Ultra-high field 7T imaging in multiple sclerosis
Céline Louapre, Constantina Treaba, Valeria Barletta, Caterina Mainero

To cite this version:

HAL Id: hal-02946687
https://hal.sorbonne-universite.fr/hal-02946687
Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>WCO330409R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Ultra high field 7T imaging in multiple sclerosis</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Review Article</td>
</tr>
<tr>
<td>Corresponding Author:</td>
<td>Céline Louapre</td>
</tr>
<tr>
<td></td>
<td>PARI, FRANCE</td>
</tr>
<tr>
<td>Corresponding Author Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Corresponding Author's Institution:</td>
<td></td>
</tr>
<tr>
<td>Corresponding Author's Secondary Institution:</td>
<td></td>
</tr>
<tr>
<td>First Author:</td>
<td>Céline Louapre</td>
</tr>
<tr>
<td>First Author Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Order of Authors:</td>
<td>Céline Louapre</td>
</tr>
<tr>
<td></td>
<td>Constantina A Treaba</td>
</tr>
<tr>
<td></td>
<td>Valeria Barletta</td>
</tr>
<tr>
<td></td>
<td>Caterina Mainero</td>
</tr>
<tr>
<td>Order of Authors Secondary Information:</td>
<td></td>
</tr>
</tbody>
</table>
Ultra high field 7T imaging in multiple sclerosis

Céline Louapre¹,², Constantina A Treaba³,⁴, Valeria Barletta³,⁴, Caterina Mainero³,⁴

¹ Sorbonne Université, Institut du Cerveau, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
² APHP, Hopital Pitié-Salpetrière, Paris, France
³ A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital
⁴ Harvard Medical School

Corresponding author:
Dr Céline Louapre
Institut du Cerveau, ICM,
Sorbonne University, UMR S 1127, and CNRS UMR 7225,
Hopital Pitié-Salpetriere, F-75013, Paris, France
Email: celine.louapre@aphp.fr
Tel: +33142165766

Keywords: multiple sclerosis; ultra-high field; MRI; cortical lesion; quantitative MRI

Main text word count: 2493

Key points
- Seven Tesla MRI provides increased sensitivity compared to 3T MRI to detect multiple sclerosis cortical lesions, especially subpial lesions the most common cortical lesion type.
- Quantitative cortical mapping at 7T allows to investigate cortical damage, showing diffuse abnormalities expanding beyond cortical lesions.
- Morphological details of white matter lesions can be visualized by 7T MRI including the presence of a central vessel in most lesions and an iron-rich paramagnetic rim in a subset of lesions.
- Seven Tesla MRI allows for a better delineation of multiple sclerosis lesions in the thalamus, cerebellum and spinal cord.

Abbreviation:
Abstract

Purpose of the review: Ultra-high field 7 Tesla (7T) magnetic resonance imaging (MRI) has multiple applications for the in vivo characterization of the heterogenous aspects underlying multiple sclerosis (MS) pathology including the i.) identification of cortical lesions (CL), ii.) characterization of the different types of white matter (WM) plaques, iii.) evaluation of structures difficult to assess with conventional MRI (thalamus, cerebellum, spinal cord, meninges).

Recent findings: The sensitivity of CL detection at 7T is twice than at lower field MRI, especially for subpial lesions, the most common CL type in MS. Cortical lesion load accrual is independent of that in the WM and predicts disability progression. Seven Tesla MRI provides details on tissue microstructure that can be used to improve WM lesion characterization. These include the presence of a central vein, whose identification can be used to improve MS diagnosis, or the appearance of an iron-rich paramagnetic rim on susceptibility weighted images, which corresponds to iron-rich microglia at the periphery of slow expanding lesions. Improvements in cerebellar and spinal cord tissue delineation and lesion characterization have also been demonstrated.

Summary: Imaging at 7T allows assessing more comprehensively the complementary pathophysiological aspects of MS, opening up novel perspectives for clinical and therapeutics evaluation.
Introduction

The recent advent of ultra-high-field strength 7 Tesla (7T) magnetic resonance imaging (MRI) has enabled substantial advantages in image signal-to-noise ratio (SNR), contrast and spatial resolution over lower field strength system, providing increased sensitivity to different aspects of brain tissue anatomy and pathology. In multiple sclerosis (MS) 7T imaging has provided both novel and improved identification of important in vivo radiological markers of the disease, whose detection and monitoring could help a better understanding of disease mechanisms and explain a large part of the interindividual variability and heterogeneous prognosis of the disease course. The main advances discussed herein relate to the improved visualization and characterization of cortical lesions (CL), the identification of specific features of white matter (WM) plaques that have been used for improving diagnosis sensitivity and specificity and monitoring of the disease burden (Table 1). Further applications for studying other brain structures and the spinal cord are also discussed (Figure 1).

Cortex

- Cortical lesion detection

In vivo 7T imaging using T2*-weighted gradient-echo and magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequences allows enhanced identification of the cortical layers that, in turn, leads to improved visualization of CL subtypes relative to lower field MR strength1-3. The different CL subtypes described by neuropathology4 can be visualized in vivo at 7T: Type I, leukocortical, lesions extending across the cortical gray matter (GM) and adjacent white matter (WM); Type II, purely small intracortical lesions confined within cortex; Type III-IV, subpial lesions, extending from the pial surface downwards through different cortical layers and sometimes along several gyri leading to a phenomenon termed the “general subpial demyelination”5. Other contrasts have been tested and optimized at 7T6-8 to identify sequenced with the highest value for detecting CL in clinic. The comparison of T2* contrast at 7T with 3T double inversion recovery9 sequence or multicontrast data10 that are more accessible in clinic demonstrated the superiority of the T2*-sequence at 7T in detecting intracortical, especially subpial, lesions. Despite this, leukocortical lesion identification at 7T remains similar to that achieved at 3T10.

The sensitivity of CL detection, however, cannot be inferred from imaging alone without histopathology validation. Concurrent histological/MRI correlations have demonstrated that regardless of the pulse sequence, 7T MRI detects more than twice as many CL compared to 3T MRI and that, overall, fluid-attenuated inversion recovery sequence shows the highest sensitivity of CL detection11. The same study found, however, that the subpial lesions, the most frequent and broad CL type in MS, are still suboptimally identified even at 7T, and that T2*-weighted contrast detects the highest amount of subpial lesions at ultra high field (32% at prospective and 79% at retrospective scoring, respectively). Further improvements could be obtained by using the two inversion-contrast magnetization-prepared rapid gradient echo (MP2RAGE) technique that can advance overall intracortical lesion detection and especially that of the small lesions12 by increasing the tissue contrast while minimalizing the field inhomogeneities13.

Nevertheless, to date, there is no perfect sequence for CL detection at 7T and probably the best approach would be a combination of MR sequences as different techniques may provide complementary information in the definition of cortical tissue.

- Cortical lesion evolution and relation to clinical outcome
At 7T, CL are detected in the majority (97%)14, if not in all patients15. The detailed development and evolution of CL across cortical width, sulci and gyri was recently assessed in a longitudinal study at 7T15.

At 7T, the CL accrual rate is high (relapsing-remitting MS (RRMS): 1.1/patient/year; secondary-progressive MS (SPMS): 3.6/patient/year), being almost twice as high as that previously reported at 1.5-3T (RRMS:0.8 /patient/year SPMS:1.6 patient/year)16,17. Most importantly, the overall rate of CL development does not correlate with and exceeds that of WM lesions (0.6/patient/year), suggesting that cortical pathology is largely independent of WM damage, as also observed in post-mortem studies18. The dynamics of lesion formation within cortex and WM show a different path according to the MS phenotype: while CL accrual rate is higher in SPMS than in RRMS, the opposite is true for WM lesions. Another interesting aspect is that CL preferentially develop within cortical sulci than in the gyri, with the highest percentage of total surface area filled by new CL located in the sulci of patients with RRMS. These findings may indicate a possible link between CL development and an ongoing neuroinflammatory process mediated by cerebrospinal-fluid (CSF).

The enhanced CL detection at 7T can potentially provide an early and more specific tool for MS diagnosis19 as well as increased diagnostic accuracy in clinically isolated syndrome at presentation20, since subpial demyelination is highly specific to MS21,22. The presence of CL has, therefore, been recently included in the MRI diagnostic criteria of MS23. The usefulness of CL identification is also linked to disease prognosis, given that “benign MS” is characterized by a mild cortical pathology24 while extensive cortical damage at disease onset predisposes to rapid occurrence of disease progression25. The association of CL with high levels of intrathecal immunoglobulins also identifies patients with a poorer outcome at three years follow-up26.

Only few studies have investigated the contribution of CL load assessed at 7T to clinical MS disability. Even if derived from relatively small cohorts (up to 36 patients), the data obtained from cross-sectional studies27,28 confirm the findings observed at lower field strength29-33 regarding the relationship between high CL load and higher Expanded Disability Status Scale (EDSS) scores and cognitive impairment. Furthermore, the same studies have shown that CL subtypes might have a different clinical relevance. While intracortical lesion load mainly relates to neurological disability, leukocortical lesions show the greatest effect on cognition. Additionally, in line with previous reports at lower field strength16,34, CL volume at baseline predicts EDSS at follow-up independently from WM damage and cortical atrophy15.

- **Cortical quantitative T2* mapping**

General subpial demyelination has been shown to be estimated in vivo by surface-based mapping of T2* relaxation time (qT2*) within cortical layers, along the entire cortex35. Longer T2* relaxation time has been pathologically related to iron and myelin loss36,37, while a shorter T2* to iron accumulation38, likely reflecting iron-rich in microglia/macrophages39.

Using this technique, a previous study40 has provided in vivo evidence of abnormally increased qT2* in a heterogeneous cohort of 41 people with MS. In early disease, q-T2* changes were mainly confined to iuxtameningal cortical layers and cortical sulci, while in later stages involved deeper cortical laminae and gyri. These findings constitute radiological evidence that adds to histopathological findings41-43 that cortical demyelination in MS may be driven from the pial surface by organized meningeal inflammation. Furthermore, qT2* analysis revealed a significant association between qT2* increase and worse EDSS and MS severity score40 as well as cognitive impairment44.

The qT2* mapping can also enable a more accurate assessment of microstructural changes in normal appearing cortex, beyond the visible CL45. Interestingly, while changes in qT2* in
CL seem to be of the same magnitude, regardless of the CL subtype or disease phenotype, changes in the perilesional cortex are wider for leukocortical lesions in progressive patients than in RRMS. This suggests that this CL subtype may in fact be more destructive that the intracortical lesion subtype.

Surface-based estimation of qT2* at 7T can be combined with quantitative indices of magnetization transfer imaging resulting in a multivariate statistical model that can be used to extract in vivo the shared information from these different contrasts likely related to myelin content, excluding confounding factors such as iron, cortical thickness. A study that applied this model to integrate myelin-related information from 7T qT2* and T1 maps demonstrated that this technique has a better specificity to MS pathology compared to qT2* and T1 metrics alone.

White matter

- Lesion detection

The contribution of 7T MRI for detecting MS WM lesions is currently less marked than for the cortex. The sequences traditionally used at 3T for following WM lesion load, including FLAIR and T2 spin echo, are hampered by high specific absorption rate (SAR) and B1 field inhomogeneities at 7T, leading to an overall decreased image signal. Technical improvements of these sequences have been proposed to decrease SAR limitations including approaches using “T2-weighted gradient and spin echo” (GRASE) sequence, or to reduce the radio-frequency field inhomogeneities by parallel transmission (PTx). Currently, the best sequences used at 7T for visualizing WM lesions are T2*, FLAIR but also magnetization transfer imaging and MP2RAGE.

- The central vein sign

Seven Tesla MRI can provide details on the morphology and tissue microstructure of WM lesions that can be used to improve their characterization. The presence of a central vessel in WM lesions (central vein sign, CVS) is a specific radiological feature that can be used to differentiate MS from other diseases that mimic this condition. A study using a 7T fast low angle shot T2* sequence determined that 92% of MS lesions show a CVS, compared with only 54% of lesions of in a cohort of 5 patients with Susac syndrome.

Another study using susceptibility weighted imaging coregistered with FLAIR determined that a threshold of 67% of CVS positive lesions allows to discriminate MS subjects from controls with non-pathological WM hyperintensities, with a sensitivity of 94 % and specificity of 100%.

- Slow expanding lesions

Studies using 7T gradient echo-T2* sequences have identified a subset of WM plaques displaying a paramagnetic rim on phase reconstructions, which was found to correspond to iron-enriched activated macroglia/macrophages at the lesion periphery. These lesions may correspond to the so-called “chronic active lesions” described by neuropathology. It has been demonstrated that presence of at least 4 rim lesions either at 3T or 7T is associated with a more aggressive phenotype in MS. Moreover, rim lesions tend to extend over time unlike rimless lesions.

Interestingly, paramagnetic phase changes within and around WM lesions seem to be specific of MS, as they were only rarely observed (<2%) in a cohort of 10 NMO spectrum disorder patients scanned at 7T.

- Diffuse WM damage quantification
Diffuse normal appearing WM (NAWM) abnormalities known from pathological and 3T MRI studies have been quantified at 7T. Recently, a study using maps of T1 relaxation time and magnetization transfer ratio made it possible to identify NAWM abnormalities in MS and neuromyelitis optica (NMO) compared to controls, whereas these abnormalities have not been described in NMO at lower field strength. Other quantitative sequences evaluating the myelin content in the lesional and non-lesional compartments have been validated recently at 7T including Selective Inversion Recovery quantitative MTI.

Leptomeningeal inflammation

Using post-contrast FLAIR MRI, a few investigations have reported the presence of foci of leptomeningeal enhancement (LME) in the brain of people with MS. Leptomeningeal enhancement, however, is not specific to MS, since it has been observed to occur with a high frequency in other non-MS inflammatory neurological conditions and systemic inflammatory diseases with WM MRI abnormalities. Additionally, LME is thought to represent an indirect sign of meningeal inflammation consequent to trapping of gadolinium in fibrotic meningeal tissue, which is thought to form after repetitive episodes of inflammation. This might explain the reason why LME tends to be fixed in time and space, and seems to be not modified by treatment. The in vivo association between the LME sign and CL development also remains controversial, as some investigators reported a statistical association between the number of LME foci and the number of thalamic and CL in MS patients, while others have not observed such association but a only positive relation between LME foci and GM atrophy.

Thalamus

Currently, few studies have specifically analyzed the radiological changes within the thalamus using ultra-high field MRI. Harrison et al investigated a cohort of 34 MS patients to visualize and quantify thalamic lesions. Some lesions were described as nodular and ovoid while other were confluent at the edge of the ventricles and associated with a more severe clinical phenotype. In a cohort of 41 MS patients, a quantitative analysis using qT2* mapping outside focal lesions showed qT2* increase suggesting diffuse demyelination within the thalamus. In RRMS, there was a gradient of qT2* abnormalities originating from the ventricles, suggesting that this diffuse demyelinating process may be driven by CSF-mediated immune factors.

Cerebellum

Demyelination affects the WM and GM of the cerebellum both in RRMS and SPMS, although cerebellar cortex is more widely involved in the progressive phase. Imaging of the cerebellum is challenging because of its convoluted structure, and lesion detection is hampered, especially in the cortex, by the low MRI contrast in this structure. At 7T MP2RAGE acquisitions proved better sensitivity for cerebellar cortical and WM lesion detection and higher contrast-to-noise ratio between normal-appearing cortical GM and CL than 3T MP2RAGE. Moreover, high-resolution 7T MP2RAGE permitted to anatomically localize cerebellar lesions, better distinguishing leukocortical from WM lesions. Imaging of
the MS cerebellum at 7T has also been applied to guide selective analysis of lesions to measure neuroinflammation72. Future application of 7T MP2RAGE will allow a more detailed in vivo study of cerebellar cortical and subcortical pathology in MS through the application of T1 relaxometry maps to study microstructural tissue alterations.

Spinal cord

The increased SNR at 7T allows high-resolution anatomical imaging, with good visualization of spinal cord parenchyma, nerve roots, blood vessels and ligaments. High-resolution 7T imaging also demonstrated improved visualization of cervical spinal cord lesions in MS, with an increase of 52\% of lesion detected from axial 7T T2* images compared to 3T T2-weighted sequence in the cervical spinal cord73. The same study has demonstrated that the combination of T2* and T1 sequences at 7T allows classification of spinal cord lesions according to their stage. Contrast-to-noise ratio (CNR) between GM and WM has also proved to be better at 7T compared to 3T imaging73, allowing optimal segmentation of spinal cord GM and WM. This is of great interest for the characterization of MS pathology, since the localization of MS lesions along the parenchyma can give useful information on their tropism based, for example, on disease stage74.

Some limitations come with the application on ultra-high field in the spinal cord. The high SNR in the cervical cord at 7T is inhomogeneous around the spinal cord and has limited longitudinal coverage75. The CNR between spinal cord WM and cerebrospinal fluid might be in some cases suboptimal73. So far, due to lack of dedicated coils, only the cervical spinal cord has been examined at 7T that limits the disease staging and monitoring. Also, further comparison between 7T imaging and novel 3T methods for spinal cord lesion detection including Phase-Sensitive Inversion Recovery76 could be performed in future research studies.

Conclusion

Seven Tesla imaging has provided a broad improvement in assessing various physiopathological processes in MS. Cortical lesion load can be assessed with a reasonable sensitivity and since the changes in CL counts can be observed even in a short follow-up interval, it may represent a valid outcome in addition to WM lesions to assess disease activity and treatment response. Quantitative sequences applied on several CNS compartments could be used as an imaging marker to monitor remyelination in vivo, during follow-up and in therapeutic trials. However, several technical challenges will have to be overcome before the implementation of 7T imaging in routine medical practice.
Table 1. Advantages of MS lesion detection at 7T vs 3T MRI

<table>
<thead>
<tr>
<th>MS lesion type</th>
<th>Detection sensitivity</th>
<th>Advantages of using 7T vs 3T MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3T</td>
<td>7T</td>
</tr>
<tr>
<td>Cortical lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I</td>
<td>10-20%(^{11})</td>
<td>27-35%(^{11})</td>
</tr>
<tr>
<td>Type II</td>
<td>33-83%(^{11})</td>
<td>50-100%(^{11})</td>
</tr>
<tr>
<td>Type III-IV</td>
<td>0-7%(^{11})</td>
<td>0-11%(^{11})</td>
</tr>
<tr>
<td></td>
<td>0-46%(^{11})</td>
<td>7-64%(^{11})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better discrimination between juxtacortical and leukocortical lesions due to improved gray-white junction delineation at 7T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earlier and more specific MS diagnosis(^{19-21,23,77})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better prognostication of the disease progression(^{14,15,78})</td>
</tr>
<tr>
<td>White matter lesions</td>
<td>No significant improvement</td>
<td>Increased diagnostic accuracy at 7T due to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- increased capacity of identification of the “central vein sign” (in 87% vs 45% lesions)(^{79})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- better discrimination of the paramagnetic rim on phase images(^{80})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detection of 4 or more rim lesions on phase images at 7T is a poor prognostic factor(^{12})</td>
</tr>
<tr>
<td>Cerebellar lesions</td>
<td>Increased up to 134% at 7T(^{71})</td>
<td>Better delineation of cerebellar cortical and white matter lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accurate discrimination between cerebellar leukocortical and white matter lesions(^{71})</td>
</tr>
<tr>
<td>Spinal cord lesions</td>
<td>Increased by 52% at 7T(^{73})</td>
<td>Increased detection can help in MS diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can identify the lesional gray matter involvement when present(^{73})</td>
</tr>
</tbody>
</table>
Legend to the Figure

Figure 1. 7T MRI identification and characterization of MS lesions at different levels.

Axial 7T T2* images show examples of leukocortical (A) intracortical type II (B) and subpial type III-IV (C) lesions as well as extensive subpial demyelination that involves the parasagittal frontal cortices (D) of a relapsing-remitting MS patient. White matter lesion with a peripheral hypointense rim on phase images (E). A central vessel is visible in most T2* hyperintense white matter lesions (F). Leukocortical cerebellar lesion shown as a hypointensity on MP2RAGE sequence (G). Hyperintense T2* lesion affecting the right lateral column of the white matter of the spinal cord (H).
Acknowledgement:
None

Financial support and sponsorship:
Research conducted by the authors on 7T MRI was supported by National Multiple Sclerosis Society (NMSS 4281-RG-A1, NMSS Fellowship FG150705459, NMSS RG 4729A2/1), the National Institutes of Health (NIH R01NS078322-01-A1), and U.S. Department of Defense (W81XWH-13-1-0122).

Conflicts of interest:
None

References

47. Derakhshan M, Caramanos, Z., Narayanan, S., Arnold, D., Collins, D. Surface-based techniques reveal regions of reduced cortical magnetization transfer ratio in patients

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Extensive ribbon-like subpial demyelination was only observed in MS even if cortical oxidative injury was detected in both demyelinating and non-demyelinating CNS disorders.

In patients with MS 7T MRI detects more cortical lesions compared to lower-field MRI and shows a relationship between cortical lesions subsequent disease progression. Cortical preferentially develop in cortical sulci, indicating a possible link with an ongoing cerebrospinal fluid-mediated neuro-inflammatory process.

The detectability of subpial lesions at 7T is increased relative to 3T and it is not related with the degree of demyelination. Detection of leukocortical lesions at 7T is about the same with that at 3T and is influenced by the demyelination degree.

A combination of MP2RAGE and T2*-weighted imaging at 7T can improve cortical lesion detection.

The study investigates the relationship between structural connectivity and cortical demyelination in early multiple sclerosis. The study shows an association between cortical myelin loss and changes in white matter connectivity.

Extensive cortical damage at onset, the earlier the age at onset and an increased number of early attacks predispose to a rapid occurrence of the progressive phase of the disease.

White matter lesions surrounded by a paramagnetic rim are frequent in multiple sclerosis, and are associated with disease severity. They expand slowly over time compared to lesions without a rim that overall shrinks during follow-up.

Selective Inversion Recovery Quantitative Magnetization Transfer imaging provides a quantitative measure of myelin integrity.

At 7T MRI, cerebral leptomeningeal enhancement was observed in 2/3 of MS patients in a cohort of 30 patients and was independently associated with grey matter injury as related to cortical lesion and thalamic volume.

At 7T MRI, cerebral leptomeningeal enhancement was observed in 65.8% of MS patients in a cohort of 41 patients. Although it was associated with mean cortical thickness, it was not associated with cortical lesion count in this cohort.

At 7T MRI, thalamic lesions were mainly located next to the ventricles. Quantitative T2* mapping within the thalamus demonstrated thalamic damage next to the white matter in RRMS, while homogenously distributed in SPMS.

MP2RAGE at 7T showed higher cerebellar lesion detection and contrast-to-noise ratio compared to 3T. High-resolution 7T MP2RAGE also proved optimal description of cerebellar white and grey matter pathology.