and v v1 2, and with a linear
velocity gradient across the flow direction (Couette profile)

( ) ( )dv y dy v h1 where v1 changes weakly with position x
along the flow.

We calculate Gvisc, the excess kinetic energy that needs to be
locally dissipated by viscous turbulence per unit time and
volume within the layer to maintain its internal linear Couette
profile as follows. The flux of kinetic energy flowing along the
mixing layer is given by
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Note that in converting to units of mass flow in the layer, ML,
we make use of the fact that the mean flow velocity in the layer
is =v v 2L 1 (Couette profile with v 02 ).

We next consider a “slice” of the mixing layer of thickness
Δx and denote Ein and Eout, the kinetic energy flux flowing
through the layer at positions x and + Dx x, respectively.
Because v1 is considered constant with position, the change in
kinetic energy flux (Equation (C1)) between x and + Dx x is
caused only by the increase in mass flux through the layer,
DML, via sideways entrainment. Recalling that to maintain a

Couette flow with v 02 the entrainment rate from the wind
side must be twice that from the ambient side (see Section 3.2),
we then have
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At the same time, the kinetic energy flux Eent injected into the
slice through its lateral surfaces by entrainment of fresh wind

material at v1 is given by
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The excess injected kinetic energy that needs to be dissipated
by turbulent viscosity per unit time within the slice volume to
maintain the Couette flow is

( ) ( )    p= + - º G DE E E E R x h2 . C4visc ent in out visc

Combining Equations (C2)–(C4), we obtain
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where we make use of our prescription for aºv c cent 2
2

L and
recognize the lateral pressure equilibrium across the shell,
r r=c c2 2

2
L L

2. Comparing Equation (C5) with the standard
expression for viscous dissipation, ( ( ) )mG = dv y dyvisc

2, we
obtain an “effective” turbulent viscosity in the mixing layer

( )m
a
r= c h

4
. C6L L

Note that we recover the same turbulent viscosity prescription
as in Equation (5) of the work of Binette et al. (1999; with their
parameter α being one-fourth of our α). For the typical
α=0.03 favored by mixing-layer experiments (Cantó &
Raga 1991), the numerical coefficient in Equation (C6) would
be ;0.007, as adopted by Binette et al. (1999) for their
calculations.
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